Chemical Composition, Antioxidant Activity, and Antibacterial Activity of Black Poplar Buds’ Hydroalcoholic Macerates from Dobrogea Area
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content (TPC)
2.2. Phenolic-Compound Separation, Identification, and Quantification
2.3. DPPH Radical Scavenging Test
2.4. Metallic Concentration Measurement
2.5. Agar Well Diffusion Evaluation of Antibacterial Activity in Black Poplar Extracts
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals
3.3. Apparatus
3.4. Sample Preparation
3.5. Identification and Quantification of Phenolic Compounds by HPLC-DAD
3.6. Total Phenolic Content (TPC) Analysis
Calibration Curve
3.7. DPPH Radical Scavenging Test
3.8. Agar Well Diffusion Evaluation of Antibacterial Activity of Black Poplar Extracts
4. Conclusions
- The most efficient formula for extraction showed to be the mixture of ethanol–silver wire water 6.5:2 (v/v)—sample P1 (original composition). The macerate obtained with ethanol and silver-fir water (sample P1) showed the highest phenolic-compound concentration and antioxidant activity. This observation could potentially be explained by a synergistic effect between the ethanol-and-silver-fir-water components.
- The present study identified and highlighted the compounds responsible for antioxidant activity in various hydroalcoholic macerates of black poplar buds from the Dobrogea region. These compounds include cinnamic acid, chlorogenic acid, gallic acid, and methyl gallic acid. Among the analyzed compounds, cinnamic acid was found in significant concentration in all three samples.
- The antioxidant activity of hydroalcoholic macerates of black poplar buds was assessed using the DPPH radical scavenging test. The results showed high values, ranging from 496 to 1200 mg GAE/100 g d.w. These findings are consistent with previous measurements of total phenolic content (TPC) and high-performance liquid chromatography (HPLC), demonstrating a strong correlation between antioxidant activity and the presence of phenolic compounds in the macerates.
- The results of toxic-metallic concentration are below the limit of detection, confirming the possibility of using black poplar buds from the Dobrogea area for cosmetic or therapeutic purposes. The ranking for metallic concentrations in black poplar buds is Ca > Na > Mg > Fe > Mn.
- The antibacterial activity was significant against Staphylococcus and Enterococcus and can be appreciated as an important property of black poplar buds’ macerates. This feature could be exploited in a variety of practical applications as an adjuvant in controlling the growth of pathogenic or opportunistic bacteria.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cagelli, L.; Lefèvre, F.; Bisoffi, S. Black poplar (Populus nigra) (Salicaceae family). Sherwood-For. Ed Alberi Oggi 1998, 4, 43–47. [Google Scholar]
- Liu, X.; Wang, Z.; Wang, W.; Huang, Q.; Zeng, Y.; Jin, Y.; Li, H.; Du, S.; Zhang, J. Origin and evolutionary history of Populus (Salicaceae): Further insights based on time divergence and biogeographic analysis. Front. Plant Sci. 2022, 13, 1031087. [Google Scholar] [CrossRef] [PubMed]
- Debbache-Benaida, N.; Atmani-Kilani, D.; Schini-Keirth, V.B.; Djebbli, N.; Atmani, D. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent. Asian Pac. J. Trop. Biomed. 2013, 3, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caponio, G.R.; Lippolis, T.; Tutino, V.; Gigante, I.; De Nunzio, V.; Milella, R.A.; Gasparro, M.; Notarnicola, M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants 2022, 11, 1274. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, S.O.; Nadjet, D.-B. Phytochemistry, chemical composition and therapeutic uses of Populus nigra L. aerial parts from 1991-2021 onwards: An overview. Sustain. Chem. Pharm. 2022, 30, 100880. [Google Scholar]
- Dudonne, S.; Poupard, P.; Coutiere, P.; Woillez, M.; Richard, T.; Merillon, J.-M.; Vitrac, X. Phenolic composition and antioxidant properties of poplar bud (Populus nigra) extract: Individual antioxidant contribution of phenolics and transcriptional effect on skin aging. J. Agric. Food Chem. 2011, 59, 4527–4536. [Google Scholar] [CrossRef]
- Pobłocka-Olech, L.; Inkielewicz-Stepniak, I.; Krauze-Baranowska, M. Anti-inflammatory and antioxidative effects of the buds from different species of Populus in human gingival fibroblast cells: Role of bioflavanones. Phytomedicine 2019, 56, 1–9. [Google Scholar] [CrossRef]
- Kis, B.; Avram, S.; Pavel, I.Z.; Lombrea, A.; Buda, V.; Dehelean, C.A.; Soica, C.; Yerer, M.B.; Bojin, F.; Folescu, R.; et al. Recent Advances Regarding the Phytochemical and Therapeutic Uses of Populus nigra L. Buds. Plants 2020, 9, 1464. [Google Scholar] [CrossRef]
- Grigore, A.; Vulturescu, V.; Neagu, G. Antioxidant and Anti-Inflammatory Potential of Populus nigra L. Buds. Chem. Proc. 2022, 7, 18. [Google Scholar]
- Merghache, D.; Boucherit-Otmani, Z.; El Haci, I.; Merghache, S.; Chikhi, I.; Boucherit, K. Antioxidant and Antimicrobial Activities of Algerian Populus nigra L. Buds Extracts. Biosci. Eng. Int. J. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, G.; Aonofriesei, F.; Cristache, N.; Lupsor, S. Quantitative Analysis and Antibacterial Activity of Some Coumarins Extracts. Rev. Chim. 2017, 68, 1752–1756. [Google Scholar] [CrossRef]
- Stanciu, G.; Lupsor, S.; Aonofriesei, F.; Calota, N.; Popescu, A.; Sirbu, R. Quantitative Analysis of Polyphenols and Biological Activity of Sage Macerates. Rev. Chim. 2019, 70, 3865–3871. [Google Scholar] [CrossRef]
- Vardar-Unlu, G.; Silici, S.; Mehmet Unlu, M. Composition and in vitro antimicrobial activity of Populus buds and poplar-type propolis. World J. Microbiol. Biotechnol. 2008, 24, 1011–1017. [Google Scholar] [CrossRef]
- Bartzatt, R.; Cirillo, S.L.; Cirillo, J.D. Antibacterial activity of dipeptide constructs of acetylsalicylic acid and nicotinic acid. Drug Deliv. 2007, 14, 105–109. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.-G. Chemical Composition of European Propolis: Expected and Unexpected Results. Z. Für Naturforschung C 2002, 57, 530–533. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Bakier, S.; Pirożnikow, E.; Zambrzycka, M.; Swiecicka, I. Selective Behaviour of Honeybees in Acquiring European Propolis Plant Precursors. J. Chem. Ecol. 2016, 42, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Okińczyc, P.; Szumny, A.; Szperlik, J.; Kulma, A.; Franiczek, R.; Żbikowska, B.; Krzyżanowska, B.; Sroka, Z. Profile of Polyphenolic and Essential Oil Composition of Polish Propolis, Black Poplar and Aspens Buds. Molecules 2018, 23, 1262. [Google Scholar] [CrossRef] [Green Version]
- Jerković, I.; Mastelić, J. Volatile compounds from leaf-buds of Populus nigra L. (Salicaceae). Phytochemistry 2003, 63, 109–113. [Google Scholar] [CrossRef]
- De Marco, S.; Piccioni, M.; Pagiotti, R.; Pietrella, D. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas aeruginosa. Evid.-Based Complement. Altern. Med. 2017, 2017, 5163575. [Google Scholar] [CrossRef] [Green Version]
- Maciejewicz, W.M.; Daniewski, K.B.; Markowski, W. GC-MS identification of the flavonoid aglycones isolated from propolis. Chromatographia 2001, 53, 343–346. [Google Scholar] [CrossRef]
- Greenaway, W.; May, J.; Scaysbrook, T.; Whatley, F.R. Identification by gas-chromatography-mass spectrometry of 15 compounds in propolis. Z. Naturforschung C 1991, 46, 111–121. [Google Scholar] [CrossRef]
- Rubiolo, P.; Casetta, C.; Cagliero, C.; Brevard, H.; Sgorbini, B.; Bicchi, C. Populus nigra L. bud absolute: A case study for a strategy of analysis of natural complex substances. Anal. Bioanal. Chem. 2013, 405, 1223–1235. [Google Scholar]
- Kurkin, V.A.; Kupriyanova, E.A. HPLC assay of rutin content in the leaves of the black poplar. Pharm. Chem. J. 2020, 54, 717–720. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Kupriyanova, E.A.; Daeva, E.D.; Kadentsev, V.I. Constituents of Populus nigra Leaves. Chem. Nat. Compd. 2020, 56, 137–138. [Google Scholar] [CrossRef]
- Oancea, I.A.; Oancea, E.; Ungureanu, E.M.; Stanciu, G.; Chirila, E. Analytical characterisation of some buds of etheric oils used in cosmetics. Rev. Roum. Chim 2017, 62, 511–516. [Google Scholar]
- Guzelmeric, E.; Ristivojević, P.; Trifković, J.; Dastan, T.; Yilmaz, O.; Cengiz, O.; Yesilada, E. Authentication of Turkish propolis through HPTLC fingerprints combined with multivariate analysis and palynological data and their comparative antioxidant activity. LWT-Food Sci. Technol. 2018, 87, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Kuś, P.; Jerković, I.; Jakovljević, M.; Jokić, S. Extraction of bioactive phenolics from black poplar (Populus nigra L.) buds by supercritical CO2 and its optimization by response surface methodology. J. Pharm. Biomed. Anal. 2018, 152, 128–136. [Google Scholar] [CrossRef]
- Seidel, V.; Peyfoon, E.; Watson, D.G.; Fearnley, J. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones. Phytother. Res. 2008, 22, 1256–1263. [Google Scholar]
- Souza, E.A.D.; Inoue, H.T.; Fernandes Júnior, A.; Veiga, N.; Orsi, R.D.O. Influence of seasonality and production method on the antibacterial activity of propolis. Acta Sci. Anim. Sci. 2014, 36, 49–53. [Google Scholar] [CrossRef] [Green Version]
- AL-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M.I. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Paetz, C.; Hammerbacher, A.; Menezes, R.C.; Feistel, F.; Weigel, C.; Voigt, K.; Schneider, B. Chemical composition and antimicrobial activity of Populus nigra shoot resin. Nat. Prod. Commun. 2016, 11, 989–992. [Google Scholar] [CrossRef] [Green Version]
- Nadjet, D.; Atmani, D.; Atmani, D. Chemical analysis and biological activities of Populus nigra, flower buds extracts as source of propolis in Algeria. Ind. Crops Prod. 2014, 53, 85–92. [Google Scholar]
- Stanciu, G.; Oancea, I.A.; Oancea, E.; Chirila, E. Evaluation of antioxidant capacity for some wild plant extracts used in cosmetics. Rev. Roum. Chim. 2017, 62, 555–560. [Google Scholar]
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.J.; Duan, B.Z.; Huang, L.F. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 2022, 28, 661–671. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chang, Y.J.; Wei, P.L.; Hung, C.S.; Wang, W. Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PLoS ONE 2021, 16, e0248521. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Widelski, J.; Okinczyc, P.; Paluch, E.; Mroczek, T.; Szperlik, J.; Zuk, M.; Sroka, Z.; Sakipova, Z.; Chinou, I.; Skalicka-Wozniak, K.; et al. The Antimicrobial Properties of Poplar and Aspen–Poplar Propolises and Their Active Components against Selected microorganisms, including Helicobacter Pylori. Pathog. 2022, 11, 191. [Google Scholar] [CrossRef]
- Stanciauskaite, M.; Marksa, M.; Babickaite, L.; Majiene, D.; Ramanauskiene, K. Comparison of Ethanolic and Aqueous Populus balsamifera L. Bud Extracts by Different Extraction Methods: Chemical Composition, Antioxidant and Antibacterial Activities. Pharmaceuticals 2021, 14, 1018. [Google Scholar] [CrossRef]
- Grange, J.M.; Davey, R.W. Antibacterial properties of propolis (bee glue). J. R. Soc. Med. 1990, 83, 159–160. [Google Scholar] [CrossRef]
- Stanciu, G.; Lupsor, S.; Oancea, E.; Mititelu, M. Biological activity of essential sage oil. J. Sci. Arts 2022, 22, 211–218. [Google Scholar] [CrossRef]
- Krol, W.; Scheller, S.; Shani, J.; Pietsz, G.; Czuba, Z. Synergistic effect of ethanolic extract of popolis and antibiotics on the growth of Staphylococcus aureus. Arzneim. Forsch. 1993, 43, 607–609. [Google Scholar]
- Stanciu, G.; Aonofriesei, F.; Lupsor, S.; Popescu, A.; Sirbu, R. Study of Phenolic Compounds and Antimicrobial Activity of Lavandula angustifolia L. Flowers Macerates. Rev. Chim. 2019, 70, 1800–1804. [Google Scholar] [CrossRef]
- Lupsor, S.; Rotariu, R.; Oancea, E.; Oancea, I.-A. Quantitative Analysis of Polyphenols and Antioxidant Activity of Mint Macerate. J. Sci. Arts 2019, 4, 973–982. [Google Scholar]
- Wilson, M.B.; Spivak, M.; Hegeman, A.D.; Rendahl, A.; Cohen, J.D. Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees. PLoS ONE 2013, 8, e77512. [Google Scholar] [CrossRef] [Green Version]
- Stanciauskaite, M.; Marksa, M.; Liaudanskas, M.; Ivanauskas, L.; Ivaskiene, M.; Ramanauskiene, K. Extracts of Poplar Buds (Populus balsamifera L., Populus nigra L.) and Lithuanian Propolis: Comparison of Their Composition and Biological Activities. Plants 2021, 10, 828. [Google Scholar] [CrossRef]
- Balouiri, M.; Moulay Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
No. | Sample | TPC mg GAE/100 g d.w. | Percent of Total Measured Individual Phenols by HPLC from TPC, wt. % | The Major Individual Determined Phenols by HPLC | |
---|---|---|---|---|---|
Phenolic Compound | wt.% | ||||
1 | P1 | 1989.25 | 91.180 | Chlorogenic acid | 33.305 |
Gallic acid | 34.474 | ||||
2 | P2 | 1387.5 | 71.282 | Chlorogenic acid | 24.600 |
Cinnamic acid | 26.281 | ||||
3 | P3 | 1872.5 | 68.78 | Cinnamic acid | 17.938 |
Methyl gallic acid | 12.272 |
Phenolic Compound | P1 | P2 | P3 | |||
---|---|---|---|---|---|---|
mg/ 100 g d.w. | wt.% | mg/ 100 g d.w. | wt.% | mg/ 100 g d.w. | wt.% | |
Chlorogenic acid | 662.536 | 36.527 | 341.325 | 34.511 | 1.829 | 0.142 |
Caffeic acid | - | - | 9.123 | 0.922 | 71.661 | 5.563 |
Gallic acid | 685.773 | 37.809 | 138.006 | 13.954 | 128.335 | 9.963 |
Methyl gallic acid | - | - | 21.665 | 2.191 | 352.531 | 27.369 |
Cinnamic acid | 375.699 | 20.714 | 364.65 | 36.869 | 515.280 | 40.005 |
Vanillin | - | - | 0.285 | 0.029 | - | - |
Ferulic acid | - | - | 4.383 | 0.443 | - | - |
Ellagic acid | 89.79 | 4.950 | 109.600 | 11.081 | 190.329 | 14.777 |
p-Coumaric acid | - | - | - | - | 28.090 | 2.180 |
Total phenolic content | 1813.798 | 100 | 989.037 | 100 | 1288.055 | 100 |
No. | Sample | DPPH mg GAE/100 g d.w. |
---|---|---|
1 | P1 | 1200.12 |
2 | P2 | 496.875 |
3 | P3 | 1057.5 |
Metal | Concentration (mg/kg d.w.) ± SD | Correlation Coefficient of Calibration Curve |
---|---|---|
Ca | 5538.00 ± 1.15 | 0.9997 |
Fe | 75.92 ± 2.04 | 0.9992 |
Mg | 494.60 ± 2.12 | 0.9963 |
Mn | 17.20 ± 1.42 | 0.9968 |
Na | 523.70 ± 3.33 | 0.9956 |
Cd | <DL | 0.9956 |
Cu | <DL | 0.9991 |
Ni | <DL | 0.9948 |
Pb | <DL | 0.9950 |
Zn | <DL | 0.9954 |
Bacterial Strain | Sample | ||
---|---|---|---|
P1 | P2 | P3 | |
Enterococcus 1 | 9 ± 0.57 | 9 ± 0.28 | 10 ± 0.50 |
Enterococcus 2 | 10 ± 0.18 | 10 ± 0.33 | 10 ± 0.66 |
Enterococcus 3 | 10 ± 0.26 | 10 ± 0.55 | 9 ± 0.25 |
Enterococcus 4 | 12 ± 0.48 | 10 ± 0.66 | 9 ± 0.16 |
Enterococcus 5 | 10 ± 0.21 | 10 ± 0.12 | 8 ± 0.27 |
Enterococcus 6 | 12 ± 0.38 | 12 ± 0.24 | 8 ± 0.13 |
Enterococcus 7 | 9 ± 0.15 | 9 ± 0.22 | 7 ± 0.33 |
Enterococcus 8 | 12 ± 0.18 | 12 ± 0.62 | 8 ± 0.66 |
Enterococcus 9 | 9 ± 0.28 | 8 ± 0.11 | 8 ± 0.19 |
Enterococcus 10 | 9 ± 0.36 | 10 ± 0.34 | 9 ± 0.20 |
Average activity | 9 | 10 | 8.6 |
Bacterial Strain | Sample | ||
---|---|---|---|
P1 | P2 | P3 | |
Staphylococcus 1 | 10 ± 0.28 | 9 ± 0.66 | 10 ± 0.52 |
Staphylococcus 2 | 12 ± 0.14 | 10 ± 0.22 | 9 ± 0.21 |
Staphylococcus 3 | 10 ± 0.33 | 8 ± 0.39 | 7 ± 0.42 |
Staphylococcus 4 | 10 ± 0.45 | 10 ± 0.51 | 9 ± 0.57 |
Staphylococcus 5 | 9 ± 0.32 | 9 ± 0.24 | 7± 0.61 |
Staphylococcus 6 | 9 ± 0.26 | 9 ± 0.55 | 7 ± 0.72 |
Staphylococcus 7 | 9 ± 0.15 | 8 ± 0.12 | 8 ± 0.13 |
Staphylococcus 8 | 9 ± 0.27 | 9 ± 0.28 | 7 ± 0.59 |
Staphylococcus 9 | 8 ± 0.54 | 8 ± 0.17 | 9 ± 0.34 |
Staphylococcus 10 | 9 ± 0.68 | 9 ± 0.35 | 9 ± 0.21 |
Staphylococcus 10 | 8 ± 0.22 | 9 ± 0.48 | 8 ± 0.18 |
Staphylococcus 12 | 8 ± 0.11 | 10 ± 0.16 | 8 ± 0.32 |
Staphylococcus 13 | 10 ± 0.19 | 8 ± 0.33 | 8 ± 0.76 |
Staphylococcus 14 | 10 ± 0.25 | 9 ± 0.28 | 9 ± 0.63 |
Staphylococcus 15 | 10 ± 0.66 | 8 ± 0.15 | 8 ± 0.14 |
Average activity | 9.4 | 8.6 | 8.2 |
Description | Sample | ||
---|---|---|---|
P1 | P2 | P3 | |
Dry buds powder mass (g) | 100 | 100 | 100 |
Ethanol 97%, volume (mL) | 200 | 200 | 300 |
Dilution solvent, volume (mL) | silver-fir water *, 650 | distilled water, 650 | - |
Maceration time at room temperature | 3 months | 3 months | 3 months |
Time (min) | Solvent A, % | Solvent B, % |
---|---|---|
0–13 | 90 | 10 |
13 | 78 | 22 |
13 | 78 | 22 |
14 | 60 | 40 |
17 | 60 | 40 |
17.5 | 90 | 10 |
22 | 90 | 10 |
Standard | Retention Time ± SD |
---|---|
gallic acid | 0.990 ± 0.025 |
3-o-methyl gallic acid | 2.606 ± 0.008 |
chlorogenic acid | 3.501 ± 0.015 |
caffeic acid | 4.598 ± 0.036 |
vanillin | 6.919 ± 0.051 |
p-coumaric acid | 7.187 ± 0.019 |
ferulic acid | 8.565 ± 0.058 |
E—resveratrol | 14.467 ± 0.017 |
ellagic acid | 15.303 ± 0.027 |
Z—resveratrol | 15.751 ± 0.058 |
cinnamic acid | 15.867 ± 0.007 |
Bacterial Strain | Observation |
---|---|
Enterococcus 1–10 | Isolated from urinary tract infection (UTI) |
Staphylococcus 1–10 | Isolated from skin infection (SI) |
Staphylococcus 11–15 | Isolated from upper respiratory infection (URI) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, G.; Aonofriesei, F.; Lupsor, S.; Oancea, E.; Mititelu, M. Chemical Composition, Antioxidant Activity, and Antibacterial Activity of Black Poplar Buds’ Hydroalcoholic Macerates from Dobrogea Area. Molecules 2023, 28, 4920. https://doi.org/10.3390/molecules28134920
Stanciu G, Aonofriesei F, Lupsor S, Oancea E, Mititelu M. Chemical Composition, Antioxidant Activity, and Antibacterial Activity of Black Poplar Buds’ Hydroalcoholic Macerates from Dobrogea Area. Molecules. 2023; 28(13):4920. https://doi.org/10.3390/molecules28134920
Chicago/Turabian StyleStanciu, Gabriela, Florin Aonofriesei, Simona Lupsor, Elena Oancea, and Magdalena Mititelu. 2023. "Chemical Composition, Antioxidant Activity, and Antibacterial Activity of Black Poplar Buds’ Hydroalcoholic Macerates from Dobrogea Area" Molecules 28, no. 13: 4920. https://doi.org/10.3390/molecules28134920
APA StyleStanciu, G., Aonofriesei, F., Lupsor, S., Oancea, E., & Mititelu, M. (2023). Chemical Composition, Antioxidant Activity, and Antibacterial Activity of Black Poplar Buds’ Hydroalcoholic Macerates from Dobrogea Area. Molecules, 28(13), 4920. https://doi.org/10.3390/molecules28134920