Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of the Hierarchical Self-Assembly of Compound 1
2.2. Single-Crystal-to-Single-Crystal Metalation of Compound 1
3. Experimental
3.1. Materials and Physical Measurements
3.2. Synthesis of Compounds 1 and 2
3.3. Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wen, H.-R.; Dong, P.-P.; Liu, S.-J.; Liao, J.-S.; Lianga, F.-Y.; Liu, C.-M. 3d–4f heterometallic trinuclear complexes derived from amine-phenol tripodal ligands exhibiting magnetic and luminescent properties. Dalton Trans. 2017, 46, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Pan, F.F.; Liu, Y.; Huang, S.D.; Li, Y.J.; Yong, J.; Li, Y.; Kirillov, A.M.; Wu, D.Y. An efficient blue-emissive metal−organic framework (MOF) for lanthanide-encapsulated multicolor and stimuli-responsive luminescence. Inorg. Chem. 2017, 56, 6362–6637. [Google Scholar] [CrossRef] [PubMed]
- Connell, T.U.; Earl, S.K.; Ng, C.; Roberts, A.; Davis, T.J.; White, J.M.; Polyzos, A.; Gómez, D.E. Luminescence of a transition metal complex inside a metamaterial nanocavity. Small 2017, 13, 1700692. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Braun, J.; Anson, C.E.; Wilts, B.D.; Moatsou, D.; Bizzarri, C. Cyan-emitting Cu(I) complexes and their luminescent metallopolymers. Molecules 2021, 26, 2567. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Liu, X.F.; Xu, B.B.; Li, Y.; Mohamed, M.A.; Yue, Y.Z.; Qiu, J.R. Vitrification and luminescence properties of metal–organic complexes. ACS Mater. Lett. 2022, 4, 2613–2621. [Google Scholar] [CrossRef]
- Herr, P.; Kerzig, C.; Larsen, C.B.; Häussinger, D.; Wenger, O.S. Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nat. Chem. 2021, 13, 956–962. [Google Scholar] [CrossRef]
- Lee, L.C.C.; Lo, K.K.W. Luminescent and photofunctional transition metal complexes: From molecular design to diagnostic and therapeutic applications. J. Am. Chem. Soc. 2022, 144, 14420–14440. [Google Scholar] [CrossRef]
- Saito, D.; Ogawa, T.; Yoshida, M.; Takayama, J.; Hiura, S.; Murayama, A.; Kobayashi, A.; Kato, M. Intense red-blue luminescence based on superfine control of metal–metal interactions for self-assembled platinum (II) complexes. Angew. Chem. Int. Ed. 2020, 59, 18723–18730. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Tada, H.; Era, I.; Fujii, T.; Ikenaga, K.; Nakano, M. Theoretical study on the difference in electron conductivity of a one-dimensional penta-nickel (II) complex between anti-ferromagnetic and ferromagnetic states—Possibility of molecular switch with open-shell molecules. Molecules 2019, 24, 1956. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: Charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 2020, 49, 5601–5638. [Google Scholar] [CrossRef]
- Chen, G.; Gee, L.B.; Xu, W.Q.; Zhu, Y.B.; Lezama-Pacheco, J.S.; Huang, Z.H.; Li, Z.Q.; Babicz, J.T., Jr.; Choudhury, S.; Chang, T.-H.; et al. Valence-dependent electrical conductivity in a 3D tetrahydroxyquinone-based metal−organic framework. J. Am. Chem. Soc. 2020, 142, 21243–21248. [Google Scholar] [CrossRef]
- Hutchins, K.M.; Rupasinghe, T.P.; Ditzler, L.R.; Swenson, D.C.; Sander, J.R.G.; Baltrusaitis, J.; Tivanski, A.V.; MacGillivray, L.R. Nanocrystals of a metal−organic complex exhibit remarkably high conductivity that increases in a single-crystal-to-single-crystal transformation. J. Am. Chem. Soc. 2014, 136, 6778–6781. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Z.-X.; Wu, F.-F.; Wang, B.; Cao, X.-L.; Wang, W.; Zhuo, Z.; Li, Q.-H.; Huang, Y.-G. A chiral SrSi2 (srs) superstructure constructed by a dual interaction system showing isotropic electrical conductivity. Chin. Chem. Lett. 2022, 1001, 108100. [Google Scholar] [CrossRef]
- Miao, Q.; Liu, W.-M.; Kock, T.; Blok, A.; Timmer, M.; Overhand, M.; Ubbink, M. A double-armed, hydrophilic transition metal complex as a paramagnetic NMR probe. Angew. Chem. Int. Ed. 2019, 58, 13093–13100. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.X.; Zhuo, Z.; Wang, W.; Huang, Y.-G.; Hong, M.C. {Gd44Ni22}: A gigantic 3d–4f wheel-like nanoscale cluster with a large magnetocaloric effect. Inorg. Chem. Front. 2023, 10, 979–983. [Google Scholar] [CrossRef]
- Terada, N.; Mamiya, H. High-efficiency magnetic refrigeration using holmium. Nat. Commun. 2021, 12, 1212. [Google Scholar] [CrossRef]
- Liu, S.-J.; Han, S.-D.; Zhao, J.-P.; Xu, J.-L.; Bu, X.-H. In-situ synthesis of molecular magnetorefrigerant materials. Coordin. Chem. Rev. 2019, 394, 39–52. [Google Scholar] [CrossRef]
- Bahjat, E.R.; Liu, J.W.; Béreau, V.; Duhayon, C.; Horino, Y.; Suzuki, T.; Coolen, L.; Sutter, J.P. Concomitant emergence of circularly polarized luminescence and single-molecule magnet behavior in chiral-at-metal Dy complex. Inorg. Chem. Front. 2020, 7, 4527–4534. [Google Scholar]
- Matsuoka, R.; Yoshimoto, T.; Kitagawa, Y.; Kusamoto, T. Structural and magnetic studies on Nickel (II) and Cobalt (II) complexes with polychlorinated diphenyl(4-pyridyl) methyl radical ligands. Molecules 2021, 26, 5596. [Google Scholar] [CrossRef]
- Sawano, T.; Lin, Z.K.; Boures, D.; An, B.; Wang, C.; Lin, W.B. Metal–organic frameworks stabilize mono (phosphine)–metal complexes for broad-scope catalytic reactions. J. Am. Chem. Soc. 2016, 138, 9783–9786. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Jian, H.; Lu, M.; Wang, M. Two novel schiff base manganese complexes as bifunctional electrocatalysts for CO2 reduction and water oxidation. Molecules 2023, 28, 1074. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 2017, 7, 70–88. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Liu, Z.P.; Bu, J.; Ma, W.X.; Yan, C.; Bai, R.; Lin, J.; Zhang, Q.Y.; Liu, J.Z.; et al. Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes. Nat. Commun. 2021, 12, 6574. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.L.; Song, J.Q.; Qin, Y.H.; Guo, J.; Huang, Y.H.; Zhang, X.D.; Pan, M.; Su, C.Y. A redox-active supramolecular Fe4L6 cage based on organic vertices with acid-base-dependent charge tunability for dehydrogenation catalysis. J. Am. Chem. Soc. 2022, 144, 8778–8788. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Z.; Shi, H.T.; Lee, C.-S.; Yiu, S.-M.; Man, W.-M.; Lau, T.-C. Room temperature aerobic peroxidation of organic substrates catalyzed by cobalt (Ш) alkylperoxo complexes. J. Am. Chem. Soc. 2021, 143, 14445–14450. [Google Scholar] [CrossRef]
- Cuerva, C.; Cano, M.; Lodeiro, C. Advanced functional luminescent metallomesogens: The key role of the metal center. Chem. Rev. 2021, 121, 12966–13010. [Google Scholar] [CrossRef]
- Nakano, M.; Oshio, H. Magnetic anisotropies in paramagnetic polynuclear metal complexes. Chem. Soc. Rev. 2011, 40, 3239–3248. [Google Scholar] [CrossRef]
- Kang, Y.-S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.-Y. Metal–organic frameworks with catalytic centers: From synthesis to catalytic application. Coord. Chem. Rev. 2019, 378, 262–280. [Google Scholar] [CrossRef]
- Grossert, K.; Sicking, W.; Zellermann, E.; Schmuck, C. Hierarchical self-assembly of a small monomer with two orthogonal binding sites: From discrete hexagonal containers to a stimuli-responsive supramolecular gel. Supramol. Chem. 2018, 30, 395–403. [Google Scholar] [CrossRef]
- Evans, J.D.; Sumby, C.J.; Doonan, C.J. Post-synthetic metalation of metal–organic frameworks. J. Chem. Soc. Rev. 2014, 43, 5933–5951. [Google Scholar] [CrossRef]
- Gonzalez, M.I.; Turkiewicz, A.B.; Darago, L.E.; Oktawiec, J.; Bustillo, K.; Grandjean, F.; Long, G.J.; Long, J.R. Confinement of atomically defined metalhalide sheets in a metal–organic framework. Nature 2020, 577, 64–68. [Google Scholar] [CrossRef]
- Valvekens, P.; Blochb, E.D.; Long, J.R.; Ameloot, R.; De Vos, D.E. Counteranion effects on the catalytic activity of copper salts immobilized on the 2,2′-bipyridine-functionalized metal–organic framework MOF-253. Catal. Today 2014, 246, 55. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.I.; Bloch, E.D.; Mason, J.A.; Teat, S.J.; Long, J.R. Single-crystal-to-single-crystal metalation of a metal–organic framework: A route toward structurally well-defined catalysts. Inorg. Chem. 2015, 54, 2995–3005. [Google Scholar] [CrossRef]
- Li, S.; Li, G.-L.; Wang, W.; Liu, Y.; Cao, Z.-M.; Cao, X.-L. A 2D metal-organic framework interpenetrated by a 2D supramolecular framework assembled by CH/π interactions. Inorg. Chem. Commun. 2021, 130, 108705. [Google Scholar] [CrossRef]
- Li, L.-L.; Huang, M.; Chen, T.; Xu, X.-F.; Zhuo, Z.; Wang, W.; Huang, Y.-G. A porous π-stacked self-assembly of cup-shaped palladium complex for iodine capture. Molecules 2023, 28, 2881. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Wang, Z.-B.; Wu, Z.-Y.; Huang, M.; Wang, W.; Zhuo, Z.; Huang, Y.-G. Iodine uptake enhanced electrical conductivity by a metal-organic framework bearing nanotube array of π-stacked columns. J. Mol. Struct. 2023, 1289, 135858. [Google Scholar] [CrossRef]
- Li, G.-L.; Zhuo, Z.; Wang, B.; Cao, X.-L.; Su, H.-F.; Wang, W.; Huang, Y.-G.; Hong, M.-C. Constructing π-stacked supramolecular cage based hierarchical self-assemblies via π···π stacking and hydrogen bonding. J. Am. Chem. Soc. 2021, 143, 10920–10929. [Google Scholar] [CrossRef]
- Erkabaev, A.M.; Yaroslavtseva, T.V.; Popov, S.E.; Bushkova, O.V. IR spectroscopic and quantum-chemical investigation of perchlorate anion solvation in acetonitrile. Russ. J. Phys. Chem. 2015, 89, 76–81. [Google Scholar] [CrossRef]
- Akhtar, M.; Alotaibi, M.A.; Alharthi, A.I.; Zierkiewicz, W.; Tahir, M.N.; Mazhar, M.; Isab, A.A.; Monim-ul-Mehboob, M.; Ahmad, S. Spectroscopic and DFT studies of zinc (II) complexes of diamines and thiocyanate; crystal structure of (cis-1,2-diaminocyclohexane)bis(thiocyanato-κN)zinc (II). J. Mol. Struct. 2017, 1128, 455–461. [Google Scholar] [CrossRef]
- Yang, E.C.; Hendrickson, D.N.; Wernsdorfer, W.; Nakano, M.; Zakharov, L.N.; Sommer, R.D.; Rheingold, A.L.; Ledezma-Gairaud, M.; Christou, G. Cobalt single-molecule magnet. J. Appl. Phys. 2002, 91, 7382–7384. [Google Scholar] [CrossRef]
- Ostrovsky, S.M.; Falk, K.; Pelikan, J.; Brown, D.A.; Tomkowicz, Z.; Haase, W. Orbital angular momentum contribution to the magneto-optical behavior of a binuclear cobalt (II) complex. Inorg. Chem. 2006, 2, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.R.; Zhu, F.; Chen, Y.; Li, Y.Z.; Zheng, L.M. Layered copper compounds based on 4-(3-bromothienyl) phosphonate (BTP): Weak ferromagnetism observed in [Cu2(4,4′-bpy)0.5(BTP)2]·H2O. Dalton Trans. 2009, 40, 8548–8554. [Google Scholar] [CrossRef] [PubMed]
- Azuma, M.; Kaimori, S.; Takano, M. High-pressure synthesis and magnetic properties of layered double perovskites Ln2CuMO6 (Ln = La, Pr, Nd, and Sm; M = Sn and Zr). Chem. Mater. 1998, 10, 3124–3130. [Google Scholar] [CrossRef]
- Zhang, S.R.; Du, D.Y.; Qin, J.S.; Bao, S.J.; Li, S.L.; He, W.W.; Lan, Y.Q.; Shen, P.; Su, Z.M. A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal–organic framework. Chem. Eur. J. 2014, 20, 3589–3594. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXTL-integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Nan, Z.-A.; Liu, J.; Lu, Z.-X.; Wang, W.; Zhuo, Z.; Li, G.-L.; Huang, Y.-G. Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation. Molecules 2023, 28, 4923. https://doi.org/10.3390/molecules28134923
Wang B, Nan Z-A, Liu J, Lu Z-X, Wang W, Zhuo Z, Li G-L, Huang Y-G. Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation. Molecules. 2023; 28(13):4923. https://doi.org/10.3390/molecules28134923
Chicago/Turabian StyleWang, Bin, Zi-Ang Nan, Jin Liu, Zi-Xiu Lu, Wei Wang, Zhu Zhuo, Guo-Ling Li, and You-Gui Huang. 2023. "Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation" Molecules 28, no. 13: 4923. https://doi.org/10.3390/molecules28134923
APA StyleWang, B., Nan, Z. -A., Liu, J., Lu, Z. -X., Wang, W., Zhuo, Z., Li, G. -L., & Huang, Y. -G. (2023). Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation. Molecules, 28(13), 4923. https://doi.org/10.3390/molecules28134923