Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. Thin Layer Chromatography Analysis (TLC)
2.3. GC-MS Analysis
2.4. Antioxidant Activity
2.5. Antifungal Activity
3. Discussion
4. Material and Methods
4.1. Chemical and Fungi Material
4.2. Extaction Method
4.3. Phytochemical Screening
4.3.1. Quantification of Polyphenol Content
4.3.2. Quantification of Flavonoids Content
4.3.3. Quantification of Tannis Content
4.3.4. Quantification of Alkaloids Content
4.4. Thin Layer Chromatography
4.5. Gas Chromatography-Mass Spectroscopy GC-MS
4.6. Antifungal Activity
4.7. Antioxidant Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ahmed, A.M.; El-Katatny, M.H. Entomopathogenic Fungi as Biopesticides against the Egyptian Cotton Leaf Worm, Spodoptera littoralis: Between Biocontrol-Promise and Immune-Limitation. J. Egypt. Soc. Toxicol. 2007, 37, 39–51. [Google Scholar]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.-K.; Krohn, K. Endophytic Fungi: A Source of Novel Biologically Active Secondary Metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Nicoletti, R.; Fiorentino, A. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
- Segaran, G.; Sathiavelu, M. Fungal Endophytes: A Potent Biocontrol Agent and a Bioactive Metabolites Reservoir. Biocatal. Agric. Biotechnol. 2019, 21, 101284. [Google Scholar] [CrossRef]
- Peters, L.P.; Prado, L.S.; Silva, F.I.; Souza, F.S.; Carvalho, C.M. Selection of Endophytes as Antagonists of Colletotrichum gloeosporioides in Açaí Palm. Biol. Control 2020, 150, 104350. [Google Scholar] [CrossRef]
- Guo, R.; Li, G.; Zhang, Z.; Peng, X. Structures and Biological Activities of Secondary Metabolites from Trichoderma harzianum. Mar. Drug 2022, 20, 701. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Horwitz, B.A.; Singh, U.S.; Mala Mukherjee, M.M.; Schmoll, M. Trichoderma in Agriculture, Industry and Medicine: An Overview. In Trichoderma: Biology and Applications; CABI: Botany, Australia, 2013; pp. 1–9. [Google Scholar]
- Adeleke, B.S.; Babalola, O.O. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J. Fungi 2021, 7, 147. [Google Scholar] [CrossRef]
- Sheeba, H.; Ali, M.S.; Anuradha, V. Bioactive Compounds and Antimicrobial Activity of Fungal Crude Extract from Medicinal Plants. J. Pharm. Sci. Res. 2019, 11, 1826–1833. [Google Scholar]
- Farag, R.; Swaby, S. Antimicrobial Effects of Wasp (Vespa orientalis) Venom. Egypt. Pharm. J. 2018, 17, 218. [Google Scholar]
- Moshikur, R.M.; Chowdhury, M.R.; Fujisawa, H.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Design and Characterization of Fatty Acid-Based Amino Acid Ester as a New “Green” Hydrophobic Ionic Liquid for Drug Delivery. ACS Sustain. Chem. Eng. 2020, 8, 13660–13671. [Google Scholar] [CrossRef]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile Organic Compounds Emitted by Trichoderma Species Mediate Plant Growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Elyousr, K.A.; Abdel-Hafez, S.I.; Abdel-Rahim, I.R. Isolation of Trichoderma and Evaluation of Their Antagonistic Potential against Alternaria porri. J. Phytopathol. 2014, 162, 567–574. [Google Scholar] [CrossRef]
- Leelavathi, M.S.; Vani, L.; Reena, P. Antimicrobial Activity of Trichoderma harzianum against Bacteria and Fungi. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 96–103. [Google Scholar]
- Ahmadi-Nouraldinvand, F.; Afrouz, M.; Elias, S.G.; Eslamian, S. Green Synthesis of Copper Nanoparticles Extracted from Guar Seedling under Cu Heavy-Metal Stress by Trichoderma harzianum and Their Bio-Efficacy Evaluation against Staphylococcus Aureus and Escherichia Coli. Environ. Earth Sci. 2022, 81, 54. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Tang, W.-L.; Huang, Q.-R.; Li, Y.-Z.; Wei, M.-L.; Jiang, L.-L.; Liu, C.; Yu, X.; Zhu, H.-W.; Chen, G.-Z. Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites with Medicinal Importance. Front. Microbiol. 2021, 12, 723828. [Google Scholar] [CrossRef]
- Herrmann, A. Profragrances and Properfumes. In The Chemistry and Biology of Volatiles; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 333–362. [Google Scholar]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal Volatile Organic Compounds and Their Role in Ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef]
- Lemfack, M.C.; Gohlke, B.-O.; Toguem, S.M.T.; Preissner, S.; Piechulla, B.; Preissner, R. MVOC 2.0: A Database of Microbial Volatiles. Nucleic Acids Res. 2018, 46, D1261–D1265. [Google Scholar] [CrossRef] [Green Version]
- Manganiello, G.; Sacco, A.; Ercolano, M.R.; Vinale, F.; Lanzuise, S.; Pascale, A.; Napolitano, M.; Lombardi, N.; Lorito, M.; Woo, S.L. Modulation of Tomato Response to Rhizoctonia Solani by Trichoderma Harzianum and Its Secondary Metabolite Harzianic Acid. Front. Microbiol. 2018, 9, 1966. [Google Scholar] [CrossRef]
- Da Silva, M.H.R.; Cueva-Yesquén, L.G.; Júnior, S.B.; Garcia, V.L.; Sartoratto, A.; de Angelis, D.d.F.; de Angelis, D.A. Endophytic Fungi from Passiflora incarnata: An Antioxidant Compound Source. Arch. Microbiol. 2020, 202, 2779–2789. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Q.; Wang, Y.; Zhao, J.; Fu, Y.; Yang, Z.; Peng, X.; Zhang, M.; Bai, B.; Liu, A. Trichoderma Harzianum Induces Resistance to Root-Knot Nematodes by Increasing Secondary Metabolite Synthesis and Defense-Related Enzyme Activity in Solanum lycopersicum L. Biol. Control 2021, 158, 104609. [Google Scholar] [CrossRef]
- Ghoniem, A.A.; Abd El-Hai, K.M.; El-Khateeb, A.Y.; Eldadamony, N.M.; Mahmoud, S.F.; Elsayed, A. Enhancing the Potentiality of Trichoderma Harzianum against Pythium Pathogen of Beans Using Chamomile (Matricaria chamomilla L.) Flower Extract. Molecules 2021, 26, 1178. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, R.-E.; Hermosa, M.-R.; Vizcaíno, J.-A.; Sanz, L.; Monte, E.; Gutiérrez, S. Secondary Metabolites Produced by Trichoderma and Their Importance in the Biocontrol Process. In Microorganism for Industrial Enzymes and Biocontrol; Research Signpost: Thiruvananthapuram, India, 2005; pp. 1–22. [Google Scholar]
- Surekha, C.H.; Neelapu, N.R.R.; Kamala, G.; Prasad, B.S.; Ganesh, P.S. Efficacy of Trichoderma viride to Induce Disease Resistance and Antioxidant Responses in Legume Vigna Mungo Infested by Fusarium oxysporum and Alternaria alternata. Int. J. Agric. Sci. Res. 2013, 3, 285–294. [Google Scholar]
- Surekha, C.H.; Neelapu, N.R.R.; Prasad, B.S.; Ganesh, P.S. Induction of Defense Enzymes and Phenolic Content by Trichoderma viride in Vigna Mungo Infested with Fusarium oxysporum and Alternaria alternata. Int. J. Agric. Sci. Res. 2014, 4, 31–40. [Google Scholar]
- Ahanger, M.A.; Agarwal, R.M.; Tomar, N.S.; Shrivastava, M. Potassium Induces Positive Changes in Nitrogen Metabolism and Antioxidant System of Oat (Avena sativa L. cultivar Kent). J. Plant Interact. 2015, 10, 211–223. [Google Scholar] [CrossRef]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Egamberdieva, D. Bioremediation of Adverse Impact of Cadmium Toxicity on Cassia italica Mill by Arbuscular Mycorrhizal Fungi. Saudi J. Biol. Sci. 2016, 23, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as Antioxidants and Developmental Regulators: Relative Significance in Plants and Humans. Int. J. Mol. Sci. 2013, 14, 3540–3555. [Google Scholar] [CrossRef] [Green Version]
- Mona, S.A.; Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Soliman, D.W.K.; Wirth, S.; Egamberdieva, D. Increased Resistance of Drought by Trichoderma harzianum Fungal Treatment Correlates with Increased Secondary Metabolites and Proline Content. J. Integr. Agric. 2017, 16, 1751–1757. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, K. Design of an Evolutionary Approach for Intrusion Detection. Sci. World J. 2013, 2013, 962185. [Google Scholar] [CrossRef] [Green Version]
- Dolara, P.; Luceri, C.; De Filippo, C.; Femia, A.P.; Giovannelli, L.; Caderni, G.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Red Wine Polyphenols Influence Carcinogenesis, Intestinal Microflora, Oxidative Damage and Gene Expression Profiles of Colonic Mucosa in F344 Rats. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2005, 591, 237–246. [Google Scholar] [CrossRef]
- Saxena, M.S.J.; Nema, R.; Sigh, D.; Gupta, A. Phytochemsitry of Medical Plants. J. Pharm. Phytochem. 2013, 1, 168–182. [Google Scholar]
- Omomowo, I.O.; Fadiji, A.E.; Omomowo, O.I. Antifungal Evaluation and Phytochemical Profile of Trichoderma harzianum and Glomus versiforme Secondary Metabolites on Cowpea Pathogens. Asian J. Microbiol. Biotechnol. Environ. Sci. 2020, 22, 265–272. [Google Scholar]
- Ladoh-Yemeda, C.F.; Nyegue, M.A.; Ngene, J.P.; Benelesse, G.E.; Lenta, B.; Wansi, J.D.; Mpondo, E.M.; Dibong, S.D. Identification and Phytochemical Screening of Endophytic Fungi from Stems of Phragmanthera capitata (Sprengel) S. Balle (Loranthaceae). J. Appl. Biosci. 2015, 90, 8355–8360. [Google Scholar] [CrossRef] [Green Version]
- Sriwati, R.; Chamzurn, T.; Soesanto, L.; Munazhirah, M. Field Application of Trichoderma Suspension to Control Cacao Pod Rot (Phytophthora palmivora). AGRIVITA J. Agric. Sci. 2019, 41, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Joosten, L.; van Veen, J.A. Defensive Properties of Pyrrolizidine Alkaloids against Microorganisms. Phytochem. Rev. 2011, 10, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuura, H.N.; Fett-Neto, A.G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. Plant Toxins 2015, 2, 1–15. [Google Scholar]
- Frisvad, J.C.; Andersen, B.; Thrane, U. The Use of Secondary Metabolite Profiling in Chemotaxonomy of Filamentous Fungi. Mycol. Res. 2008, 112, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Kar, B.; Özköse, E.; Ekinci, M.S. The Comparisons of Fatty Acid Composition in Some Anaerobic Gut Fungi Neocallimastix, Orpinomyces, Piromyces, and Caecomyces. An. Acad. Bras. Ciências 2021, 93, e20200896. [Google Scholar] [CrossRef]
- Morbidoni, H.R.; Vilchèze, C.; Kremer, L.; Bittman, R.; Sacchettini, J.C.; Jacobs, W.R., Jr. Dual Inhibition of Mycobacterial Fatty Acid Biosynthesis and Degradation by 2-Alkynoic Acids. Chem. Biol. 2006, 13, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Ramsewak, R.S.; Nair, M.G.; Murugesan, S.; Mattson, W.J.; Zasada, J. Insecticidal Fatty Acids and Triglycerides from Dirca palustris. J. Agric. Food Chem. 2001, 49, 5852–5856. [Google Scholar] [CrossRef]
- Hyeon, S.B. Chemical Studies on the Factors Controlling Sporulation of Fungi. Chem. Regul. Plants 1976, 42, 1431–1433. [Google Scholar]
- Katayama, M.; Marumo, S. R (–)-Glycerol Monolinolate, a Minor Sporogenic Substance of Sclerotinia fructicola. Agric. Biol. Chem. 1978, 42, 1431–1433. [Google Scholar] [CrossRef]
- Nukina, M.; Sassa, T.; Ikeda, M.; Takahashi, K.; Toyota, S. Linoleic Acid Enhances Perithecial Production in Neurospora crassa. Agric. Biol. Chem. 1981, 45, 2371–2373. [Google Scholar] [CrossRef]
- Abdullah, R.R. Insecticidal Activity of Secondary Metabolites of Locally Isolated Fungal Strains against Some Cotton Insect Pests. J. Plant Prot. Pathol. 2019, 10, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Egbung, G.E.; Anosike, C.; Utu-Baku, A.B.; Ogar, I.; Nna, V.U. Phytochemical Evaluation and GC-MS Analysis of Hyptis verticillata Cultivated in Calabar Cross River State, Nigeria. Int. J. Biol. Chem. Sci. 2017, 11, 2548–2559. [Google Scholar] [CrossRef] [Green Version]
- Luepongpattana, S.; Thaniyavarn, J.; Morikawa, M. Production of Massoia Lactone by Aureobasidium pullulans YTP6-14 Isolated from the Gulf of Thailand and Its Fragrant Biosurfactant Properties. J. Appl. Microbiol. 2017, 123, 1488–1497. [Google Scholar] [CrossRef]
- Poomtien, J.; Thaniyavarn, J.; Pinphanichakarn, P.; Jindamorakot, S.; Morikawa, M. Production and Characterization of a Biosurfactant from Cyberlindnera samutprakarnensis JP52T. Biosci. Biotechnol. Biochem. 2013, 77, 2362–2370. [Google Scholar] [CrossRef]
- Kim, H.-S.; Jeon, J.-W.; Kim, B.-H.; Ahn, C.-Y.; Oh, H.-M.; Yoon, B.-D. Extracellular Production of a Glycolipid Biosurfactant, Mannosylerythritol Lipid, by Candida sp. SY16 Using Fed-Batch Fermentation. Appl. Microbiol. Biotechnol. 2006, 70, 391–396. [Google Scholar] [CrossRef]
- Rodrigues, C.; Cassini, S.T.A.; s Antunes, P.W.P.; Pinotti, L.M.; de Pinho Keller, R.; Gonçalves, R.F. Lipase-Producing Fungi for Potential Wastewater Treatment and Bioenergy Production. Afr. J. Biotechnol. 2016, 15, 759–767. [Google Scholar]
- Wang, Z.; Zhang, M.; Chi, Z.; Liu, G.-L.; Chi, Z.-M. Liamocin Overproduction by the Mutants of Aureobasidium melanogenum 9–1 for Effectively Killing Spores of the Pathogenic Fungi from Diseased Human Skin by Massoia Lactone. World J. Microbiol. Biotechnol. 2022, 38, 107. [Google Scholar] [CrossRef]
- Mahomed Ali, A.B. Production of Pyrazine Flavours by Mycelial Fungi. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2010. [Google Scholar]
- Ngugi, H.K.; Scherm, H. Biology of Flower-Infecting Fungi. Annu. Rev. Phytopathol. 2006, 44, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Endrédi, H.; Billes, F.; Keresztury, G. Revised Assignment of the Vibrational Spectra of Methylpyrazines Based on Scaled DFT Force Fields. J. Mol. Struct. THEOCHEM 2004, 677, 211–225. [Google Scholar] [CrossRef]
- Bramwell, A.F.; Burrell, J.W.K.; Riezebos, G. Characterisation of Pyrazines in Galbanum Oil. Tetrahedron Lett. 1969, 10, 3215–3216. [Google Scholar] [CrossRef]
- Malafatti-Picca, L.; de Barros Chaves, M.R.; de Castro, A.M.; Valoni, É.; de Oliveira, V.M.; Marsaioli, A.J.; de Franceschi de Angelis, D.; Attili-Angelis, D. Hydrocarbon-Associated Substrates Reveal Promising Fungi for Poly (Ethylene Terephthalate) (PET) Depolymerization. Braz. J. Microbiol. 2019, 50, 633–648. [Google Scholar] [CrossRef] [PubMed]
- Kashmiri, M.A.; Adnan, A.; Butt, B.W. Production, Purification and Partial Characterization of Lipase from Trichoderma viride. Afr. J. Biotechnol. 2006, 5, 878–882. [Google Scholar]
- Contesini, F.J.; Calzado, F.; Valdo, J. Fungal Metabolites; Reference Series in Phytochemistry; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Schneider, W.D.H.; Gonçalves, T.A.; Uchima, C.A.; Couger, M.B.; Prade, R.; Squina, F.M.; Dillon, A.J.P.; Camassola, M. Penicillium Echinulatum Secretome Analysis Reveals the Fungi Potential for Degradation of Lignocellulosic Biomass. Biotechnol. Biofuels 2016, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, T.; Abdullah, R.; Iqtedar, M.; Kaleem, A.; Aftab, M.; Niaz, M.; Sidra, B.T.; Majeed, H. Production of Lipases by Alternaria Sp.(Mbl 2810) through Optimization of Environmental Conditions Using Submerged Fermentation Technique. Int. J. Biosci. 2015, 6655, 178–186. [Google Scholar]
- Sharma, R.; Chisti, Y.; Dan Banerjee, U.C. Production, Purification, Characterization and Applicatiosn of Lipases. Biotechnol. Adv. 2001, 19, 627–662. [Google Scholar] [CrossRef] [Green Version]
- Zafar, U.; Houlden, A.; Robson, G.D. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures. Appl. Environ. Microbiol. 2013, 79, 7313–7324. [Google Scholar] [CrossRef] [Green Version]
- Congiu, C.; Cocco, M.T.; Onnis, V. Design, Synthesis, and In Vitro Antitumor Activity of New 1, 4-Diarylimidazole-2-Ones and Their 2-Thione Analogues. Bioorganic Med. Chem. Lett. 2008, 18, 989–993. [Google Scholar] [CrossRef]
- Han, M.S.; Kim, D.H. Effect of Zinc Ion on the Inhibition of Carboxypeptidase A by Imidazole-Bearing Substrate Analogues. Bioorganic Med. Chem. Lett. 2001, 11, 1425–1427. [Google Scholar] [CrossRef]
- Govindhara Sujatha, P.; Tamilselvan Pazhanisamy, V. Synthesis, Spectral Characterization, Computational Studies and Antimicrobial Activities of Imidazole Derivatives. DJ J. Eng. Chem. Fuel 2016, 1, 60–72. [Google Scholar] [CrossRef]
- Emami, S.; Foroumadi, A.; Falahati, M.; Lotfali, E.; Rajabalian, S.; Ebrahimi, S.-A.; Farahyar, S.; Shafiee, A. 2-Hydroxyphenacyl Azoles and Related Azolium Derivatives as Antifungal Agents. Bioorganic Med. Chem. Lett. 2008, 18, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, Antimicrobial and Antiviral Evaluation of Substituted Imidazole Derivatives. Eur. J. Med. Chem. 2009, 44, 2347–2353. [Google Scholar] [CrossRef] [PubMed]
- Crane, L.; Anastassiadou, M.; El Hage, S.; Stigliani, J.L.; Baziard-Mouysset, G.; Payard, M.; Leger, J.M.; Bizot-Espiard, J.-G.; Ktorza, A.; Caignard, D.-H. Design and Synthesis of Novel Imidazoline Derivatives with Potent Antihyperglycemic Activity in a Rat Model of Type 2 Diabetes. Bioorganic Med. Chem. 2006, 14, 7419–7433. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, B.; Sharma, D.; Kumar, P. Biological Importance of Imidazole Nucleus in the New Millennium. Med. Chem. Res. 2011, 20, 1119–1140. [Google Scholar] [CrossRef]
- Bhushan Singh, R.; Das, N.; Jana, S.; Das, A. Synthesis and In Vitro Antibacterial Screening of Some New 2, 4, 6-Trisubstituted-1, 3, 5-Triazine Derivatives. Lett. Drug Des. Discov. 2012, 9, 316–321. [Google Scholar] [CrossRef]
- Gahtori, P.; Ghosh, S.K.; Parida, P.; Prakash, A.; Gogoi, K.; Bhat, H.R.; Singh, U.P. Antimalarial Evaluation and Docking Studies of Hybrid Phenylthiazolyl-1,3,5-Triazine Derivatives: A Novel and Potential Antifolate Lead for Pf-DHFR-TS Inhibition. Exp. Parasitol. 2012, 130, 292–299. [Google Scholar] [CrossRef]
- Kumar Ghosh, S.; Saha, A.; Hazarika, B.; Pratap Singh, U.; Raj Bhat, H.; Gahtori, P. Design, Facile Synthesis, Antibacterial Activity and Structure-Activity Relationship of Novel Di-and Tri-Substituted 1, 3, 5-Triazines. Lett. Drug Des. Discov. 2012, 9, 329–335. [Google Scholar] [CrossRef]
- Baliani, A.; Bueno, G.J.; Stewart, M.L.; Yardley, V.; Brun, R.; Barrett, M.P.; Gilbert, I.H. Design and Synthesis of a Series of Melamine-Based Nitroheterocycles with Activity against Trypanosomatid Parasites. J. Med. Chem. 2005, 48, 5570–5579. [Google Scholar] [CrossRef]
- Singh, U.P.; Bhat, H.R.; Gahtori, P. Antifungal Activity, SAR and Physicochemical Correlation of Some Thiazole-1, 3, 5-Triazine Derivatives. J. Mycol. Médicale 2012, 22, 134–141. [Google Scholar] [CrossRef]
- Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Dalla Via, L. In Vitro Cytotoxic Activities of 2-Alkyl-4, 6-Diheteroalkyl-1, 3, 5-Triazines: New Molecules in Anticancer Research. J. Med. Chem. 2004, 47, 4649–4652. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis, Characterization and Pharmacological Activities of 2-[4-Cyano-(3-Trifluoromethyl) Phenyl Amino)]-4-(4-Quinoline/Coumarin-4-Yloxy)-6-(Fluoropiperazinyl)-s-Triazines. J. Fluor. Chem. 2011, 132, 617–627. [Google Scholar] [CrossRef]
- Chen, X.; Zhan, P.; Liu, X.; Cheng, Z.; Meng, C.; Shao, S.; Pannecouque, C.; Clercq, E.D.; Liu, X. Design, Synthesis, Anti-HIV Evaluation and Molecular Modeling of Piperidine-Linked Amino-Triazine Derivatives as Potent Non-Nucleoside Reverse Transcriptase Inhibitors. Bioorganic Med. Chem. 2012, 20, 3856–3864. [Google Scholar] [CrossRef]
- Bradow, J.M. Relationships between Chemical Structure and Inhibitory Activity of C 6 through C 9 Volatiles Emitted by Plant Residues. J. Chem. Ecol. 1991, 17, 2193–2212. [Google Scholar] [CrossRef]
- Gardner, H.W.; Dornbos, D.L., Jr.; Desjardins, A.E. Hexanal, Trans-2-Hexenal, and Trans-2-Nonenal Inhibit Soybean, Glycine Max, Seed Germination. J. Agric. Food Chem. 1990, 38, 1316–1320. [Google Scholar] [CrossRef]
- Hamilton-Kemp, T.R.; Loughrin, J.H.; Archbold, D.D.; Andersen, R.A.; Hildebrand, D.F. Inhibition of Pollen Germination by Volatile Compounds Including 2-Hexenal and 3-Hexenal. J. Agric. Food Chem. 1991, 39, 952–956. [Google Scholar] [CrossRef]
- Hamilton-Kemp, T.R.; McCracken, C.T.; Loughrin, J.H.; Andersen, R.A.; Hildebrand, D.F. Effects of Some Natural Volatile Compounds on the Pathogenic Fungi Alternaria alternata and Botrytis cinerea. J. Chem. Ecol. 1992, 18, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Hamilton-Kemp, T.R.; Nielsen, M.T.; Andersen, R.A.; Collins, G.B.; Hildebrand, D.F. Effects of Six-Carbon Aldehydes and Alcohols on Bacterial Proliferation. J. Agric. Food Chem. 1993, 41, 506–510. [Google Scholar] [CrossRef]
- Küçükgüzel, S.G.; Mazi, A.; Sahin, F.; Öztürk, S.; Stables, J. Synthesis and Biological Activities of Diflunisal Hydrazide–Hydrazones. Eur. J. Med. Chem. 2003, 38, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Mohareb, R.M.; EL-Sharkawy, K.A.; Al Farouk, F.O. Synthesis, Cytotoxicity against Cancer and Normal Cell Lines of Novel Hydrazide–Hydrazone Derivatives Bearing 5H-Chromen-5-One. Med. Chem. Res. 2019, 28, 1885–1900. [Google Scholar] [CrossRef]
- Terzioglu, N.; Gürsoy, A. Synthesis and Anticancer Evaluation of Some New Hydrazone Derivatives of 2, 6-Dimethylimidazo [2, 1-b][1, 3, 4] Thiadiazole-5-Carbohydrazide. Eur. J. Med. Chem. 2003, 38, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.D.; More, Y.; Vagdevi, H.M.; Vaidya, V.P.; Gadaginamath, G.S.; Kulkarni, V.H. Synthesis of New 4-(2, 5-Dimethylpyrrol-1-Yl)/4-Pyrrol-1-Yl Benzoic Acid Hydrazide Analogs and Some Derived Oxadiazole, Triazole and Pyrrole Ring Systems: A Novel Class of Potential Antibacterial, Antifungal and Antitubercular Agents. Med. Chem. Res. 2013, 22, 1073–1089. [Google Scholar] [CrossRef]
- Özdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Tunali, Y. Synthesis and Biological Activities of New Hydrazide Derivatives. J. Enzym. Inhib. Med. Chem. 2009, 24, 825–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küçükgüzel, Ş.G.; Küçükgüzel, I.; Tatar, E.; Rollas, S.; Şahin, F.; Güllüce, M.; De Clercq, E.; Kabasakal, L. Synthesis of Some Novel Heterocyclic Compounds Derived from Diflunisal Hydrazide as Potential Anti-Infective and Anti-Inflammatory Agents. Eur. J. Med. Chem. 2007, 42, 893–901. [Google Scholar] [CrossRef]
- Backes, G.L.; Neumann, D.M.; Jursic, B.S. Synthesis and Antifungal Activity of Substituted Salicylaldehyde Hydrazones, Hydrazides and Sulfohydrazides. Bioorganic Med. Chem. 2014, 22, 4629–4636. [Google Scholar] [CrossRef]
- Suresh, A.K.; Pelletier, D.A.; Doktycz, M.J. Relating Nanomaterial Properties and Microbial Toxicity. Nanoscale 2013, 5, 463–474. [Google Scholar] [CrossRef]
- Tian, Z.; Li, R.; Cheng, S.; Zhou, T.; Liu, J. The Mythimna Separata General Odorant Binding Protein 2 (MsepGOBP2) Is Involved in the Larval Detection of the Sex Pheromone (Z)-11-hexadecenal. Pest Manag. Sci. 2023, 79, 2005–2016. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Moezipour, M.; Avand-Faghih, A. Efficacy of Different Pheromone Trap Design in Monitoring of the Box Tree Moth, Cydalima Perspectalis in the Northern Forests of Iran. Acta Phytopathol. Entomol. Hung. 2022, 57, 43–48. [Google Scholar]
- Hu, T.-M.; Wu, C.-L. Fluconazole-induced Delirium in an Older Patient with Schizophrenia. Psychogeriatrics 2022, 22, 588. [Google Scholar] [CrossRef]
- Gómez, O.C. Identificação de Metabólitos Secundários Com Potencial Antimicrobiano Produzidos Pelo Fungo Endofítico Lasiodiplodia Sp. Isolado Do Ipê Rosa (Handroanthus Impetiginosus). Ph.D. Thesis, The Federal University of Alfenas, Alfenas, Brazil, 2022. [Google Scholar]
- Adnan, M.; Nazim Uddin Chy, M.; Mostafa Kamal, A.T.M.; Azad, M.; Paul, A.; Uddin, S.; Barlow, J.; Faruque, M.; Park, C.; Cho, D. Investigation of the Biological Activities and Characterization of Bioactive Constituents of Ophiorrhiza Rugosa Var. Prostrata (D.Don) & Mondal Leaves through In Vivo, In Vitro, and In Silico Approaches. Molecules 2019, 24, 1367. [Google Scholar] [CrossRef] [Green Version]
- Agoreyo, B.O.; Oseghale, E.I. Effect of post-harvest storage at ambient temperature on nutritional constituents, in vitro antioxidant activity and gc-ms profile of king tuber mushroom (pleurotus tuber-regium). Eur. J. Food Sci. Technol. 2019, 7, 24–46. [Google Scholar]
- John, R.P.; Tyagi, R.D.; Prévost, D.; Brar, S.K.; Pouleur, S.; Surampalli, R.Y. Mycoparasitic Trichoderma Viride as a Biocontrol Agent against Fusarium Oxysporum f. Sp. Adzuki and Pythium Arrhenomanes and as a Growth Promoter of Soybean. Crop Prot. 2010, 29, 1452–1459. [Google Scholar] [CrossRef]
- Arzanlou, M.; Khodaei, S.; Narmani, A.; Babai-Ahari, A.; Azar, A.M. Inhibitory Effect of Trichoderma Isolates on Growth of Alternaria Alternata, the Causal Agent of Leaf Spot Disease on Sunflower, under Laboratory Conditions. Arch. Phytopathol. Plant Prot. 2014, 47, 1592–1599. [Google Scholar] [CrossRef]
- Živković, S.; Stojanović, S.; Ivanović, Ž.; Gavrilović, V.; Popović, T.; Balaž, J. Screening of Antagonistic Activity of Microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch. Biol. Sci. 2010, 62, 611–623. [Google Scholar] [CrossRef]
- Rajani, P.; Rajasekaran, C.; Vasanthakumari, M.M.; Olsson, S.B.; Ravikanth, G.; Shaanker, R.U. Inhibition of Plant Pathogenic Fungi by Endophytic Trichoderma Spp. through Mycoparasitism and Volatile Organic Compounds. Microbiol. Res. 2021, 242, 126595. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Antagonistic Assessment of Trichoderma Spp. by Producing Volatile and Non-Volatile Compounds against Different Fungal Pathogens. Arch. Phytopathol. Plant Prot. 2017, 50, 629–648. [Google Scholar] [CrossRef]
- Küçük, Ç.; Kivanç, M. In Vitro Antifungal Activity of Strains of Trichoderma Harzianum. Turk. J. Biol. 2004, 28, 111–115. [Google Scholar]
- Narendran, R.; Kathiresan, K. Antimicrobial Activity of Crude Extracts from Mangrove-Derived Trichoderma Species against Human and Fish Pathogens. Biocatal. Agric. Biotechnol. 2016, 6, 189–194. [Google Scholar] [CrossRef]
- Ameen, O.M.; Garuba, T.; Zubair, M.F.; Baker, M.T.; Arowolo, B.Z.; Yakubu, A.O. Structural And Phytochemical Characterization of Bioactive Components of the Endophytic Fungi (Trichoderma Harzianum) Extracts. J. Appl. Sci. Environ. Manag. 2022, 26, 689–693. [Google Scholar] [CrossRef]
- Vitti, A.; Pellegrini, E.; Nali, C.; Lovelli, S.; Sofo, A.; Valerio, M.; Scopa, A.; Nuzzaci, M. Trichoderma Harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber Mosaic Virus. Front. Plant Sci. 2016, 7, 1520. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, N.; Caira, S.; Troise, A.D.; Scaloni, A.; Vitaglione, P.; Vinale, F.; Marra, R.; Salzano, A.M.; Lorito, M.; Woo, S.L. Trichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Front. Microbiol. 2020, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Park, S.; Sathiyaseelan, A.; Mariadoss, A.V.A.; Park, S.; Kim, S.-J.; Wang, M.-H. Isolation of Polysaccharides from Trichoderma Harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants 2021, 10, 1372. [Google Scholar] [CrossRef]
- Yuan, J.-F.; Zhang, Z.-Q.; Fan, Z.-C.; Yang, J.-X. Antioxidant Effects and Cytotoxicity of Three Purified Polysaccharides from Ligusticum Chuanxiong Hort. Carbohydr. Polym. 2008, 74, 822–827. [Google Scholar]
- Fernandes, M.d.R.V.; Silva, T.A.C.; Pfenning, L.H.; da Costa-Neto, C.M.; Heinrich, T.A.; de Alencar, S.M.; de Lima, M.A.; Ikegaki, M. Biological Activities of the Fermentation Extract of the Endophytic Fungus Alternaria Alternata Isolated from Coffea arabica L. Braz. J. Pharm. Sci. 2009, 45, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Anwar, J.; Iqbal, Z. Effect of Growth Conditions on Antibacterial Activity of Trichoderma harzianum against Selected Pathogenic Bacteria. Sarhad J. Agric. 2017, 33, 501–510. [Google Scholar]
- Ali-Rachedi, F.; Meraghni, S.; Touaibia, N.; Mesbah, S. Analyse quantitative des composés phénoliques d’une endémique algérienne Scabiosa Atropurpurea sub. Maritima L. Bull. Société R. Sci. Liège 2018, 87, 13–21. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lagnika, L. Etude Phytochimique et Activité Biologique de Substances Naturelles Isolées de Plantes Béninoises; Université Louis Pasteur Starsbourg: Strasbourg, France, 2005. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar]
- Schofield, P.; Mbugua, D.M.; Pell, A.N. Analysis of Condensed Tannins: A Review. Anim. Feed Sci. Technol. 2001, 91, 21–40. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Ajanal, M.; Gundkalle, M.B.; Nayak, S.U. Estimation of Total Alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc. Sci. Life 2012, 31, 198. [Google Scholar] [CrossRef] [PubMed]
- Hollo, J.; Kurucz, E.; Torky, A.A.; Biacs, P. Application de la CCM à l’étude des huiles volatiles. Plant Food Hum. Nutr. 1968, 16, 51–62. [Google Scholar] [CrossRef]
- Nakamura, C.V.; Ueda-Nakamura, T.; Bando, E.; Melo, A.F.N.; Cortez, D.A.G.; Dias Filho, B.P. Antibacterial Activity of Ocimum Gratissimum L. Essential Oil. Memórias Inst. Oswaldo Cruz 1999, 94, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Apeti, G.K.; Marra, D.; Semihinva, A.; Komlan, B.; Koffi, A. Evaluation De L’activité Antifongique De Ficus Platyphylla Del.(Moraceae). Eur. Sci. J. 2013, 9, 252–260. [Google Scholar]
- El Mansouri, K.; Moutaj, R. Recherche et Évaluation de l’activité Antifongique Des Extraits de Plantes Médicinales. Ph.D. Thesis, Universite Cadi Ayyad, Marrakesh, Morocco, 2013. [Google Scholar]
- De Albuquerque, C.C.; Camara, T.R.; Mariano, R.d.L.R.; Willadino, L.; Marcelino Júnior, C.; Ulisses, C. Antimicrobial Action of the Essential Oil of Lippia Gracilis Schauer. Braz. Arch. Biol. Technol. 2006, 49, 527–535. [Google Scholar] [CrossRef]
- Rahmawati, N.; Isfandito, A.R.; Astuti, D.I.; Aditiawati, P. Endophytic Fungi from Surian (Toona Sinensis Roem) and Antioxidant Potency from Its Culture. Asian J. Plant Sci. 2016, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Potshangbam, M.; Devi, S.I.; Sahoo, D.; Strobel, G.A. Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L. Front. Microbiol. 2017, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.E.; Delaney, H.D.; Kelley, K. Designing Experiments and Analyzing Data: A Model Comparison Perspective; Routledge: Abingdon, UK, 2017; ISBN 1-317-28456-9. [Google Scholar]
- Rangkadilok, N.; Tongchusak, S.; Boonhok, R.; Chaiyaroj, S.C.; Junyaprasert, V.B.; Buajeeb, W.; Akanimanee, J.; Raksasuk, T.; Suddhasthira, T.; Satayavivad, J. In Vitro Antifungal Activities of Longan (Dimocarpus Longan Lour.) Seed Extract. Fitoterapia 2012, 83, 545–553. [Google Scholar] [CrossRef] [PubMed]
Ethyl Acetate Extract | n-butanol Extract | Curve Equation | R2 | |
---|---|---|---|---|
Total phenolics (mg GAE/g DE) | 70.54 ± 5.92 | 40.12 ± 1.21 | ABS = 0.009x + 0.194 | 0.999 |
Total flavonoids (mg QE/g DE) | 266.18 ± 15.11 | 203.62 ± 4.28 | ABS = 0.001x + 0.031 | 0.996 |
Total alkaloids (mg NE/g DE) | 0.83 ± 0.11 | 0.77 ± 0.10 | ABS = 0.0441x + 0.1002 | 0.999 |
Total tannins (mg TAE/g DE) | 1584.16 ± 407.22 | 2192.5 ± 50 | ABS = 4 × 10−5x + 0.039 | 0.995 |
N° | RT | Compound | Structure | Molecular Formula | MW g/mol | Peak Area % | Compound Nature |
---|---|---|---|---|---|---|---|
1 | 15.201 | Massoialactone | C10H16O2 | 168.23 | 0.05 | Pyranone | |
2 | 19.511 | Pentadecanoic acid | C15H30O2 | 242.39 | 0.06 | Fatty Acid | |
3 | 20.071 | Palmitic acid, methyl ester | C17H34O2 | 270.45 | 0.59 | Fatty Acid | |
4 | 20.654 | Palmitinic acid | C16H32O2 | 256.4241 | 5.86 | Fatty Acid | |
5 | 21.282 | Capric acid | C10H20O2 | 172.26 | 0.14 | Fatty Acid | |
6 | 21.717 | Methyl linolelaidate | C19H34O2 | 294.48 | 3.23 | Fatty Acid | |
7 | 21.974 | Methyl stearate | C19H38 O2 | 298.503 | 0.33 | Fatty Acid | |
8 | 22.477 | Linoleic acid | C18H32 O2 | 280.45 | 26.95 | Fatty Acid | |
9 | 23.523 | 9,17-Octadecadienal, (Z) | C18H32O | 264.44 | 0.73 | Aldehyde | |
10 | 23.523 | 14-Methyl-8-hexadecyn-1-ol | C17H32O | 252.44 | 0.46 | Fatty Alcohol | |
11 | 24.089 | Ethyl linoleate | C20H36O | 308.49 | 0.71 | Fatty Acid | |
12 | 26.975 | (16S)-12,16-epoxy-6.beta.-hydroxy-17(15-16)-abeo-abieta-8,12-diene- 3,11,14-trione | C20H24O5 | 344.41 | 0.20 | Ketone | |
13 | 27.558 | Ethyl 2-(2-chloroacetamido)-3,3,3-trifluoro-2-(2-fluoroanilino) propionate | C13H13ClF4N2O3 | 356.70 | 1.58 | Ester | |
14 | 27.667 | Allyl 2-Nitrophenylpyruvate Oxime | C12H12N2O5 | 264.24 | 0.16 | Ester | |
15 | 27.804 | 3-Méthyl mercaptopropanal | C4H8OS | 104.17 | 0.23 | Aldehyde | |
16 | 28.610 | N(2)-[bis(hexafluoromethyl)methylene] oxamoyl hydrazide | / | / | / | 1.03 | Hydrazide |
17 | 28.833 | 1-Monolinoleoylglycerol trimethylsilyl ether | C24H46O4Si | 426.71 | 0.80 | Ester | |
18 | 29.330 | 2-Methoxy-3-methylpyrazine | C6H8N2O | 124.14 | 0.98 | Pyrazine | |
19 | 30.273 | 1-Monolinoleoylglycerol trimethylsilyl ether | C24H46O4Si | 426.71 | 1.12 | Ester | |
20 | 31.627 | 5-(Dimethylamino)-3,4-dihydro-4-isopropyl-4-methyl-2H-imidazol-2- one | C9H17N3O | 183.26 | 9.90 | Imidazole | |
21 | 33.348 | Ethylene sulfate | C2H4O4S | 124.11 | 11.66 | / | |
22 | 35.200 | s-Triazine trichloride | C3Cl3N3 | 184.40 | 33.24 | Triazine |
N° | RT | Compound | Structure | Molecular Formula | MW g/mol | Peak Area % | Compound Nature |
---|---|---|---|---|---|---|---|
1 | 20.52 | Palmitic acid | C16H32O2 | 256.42 | 2.72 | Fatty Acid | |
2 | 21.70 | Ethyl linoleate | C20H36O2 | 308.51 | 0.44 | Fatty Acid | |
3 | 22.19 | Linoleic acid | C20H36O2 | 308.50 | 14.05 | Fatty Acid | |
4 | 1 | (Z)-11-Hexadecenal | C16H30O | 238.40 | 1.54 | Aldehyde | |
5 | 23.62 | Biperiden | C21H29NO | 311.46 | 0.54 | Alcohol | |
6 | 27.25 | Erucylamide | C22H43NO | 337.58 | 1.43 | Fatty amide | |
7 | 27.45 | 6-nitro-1H-indazole-4-carboxylic acid | C8H5N3O4 | 207.15 | 2.26 | Fatty Acid | |
8 | 28.007 | Monolinolein TMS | C27H54O4Si2 | 498.88 | 1.47 | Ester | |
9 | 29.33 | Ethyl 2-(2-chloroacetamido)-3,3,3-trifluoro-2-(3-fluoroanilino)propionate | C13H13ClF4N2O3 | 356.70 | 1.13 | Ester | |
10 | 31.91 | Glyceryl 1-oleate, diacetate | C25H48O8 | 476.65 | 5.23 | Fatty Acid |
DPPH Assays | IC50 mg/mL |
---|---|
Ethyl acetate extract | 7.147 ± 0.181 |
n-butanolextarct | 5.415 ± 0.238 |
Ascorbic acid | 0.265 ± 0.007 |
Extracts | Concentration | Pathogenic Fungi % | ||
---|---|---|---|---|
Alternaria sp. | Fusarium solani | Sclerotinia sclerotiorum | ||
Ethyl acetate extract | 100% | 77.04 ± 0.83 (a) | 51.48 ± 1.09 (b) | ND |
50% | 71.48 ± 3.12 (a) | 9.63 ± 0.39 (c) | ND | |
25% | 44.07 ± 1.7 (b) | 1.85 ± 0.17 (c) | ND | |
n-butanol extract | 100% | 58 ± 10.13 (a) | ND | 93.70 ± 0.02 (a) |
50% | 64 ± 5.05 (b) | ND | 94.44 ± 0.01 (a) | |
25% | 68 ± 12.72 (b) | ND | 61.48 ± 2.38 (b) | |
Fungicide (Fosetyl-Alumium 310 g/L) | 100% | 55 ± 0.80 | 35 ± 0.9 | 60 ± 1.41 |
50% | 15 ± 0.25 | 31 ± 0.88 | 42 ± 1.55 | |
25% | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhdari, W.; Benyahia, I.; Bouhenna, M.M.; Bendif, H.; Khelafi, H.; Bachir, H.; Ladjal, A.; Hammi, H.; Mouhoubi, D.; Khelil, H.; et al. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment. Molecules 2023, 28, 5025. https://doi.org/10.3390/molecules28135025
Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, Ladjal A, Hammi H, Mouhoubi D, Khelil H, et al. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment. Molecules. 2023; 28(13):5025. https://doi.org/10.3390/molecules28135025
Chicago/Turabian StyleLakhdari, Wassima, Ibtissem Benyahia, Mustapha Mounir Bouhenna, Hamdi Bendif, Hafida Khelafi, Hakim Bachir, Amel Ladjal, Hamida Hammi, Dajwahir Mouhoubi, Hanane Khelil, and et al. 2023. "Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment" Molecules 28, no. 13: 5025. https://doi.org/10.3390/molecules28135025
APA StyleLakhdari, W., Benyahia, I., Bouhenna, M. M., Bendif, H., Khelafi, H., Bachir, H., Ladjal, A., Hammi, H., Mouhoubi, D., Khelil, H., Alomar, T. S., AlMasoud, N., Boufafa, N., Boufahja, F., & Dehliz, A. (2023). Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment. Molecules, 28(13), 5025. https://doi.org/10.3390/molecules28135025