Next Article in Journal
Integration of Hybridization Strategies in Pyridine–Urea Scaffolds for Novel Anticancer Agents: Design, Synthesis, and Mechanistic Insights
Next Article in Special Issue
Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers
Previous Article in Journal
Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice
Previous Article in Special Issue
Anticancer Activities of Novel Nicotinamide Phosphoribosyltransferase Inhibitors in Hematological Malignancies
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative

Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
*
Author to whom correspondence should be addressed.
Molecules 2023, 28(13), 4951; https://doi.org/10.3390/molecules28134951
Submission received: 26 May 2023 / Revised: 20 June 2023 / Accepted: 21 June 2023 / Published: 23 June 2023
(This article belongs to the Special Issue Recent Advances in Development of Small Molecules to Fight Cancer)

Abstract

:
Acid hydrolysis of stevioside resulted in a 63% yield of isosteviol (1), which served as a starting material for the preparation of numerous amides. These compounds were tested for cytotoxic activity, employing a panel of human tumor cell lines, and almost all amides were found to be non-cytotoxic. Only the combination of isosteviol, a (homo)-piperazinyl spacer and rhodamine B or rhodamine 101 unit proved to be particularly suitable. These spacered rhodamine conjugates exhibited cytotoxic activity in the sub-micromolar concentration range. In this regard, the homopiperazinyl-spacered derivatives were found to be better than those compounds with piperazinyl spacers, and rhodamine 101 conjugates were more cytotoxic than rhodamine B hybrids.

Graphical Abstract

1. Introduction

At least since the introduction and approval of stevioside [1,2,3,4,5] as a sweetener and substitute for sugar, increased attention has been paid to its aglycone steviol and its rearrangement product isosteviol (1, Scheme 1) [3,4]. Stevioside (Scheme 1) is now present in numerous food and consumer goods in daily life, as it is a non-caloric sugar substitute with a sweetening power of 250–300 times sweeter than sucrose. In addition, numerous therapeutic benefits are attributed to it, including antihyperglycemic, antihypertensive, anti-inflammatory, antitumor, and immunomodulatory properties [6,7,8,9,10,11]. Alkaline as well as enzymatic hydrolysis of stevioside leads to steviol, while acid hydrolysis leads to isosteviol (1) [12,13,14,15,16,17]. Isosteviol is a diterpene of the ent-beyerane = stachane type, i.e., a 13-methyl-17-norkaurane; it is obtained biosynthetically from the cyclization of a pimarane cation intermediate without subsequent rearrangement.
Isosteviol has been reported to be a suppressor of human DNA topoisomerase II [18] and of mammalian DNA polymerases, thus explaining its antitumor activity [19,20]. Parent stevioside was reported to have minor cytotoxic effects on several human cancer cell lines, thereby inducing apoptosis and cell cycle arrest in the G2/M phase [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38]. Since previous work also indicated an effect on mitochondrial permeability transition [35], it was natural to transfer our own previous findings on pentacyclic triterpenes to the diterpene isosteviol. Of particular interest were benzyl and pyridine-amides, (iso)-quinoline amides, and especially (homo)-piperazinyl-spacered rhodamine B and rhodamine 101 conjugates [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58].
Quinoline (and isoquinoline) derivatives of pentacyclic triterpenes had shown high cytotoxicity with partly excellent tumor cell/non-tumor cell selectivity [56], while several benzylamides were of good cytotoxicity but also excellent selectivity [43,46,47,48,53,55,58,59,60]; rhodamine B conjugates of triterpenoic acid held excellent cytotoxic activity; for some derivatives even sub-nanomolar cytotoxicity has been reported [51].
Previous results from our labs revealed a dependance on the type of spacer between the triterpene and the cationic rhodamine moiety. Thereby, piperazinyl and homopiperazinyl spacer proved especially useful; hence, these two spacers were included in this study [45,46,51,55,57].
Many solid tumor cells hold a trans-membrane potential exceeding that of “normal” cells, thus allowing a selective accumulation of lipophilic delocalized cations in the tumor cell mitochondria [61,62,63,64,65,66,67,68]. Our previous studies on these cationic hybrids were limited to pentacyclic triterpenoid hybrids; the first results obtained for diterpenoid abietylamine indicated some potential also for non-pentacyclic triterpenoids [69,70,71,72]. It seems that, depending on both the kind of terpene as well as on the chosen cation, different modes of action are involved. While for triterpenoid-safirinium compounds [73], as well as for an aza-BODIPY [74], an accumulation in the endoplasmic reticulum was observed; several rhodamine conjugates interact in the mitochondria [46], and even an almost complete shut-down of the mitochondrial ATP synthesis has been observed for an Asiatic acid-derived hybrid [51].

2. Results

Stevioside (obtained from different local vendors) was hydrolyzed in methanolic hydrochloric acid, and isosteviol (1) was obtained in a 63% isolated yield. Due to some ambiguity in the assignment of its 1H and 13C NMR spectra [75,76,77], a complete analysis was undertaken. However, it quickly became apparent that the usual 1D and 2D NMR experiments (e.g., gHSQC and gHMBC) did not allow a complete and accurate assignment of all signals, since even in these spectra, some signals overlapped very strongly. In addition, data from the literature contradicted each other with respect to the assignment of the quaternary carbons. To solve this problem, further NMR experiments were carried out, with which it was possible to directly separate the connectivity in the carbon framework. Two methods are suitable for this purpose: On the one hand, this is the classical INADEQUATE method [78,79,80,81], which requires larger substance amounts but also long measurement times due to the low sensitivity, or, on the other hand, the 1,1-ADEQUATE experiment [82,83,84]. In contrast to the INADEQUATE experiment, which is based on a correlation of the 1J coupling between two vicinal 13C nuclei, the 1,1-ADEQUATE experiment uses an INEPT transfer between 1H and 13C adjacent nuclei and the subsequent formation of double quantum coherence, thereby circumventing the problem of the low natural abundance of 13C nuclei.
So far, no INADEQUATE or 1,1-ADEQUATE spectra have been reported in the literature specifically for isosteviol. Due to the very good solubility of isosteviol in chloroform (520 mg in 0.7 mL) and yet sufficiently low viscosity at the measuring temperature used (27 °C), it was possible to perform both experiments and compare the results. While the INADEQUATE experiment required a measuring time of 80 h, 20 h was sufficient for the ADEQUATE experiment. The results are shown in Figure 1 and Figure 2 (in the ADEQUATE experiment, the chemical shift is shown in ppm instead of the double quantum coherence frequency, for better comparability). It was shown that both methods are very well suited for an exact and doubtless assignment. However, it is also evident that the INADEQUATE spectrum is somewhat easier to interpret, since no overlapping proton signals have to be taken into account. Both NMR experiments, however, allow a doubtless and reliable assignment of all signals.
Compound 1 was transformed in situ with oxalyl chloride into the corresponding acid chloride followed by the addition of the corresponding amine (Scheme 2). The pyridine amides 24, the quinoline amides 8 and 9, the amides 1223, the (homo)-piperazinyl amides 24 and 25 (Scheme 3), the (homo)-morpholinyl amides 26 and 27, and the (homo)-thiomorpholinyl amides 28 and 29 were obtained; compound 30 was synthesized from 1 and ethylene diamine in 88% yield. Rhodamine B or rhodamine 101 was activated with oxalyl chloride in the same manner, followed by the reaction with either 26 and 27 to yield 31 and 32 (from rhodamine B) or 33 and 34 (from rhodamine 101), respectively. We refrained from using 30 as a starting material to prepare the corresponding rhodamine conjugates, since it has since become apparent that these conjugates exist preferentially in a non-cationic but neutral spirocyclic form. These electrically neutral molecules proved to be hardly cytotoxic, since they obviously cannot interact with membranes.
For comparison, quaternization was performed with iodomethane, and this provided 57 as well as 10 and 11, respectively.
Isosteviol (1) and all derivatives were subjected to sulforhodamine B (SRB) assays employing a panel of human tumor cell lines and non-malignant murine fibroblasts NIH 3T3 and HEK293 cells for comparison. The results from these assays are compiled in Table 1.
The SRB assays showed neither the parent compound isosteviol (1) nor almost none of the amides to hold any cytotoxic effect on the human tumor cell lines; they were also non-cytotoxic for the non-malignant cell lines NIH 3T3 and HEK293. The (homo)-piperazinyl amides 24 and 25, however, showed slight cytotoxic effect, with the homopiperazinyl amide 25 performing slightly better than the piperazinyl-spacered compound 24. A significant improvement was made with the (homo)-piperazinyl rhodamine-B-spacered compounds 31 and 32, and the rhodamine 101 hybrids 33 and 34 were even more cytotoxic than the rhodamine B analogs 31 and 32. The selectivity to distinguish between malignant and non-malignant cell lines, however, was low.
These results emphasize once again that for high cytotoxic activity of terpene/rhodamine hybrids, the interplay between the selected terpene, spacer and lipophilic cation is crucial. If the cationic part is not lipophilic enough (as in compounds 67, 10 and 11), no cytotoxic activity is obtained. The values obtained for isosteviol derivatives are basically much smaller than those previously obtained for pentacyclic triterpenes. On the other hand, a pronounced cytotoxicity can be achieved also for non-cytotoxic isosteviol if an appropriate rhodamine residue is added to the terpenoid backbone via a suitable spacer. Once again, the homopiperazinyl spacer proves to be superior to the piperazinyl spacer.

3. Experiment

NMR spectra were recorded using the Varian spectrometers (Darmstadt, Germany) DD2 and VNMRS (400 and 500 MHz, respectively). MS spectra were taken on a Advion expressionL CMS mass spectrometer (Ithaca, USA; positive ion polarity mode, solvent: methanol, solvent flow: 0.2 mL/min, spray voltage: 5.17 kV, source voltage: 77 V, APCI corona discharge: 4.2 μA, capillary temperature: 250 °C, capillary voltage: 180 V, sheath gas: N2). Thin-layer chromatography was performed on pre-coated silica gel plates supplied by Macherey-Nagel (Düren, Germany). IR spectra were recorded on a Spectrum 1000 FT-IR-spectrometer from Perkin Elmer (Rodgau, Germany). The UV/Vis-spectra were recorded on a Lambda 14 spectrometer from Perkin Elmer (Rodgau, Germany); optical rotations were measured using a JASCO-P2000 instrument (JASCO Germany GmbH, Pfungstadt, Germany). The melting points were determined using the Leica hot stage microscope Galen III (Leica Biosystems, Nussloch, Germany) and are uncorrected. The solvents were dried according to usual procedures. Microanalyses were performed with an Elementar Vario EL (CHNS) instrument (Elementar Analysensysteme GmbH, Elementar-Straße 1, D-63505 Langenselbold, Germany). All dry solvents were distilled over respective drying agents, except for DMF, which was distilled and stored under argon and molecular sieve. Reactions using air- or moisture-sensitive reagents were carried out under argon atmosphere in dried glassware. Triethylamine was stored over potassium hydroxide. Biological assays were performed as previously reported, employing cell lines obtained from the Department of Oncology [Martin-Luther-University Halle Wittenberg; they were bought from ATCC: malignant: A 375, HT29, MCF7 and A2780; non-malignant: NIH 3T3]. Rhodamine B and stevioside were obtained from local vendors and used as received.
For the SRB assay: cells were seeded into 96-well plates on day zero at appropriate cell densities to prevent confluence of the cells during the period of the experiment. After 24 h, the cells were treated with different concentrations (1, 3, 7, 12, 20 and 30 μM), but the final concentration of DMSO/DMF never exceeded 0.5%, which was non-toxic to the cells. After 72 h of treatment, the supernatant media from the 96-well plates were discarded, and then the cells were fixed with 10% trichloroacetic acid and allowed to rest at 4 °C. After 24 h of fixation, the cells were washed in a strip washer and then dyed with SRB solution (200 μL, 10 mM) for 20 min. Then the plates were washed four times with 1% acetic acid to remove the excess dye and allowed to air-dry overnight. Tris base solution (200 μL, 10 mM) was added to each well. The absorbance was measured with a 96-well plate reader from Tecan Spectra.

3.1. General Procedure for the Synthesis of Amides (GPA)

A solution of 1 (1 equiv.) in dry DCM (10 mL) was treated with oxalyl chloride (4 equiv.) and DMF (catal.) for 1 h. The volatiles were evaporated under reduced pressure. To a solution of the residue in dry DCM (10 mL) the corresponding amine (3 equiv.) was added, and the mixture was stirred at room temperature for 1 h. The usual aqueous workup, followed by chromatography, gave amides.

3.2. General Procedure for the Quaternization (GPB)

To a solution of 24, 8, or 9 in dry DCM (3 mL), iodomethane (3 mL, 0.05 mmol) was added, and the mixture was stirred at room temperature for 2 h. The volatiles were evaporated under reduced pressure, and the residue was subjected to chromatography to afford 56, 10, and 11.

3.3. General Procedure for the Synthesis of Rhodamine Conjugates (GPC)

The respective rhodamine was dissolved in dry dichloromethane (10 mL) and mixed with oxalyl chloride (4 eq.) and catalytic amounts of DMF. Following the conditions of GPA as described above, the residue was dissolved in dry DCM (10 mL) and compounds 22 or 23 (3 eq.) were added. Stirring at room temperature was continued for 1 h. The usual aq. work-up followed by chromatography furnished the conjugates 3134.

3.4. 16-Oxostachan-18-oic Acid (1, Isosteviol)

A suspension of stevioside (43.0 g, from different local vendors) in MeOH (250 mL) and conc. aq. HCl (43 mL) was heated under reflux for 2 h; stirring at room temperature was continued overnight. Precipitation with water (600 mL) gave a solid that was re-crystallized from EtOH (150 mL), and 1 (10.8 g, 63%) was obtained as a colorless solid; Rf = 0.69 (SiO2, CHCl3/MeOH, 9:1); m.p. 230 °C (lit.: [85] 228–230 °C); α D 20 = −84.45° (c = 0.164, CHCl3); IR (ATR): ν = 2959w, 2922w, 2851w, 1736m, 1690m, 1455w, 1264w cm−1; 1H NMR (500 MHz, CDCl3): δ = 2.62 (dd, J = 18.6, 3.7 Hz, 1H, 15-H), 2.15 (dt, J = 13.1, 4.0 Hz, 1H, 3-H), 1.91 − 1.79 (m, 3H, 2-H, 6-H, 15-H), 1.79 − 1.67 (m, 3H, 1-H, 6-H, 11-H), 1.64 (dt, J = 13.3, 3.1 Hz, 2H, 7-H), 1.62 − 1.57 (m, 1H, 12-H), 1.53 (dd, J = 11.6, 2.7 Hz, 1H, 14-H), 1.48 (dd, J = 13.6, 4.0 Hz, 1H, 7-H), 1.44 − 1.33 (m, 3H, 2-H, 12-H, 14-H), 1.23 (s, 3H, 20-H), 1.21 − 1.17 (m, 1H, 9-H), 1.14 (dd, J = 12.1, 2.3 Hz, 1H, 5-H), 1.01 (td, J = 13.6, 4.2 Hz, 1H, 3-H), 0.96 (s, 3H, 17-H), 0.90 (td, J = 13.3, 4.3 Hz, 1H, 1-H), 0.77 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.94 (C-16), 184.16 (C-18), 57.13 (C-5), 54.84 (C-9), 54.38 (C-14), 48.85 (C-13), 48.55 (C-15), 43.79 (C-4), 41.55 (C-7), 39.86 (C-1), 39.59 (C-8), 38.30 (C-10), 37.75 (C-3), 37.42 (C-12), 29.07 (C-20), 21.73 (C-6), 20.45 (C-11), 19.95 (C-17), 18.97 (C-2), 13.42 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 317 (100%, [M-H]).

3.5. 16-Oxo-N-pyridin-2-yl-stachan-18-amide (2)

Following GPA from 1 (300 mg, 0.94 mmol), oxalyl chloride (0.4 mL (4.7 mmol), 2-aminopyridine (354 mg, 3.76 mmol), NEt3 (0.7 mL, 5.0 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 2 (267 mg, 72%) was obtained as a colorless solid; Rf = 0.16 (SiO2, hexanes/ethyl acetate, 8:2); m.p. 185.5 °C; α D 20 = −73.47° (c = 0.034, MeOH); UV-Vis (MeOH): λmax (log ε) = 278.52 nm (0.37); IR (ATR) (ATR): ν = 3442w, 2926m, 2847m, 1735s, 1683m, 1592w, 1576m, 1504m, 1453w, 1427s, 1295m, 1253w, 1210w, 1177w, 1147m, 1131w, 1109w, 1090w, 1050w, 1016w, 929w, 868w, 778m, 753m, 695w, 666w, 611w, 518w, 410w cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.50 (s, 1H, N-H), 8.29 − 8.22 (m, 2H, 22-H, 25-H), 7.77 (ddd, J = 8.7, 7.3, 1.9 Hz, 1H, 23-H), 7.08 (ddd, J = 7.3, 5.1, 1.0 Hz, 1H, 24-H), 2.62 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.29 (td, J = 14.6, 3.6 Hz, 1H, 3-H), 2.14 − 2.07 (m, 1H, 6-H), 1.94 (dt, J = 13.9, 3.7 Hz, 1H, 2-H), 1.86 (dd, J = 12.8, 3.0 Hz, 1H,6-H), 1.81 (d, J = 18.6 Hz, 1H, 15-H), 1.78 − 1.77 (m, 1H, 1-H), 1.74 (dt, J = 13.4, 3.3 Hz, 1H, 7-H), 1.71 − 1.67 (m, 1H, 11-H), 1.64 − 1.60 (m, 1H, 12-H), 1.60 − 1.55 (m, 2H, 2-H, 14-H), 1.51 (dd, J = 13.5, 3.7 Hz, 1H, 7-H), 1.42 (dd, J = 11.6, 3.8 Hz, 1H, 14-H), 1.40 − 1.35 (m, 1H, 12-H), 1.33 (s, 3H, 20-H), 1.29 − 1.19 (m, 4H, 3-H, 5-H, 9-H, 11-H), 1.02 − 0.98 (m, 1H, 1-H), 0.97 (s, 3H, 17-H), 0.79 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.23 (C-16), 175.98 (C-18), 151.26 (C-21), 146.07 (C-25), 139.83 (C-23), 119.73 (C-24), 114.85 (C-22), 57.83 (C-5), 54.96 (C-9), 54.33 (C-14), 48.82 (C-13), 48.48 (C-15), 45.20 (C-4), 41.74 (C-7), 40.16 (C-1), 39.62 (C-8), 38.34 (C-3), 38.25 (C-10), 37.39 (C-12), 29.73 (C-20), 22.33 (C-6), 20.49 (C-11), 19.96 (C-17), 19.28 (C-2), 13.78 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 395 (100%, [M+H]+), 811 (70%, [2M+Na]+); analysis calcd for C25H34N2O2 (394.55): C 76.10, H 8.69, N 7.10; found: C 75.96, H 8.83, 6.95.

3.6. 16-Oxo-N-pyridin-3-yl-stachan-18-amide (3)

Following GPA from 1 (400 mg, 1.3 mmol), oxalyl chloride (0.55 mL, 6.5 mmol), 3-aminopyridine (612 mg, 6.5 mmol), NEt3 (0.72 mL, 5.2 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 3 (297 mg, 58%) was obtained as a colorless solid; Rf = 0.68 (SiO2, CHCl3/MeOH, 9:1); m.p. 162 °C; α D 20 = −45.77° (c = 0.043, MeOH); UV-Vis (MeOH): λmax (log ε) = 240.10 nm (0.52); IR (ATR): ν = 3326br, 2926m, 2848m, 1733m, 1664m, 1523m, 1480m, 1414m, 1326w, 1267w, 1191w, 1150w, 1131w, 1109w, 1028w, 977w, 802w, 750s, 706m, 665w, 532w cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.79 (s, 1H, N-H), 8.47 − 8.26 (m, 2H, 22-H, 25-H), 7.83 (s, 1H, 24-H), 7.38 (s, 1H, 23-H), 2.62 (dd, J = 18.6, 3.7 Hz, 1H, 15-H), 2.28 (d, J = 14.5 Hz, 1H, 3-H), 2.08 (d, J = 13.4 Hz, 1H, 6-H), 1.96 − 1.65 (m, 6H, 1-H, 2-H, 6-H, 7-H, 11-H, 15-H), 1.65 − 1.48 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.42 (dd, J = 11.6, 3.7 Hz, 1H, 14-H), 1.40 − 1.36 (m, 1H, 12-H), 1.34 (s, 3H, 20-H), 1.31 − 1.19 (m, 4H, 3-H, 5-H, 9-H, 11-H), 1.01 (dd, J = 13.2, 4.3 Hz, 1H, 1-H), 0.97 (s, 3H, 17-H), 0.80 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.12 (C-16), 176.11 (C-18), 129.68 (C-22), 124.41 (C-23), 57.88 (C-5), 54.96 (C-9), 54.35 (C-14), 48.83 (C-13), 48.49 (C-15), 45.03 (C-4), 41.77 (C-7), 40.16 (C-1), 39.62 (C-8), 38.33 (C-3), 38.28 (C-10), 37.38 (C-12), 29.87 (C-20), 22.41 (C-6), 20.50 (C-11), 19.97 (C-17), 19.37 (C-2), 13.86(C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 393 (100%, [M-H]), 429 (30%, [M+Cl]); analysis calcd for C25H34N2O2 (394.55): C 76.10, H 8.69, N 7.10; found: C 75.97, H 8.91, N 6.96.

3.7. 16-Oxo-N-pyridin-4-yl-stachan-18-amide (4)

Following GPA from 1 (400 mg, 1.25 mmol), oxalyl chloride (0.54 mL, 6.3 mmol), 4-aminopyridine (593 mg, 6.3 mmol), NEt3 (0.7 mL, 5 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 4 (335 mg, 68%) was obtained as a colorless solid; Rf = 0.27 (SiO2, CHCl3/MeOH, 9:1); m.p. 155 °C; α D 20 = −59.56° (c = 0.160, CHCl3); UV-Vis (MeOH): λmax (log ε) = 247.92 nm (0.47); IR (ATR): ν = 2926m, 2845m, 1732m, 1669m, 1585m, 1504s, 1454m, 1412w, 1325m, 1284w, 1209w, 1127m, 1089w, 977w, 826m, 750s, 665w, 525m cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.48 (s, 1H, N-H), 7.99 (s, 2H, 22-H, 25-H), 7.77 (s, 2H, 24-H, 23-H), 2.61 (dd, J = 18.6, 3.7 Hz, 1H, 15-H), 2.30 (d, J = 14.4 Hz, 1H, 3-H), 2.07 (t, J = 12.8 Hz, 1H, 6-H), 1.89 − 1.77 (m, 5H, 1-H, 2-H, 6-H, 7-H, 11-H), 1.72 (m, 3H, 2-H, 7-H, 15-H), 1.64 − 1.48 (m, 3H, 12-H, 14-H), 1.46 − 1.36 (m, 1H, 12-H), 1.34 (s, 3H, 20-H), 1.31 − 1.19 (m, 5H, 1-H, 3-H, 5-H, 9-H, 11-H), 0.98 (s, 3H, 17-H), 0.77 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 221.82 (C-16), 176.29 (C-18), 147.93 (C-21), 147.39 (C-23, C-24), 114.30 (C-22, C-25), 57.70 (C-5), 54.81 (C-9), 54.15 (C-14), 48.67 (C-13), 48.30 (C-15), 45.34 (C-4), 41.58 (C-7), 39.92 (C-1), 39.46 (C-8), 38.17 (C-3), 38.12 (C-10), 37.19 (C-12), 29.46 (C-20), 22.21 (C-6), 20.35 (C-11), 19.80 (C-17), 19.12 (C-2), 13.78 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 395 (100%, [M+H]+); analysis calcd for C25H34N2O2 (394.55): C 76.10, H 8.69, N 7.10; found: C 75.97, H 8.88, N 6.92.

3.8. N-(1-Methylpyridinium-2-yl)-16-oxostachan-18-amide Iodide (5)

Following GPB from 2 (223 mg, 0.56 mmol), iodomethane (3.0 mL, 0.05 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 5 (258 mg, 86%) was obtained as a yellowish solid; Rf = 0.82 (SiO2, ethyl acetate/MeOH, 8:2); m.p. 155 °C; α D 20 = −114.62° (c = 0.032, CHCl3); UV-Vis (MeOH): λmax (log ε) = 283.98 nm (0.37); IR (ATR): ν = 2930m, 2878m, 2832w, 1733s, 1636s, 1596m, 1549m, 1506s, 1444m, 1376s, 1364m, 1320w, 1258w, 1231m, 1177m, 1155s, 1131w, 1105w, 1051w, 974w, 888w, 856m, 783m, 773m, 756m, 730w, 636w, 565w, 533w, 507w, 420w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.84 (d, J = 9.2 Hz, 1H, N-H), 7.43 (dd, J = 6.9, 1.7 Hz, 1H, 25-H), 7.37 (m, 2H, 22-H, 23-H), 6.35 (td, J = 6.7, 1.4 Hz, 1H, 24-H), 3.67 (s, 3H, 26-H), 2.65 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.37 (d, J = 12.9 Hz, 1H, 3-H), 2.03 (d, J = 10.3 Hz, 1H, 6-H), 1.93 (tdd, J = 14.2, 11.7, 3.2 Hz, 1H, 12-H), 1.77 (d, J = 18.7 Hz, 1H, 14-H), 1.73 − 1.47 (m, 5H, 1-H, 2-H, 6-H, 7-H, 15-H), 1.48 − 1.32 (m, 5H, 2-H, 7-H, 11-H, 12-H, 14-H), 1.24 (s, 3H, 20-H), 1.23 − 1.12 (m, 4H, 3-H, 5-H, 9-H, 11-H), 0.97 (s, 3H, 17-H), 0.87 (d, J = 7.1 Hz, 1H, 1-H), 0.81 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 223.06 (C-16), 187.23 (C-18), 158.17 (C-21), 138.55 (C-23), 138.47 (C-25), 120.20 (C-24), 109.36 (C-22), 58.06 (C-5), 54.78 (C-9), 54.45 (C-14), 48.76 (C-13), 48.59 (C-15), 46.31 (C-26), 42.14 (C-4), 41.15 (C-7), 40.54 (C-1), 39.60 (C-8), 39.07 (C-3), 38.29 (C-10), 37.49 (C-12), 30.49 (C-20), 22.49 (C-6), 20.41 (C-11), 19.90 (C-17), 19.59 (C-2), 14.11 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 410 (17%, [M+H-I]+); analysis calcd for C26H37N2O2I (536.50): C 58.21, H 6.95, N 5.22; found: C 57.97, H 7.13, N 5.01.

3.9. N-(1-Methylpyridinium-3-yl)-16-oxostachan-18-amide Iodide (6)

Following GPB from 3 (233 mg, 0.59 mmol), iodomethane (3.0 mL, 0.05 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 6 (294 mg, 93%) was obtained as a yellowish solid; Rf = 0.82 (SiO2, ethyl acetate/MeOH, 8:2); m.p. 176 °C; α D 20 = 50.44° (c = 0.154, CHCl3); UV-Vis (MeOH): λmax (log ε) = 220.38 nm (1.10); IR (ATR): ν = 3328br, 2926m, 2849m, 1731m, 1684m, 1526m, 1507s, 1451m, 1319m, 1241w, 1153w, 1127w, 1106w, 1034w, 963w, 748s, 699s, 592w, 529m cm−1; 1H NMR (400 MHz, CDCl3): δ = 10.07 (s, 1H, 25-H), 9.32 (d, J = 8.8 Hz, 1H, 22-H), 9.17 (s, 1H, N-H), 8.63 (d, J = 5.8 Hz, 1H, 24-H), 7.90 (dd, J = 8.7, 5.9 Hz, 1H, 23-H), 4.47 (s, 3H, 26-H), 2.66 (dt, J = 13.8, 2.6 Hz, 1H, 3-H), 2.58 (dd, J = 18.6, 3.6 Hz, 1H, 15-H), 2.25 − 2.12 (m, 1H, 6-H), 1.89 − 1.43 (m, 11H, 1-H, 2-H, 6-H, 7-H, 11-H, 12-H, 14-H, 15-H), 1.41 (s, 3H, 20-H), 1.39 − 1.11 (m, 5H, 3-H, 5-H, 9-H, 11-H, 12-H), 1.02 − 0.97 (m, 1H, 1-H), 0.96 (s, 3H, 17-H), 0.73 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.57 (C-16), 177.86 (C-18), 140.26 (C-21), 138.56 (C-24), 136.93 (C-25), 136.37 (C-22), 127.80 (C-23), 58.11 (C-5), 54.89 (C-9), 54.28 (C-14), 49.30 (C-26), 48.83 (C-13), 48.62 (C-15), 45.76 (C-4), 41.60 (C-7), 39.91 (C-1), 39.62 (C-8), 38.36 (C-3), 38.07 (C-10), 37.37 (C-12), 29.72 (C-20), 22.61 (C-6), 20.49 (C-11), 19.94 (C-17), 19.68 (C-2), 14.29 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 410 (16%, [M+H-I]+); analysis calcd for C26H37N2O2I (536.50): C 58.21, H 6.95, N 5.22; found: C 58.01, H 7.17, N 4.96.

3.10. N-(1-Methylpyridinium-4-yl)-16-oxostachan-18-amide Iodide (7)

Following GPB from 4 (153 mg, 0.39 mmol), iodomethane (3.0 mL, 0.05 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 7 (190 mg, 91%) was obtained as a yellowish solid; Rf = 0.82 (SiO2, ethyl acetate/MeOH, 8:2); m.p. 197 °C; α D 20 = −58.15° (c = 0.149, CHCl3); UV-Vis (MeOH): λmax (log ε) = 275.94 nm (0.76); IR (ATR): ν = 2926m, 2849m, 1730m, 1671m, 1641m, 1586m, 1515s, 1446m, 1317m, 1198m, 1174w, 1120m, 1086m, 1023w, 977w, 845w, 748s, 661w, 519m cm−1; 1H NMR (400 MHz, CDCl3): δ = 9.48 (s, 1H, N-H), 8.90 − 8.83 (m, 2H, 23-H, 24-H), 8.70 − 8.63 (m, 2H, 22-H, 25-H), 4.42 (s, 3H, 26-H), 2.75 (d, J = 14.6 Hz, 1H, 15-H), 2.57 (dd, J = 18.6, 3.6 Hz, 2H, 1-H, 3-H), 2.22 (m, 2H, 6-H, 15-H), 1.86 − 1.63 (m, 8H, 2-H, 6-H, 7-H, 11-H, 12-H, 14-H), 1.63 − 1.48 (m, 3H, 7-H, 11-H, 14-H), 1.46 (s, 3H, 20-H), 1.44 − 1.30 (m, 2H, 5-H, 9-H), 1.27 − 1.12 (m, 2H, 1-H, 3-H), 0.96 (s, 3H, 17-H), 0.70 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.33 (C-16), 178.30 (C-18), 152.95 (C-21), 144.44 (C-23, C-24), 116.98 (C-22, C-25), 58.10 (C-5), 54.84 (C-9), 54.13 (C-14), 48.67 (C-13), 48.44 (C-15), 47.49 (C-26), 46.45 (C-4), 41.46 (C-7), 39.69 (C-1), 39.46 (C-8), 38.21 (C-10), 38.11 (C-3), 37.22 (C-12), 29.16 (C-20), 22.37 (C-6), 20.33 (C-11), 19.80 (C-17), 19.43 (C-2), 14.23 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 410 (36%, [M+H-I]); analysis calcd for C26H37N2O2I (536.50): C 58.21, H 6.95, N 5.22; found: C 58.00, H 7.19, N 4.86.

3.11. 16-Oxo-N-isoquinolin-4-yl-stachan-18-amide (8)

Following GPA (microwave-assisted) from 1 (250 mg, 0.78 mmol), oxalyl chloride (0.3 mL, 3.12 mmol), 4-amino-isoquinoline (337 mg, 2.34 mmol), NEt3 (0.3 mL, 2.34 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 8 (250 mg, 72%) was obtained as a colorless solid; Rf = 0.17 (SiO2, hexanes/ethyl acetate, 1:1); m.p. 91 °C; α D 20 = −39.67° (c = 0.031, MeOH); UV-Vis (MeOH): λmax (log ε) = 217.81 nm (2.45); IR (ATR): ν = 3320w, 2924m, 2847m, 1734s, 1653m, 1586w, 1511m, 1488s, 1451s, 1410m, 1391m, 1321w, 1278w, 1254w, 1225w, 1169w, 1110w, 1017w, 976w, 883w, 861w, 778m, 749s, 632w, 579w, 507w, 491w, 464w cm−1; 1H NMR (500 MHz, CDCl3): δ = 9.13 (s, 1H, 23-H), 8.88 (s, 1H, 22-H), 8.09 (d, J = 8.2 Hz, 1H, 25-H), 7.97 (s, 1H, N-H), 7.88 − 7.80 (m, 2H, 27-H, 28-H), 7.71 (ddd, J = 8.1, 5.9, 2.0 Hz, 1H, 26-H), 2.63 (dd, J = 18.6, 3.7 Hz, 1H, 15-H), 2.38 (dt, J = 15.3, 3.7 Hz, 1H, 3-H), 2.14 − 2.09 (m, 1H, 6-H), 2.02 (dt, J = 13.9, 3.1 Hz, 1H, 2-H), 1.93 (dd, J = 12.4, 2.9 Hz, 1H, 6-H), 1.88 − 1.83 (m, 1H, 1-H), 1.80 (d, J = 18.6 Hz, 1H, 15-H), 1.76 − 1.69 (m, 2H, 7-H, 11-H), 1.69 − 1.66 (m, 1H, 2-H), 1.66 − 1.62 (m, 1H, 12-H), 1.61 − 1.51 (m, 2H, 7-H, 14-H), 1.47 (s, 3H, 20-H), 1.44 (dd, J = 11.7, 3.8 Hz, 1H, 14-H), 1.41 − 1.36 (m, 2H, 3-H, 12-H), 1.31 (dd, J = 12.3, 2.1 Hz, 1H, 5-H), 1.29 − 1.21 (m, 2H, 9-H, 11-H), 1.05 (td, J = 13.6, 4.7 Hz, 1H, 1-H), 0.98 (s, 3H, 17-H), 0.89 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.10 (C-16), 176.10 (C-18), 147.58 (C-23), 135.05 (C-22), 132.33 (C-27), 131.60 (C-21), 129.86 (C-29), 129.08 (C-25), 128.61 (C-24), 128.47 (C-26), 120.97 (C-28), 57.80 (C-5), 54.94 (C-9), 54.34 (C-14), 48.82 (C-13), 48.44 (C-15), 45.17 (C-4), 41.79 (C-7), 40.21 (C-1), 39.63 (C-8), 38.54 (C-3), 38.38 (C-10), 37.36 (C-12), 30.35 (C-20), 22.49 (C-6), 20.51 (C-11), 19.96 (C-17), 19.50 (C-2), 14.19 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 443 (100%, [M-H]); analysis calcd for C29H36N2O2 (444.62): C 78.34, H 8.16, N 6.30; found: C 78.16, H 7.95, N 6.15.

3.12. 16-Oxo-N-quinolin-5-yl-stachan-18-amide (9)

Following GPA (microwave-assisted) from 1 (250 mg (0.78 mmol), oxalyl chloride (0.3 mL (3.12 mmol), 5-aminoquinoline (337 mg, 2.34 mmol), NEt3 (0.3 mL, 2.34 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 9 (187 mg, 54%) was obtained as a colorless solid; Rf = 0.15 (SiO2, hexanes/ethyl acetate, 1:1); m.p. 90 °C; α D 20 = −35.71° (c = 0.056, MeOH); UV-Vis (MeOH): λmax (log ε) = 229.71 nm (0.86); IR (ATR): ν = 3337w, 2924m, 2847m, 1734m, 1649m, 1594w, 1510w, 1485m, 1452m, 1397w, 1318w, 1261w, 1171w, 1131w, 1110w, 976w, 862w, 798s, 750s, 656w, 589w, 498w, 467w cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.78 (dd, J = 4.5, 1.5 Hz, 1H, 26-H), 8.31 (d, J = 8.4 Hz, 1H, 22-H), 8.02 (d, J = 8.1 Hz, 1H, N-H), 7.77 (dd, J = 7.6, 1.1 Hz, 2H, 27-H, 28-H), 7.71 (dd, J = 8.4, 7.5 Hz, 1H, 24-H), 7.49 (dd, J = 8.5, 4.4 Hz, 1H, 23-H), 2.64 (dd, J = 18.5, 3.7 Hz, 1H, 15-H), 2.37 (d, J = 14.4 Hz, 1H, 3-H), 2.09 (td, J = 13.8, 6.9 Hz, 1H, 6-H), 2.05 − 1.84 (m, 3H, 1-H, 2-H, 6-H), 1.80 (d, J = 18.6 Hz, 1H, 15-H), 1.77 − 1.59 (m, 4H, 2-H, 7-H, 11-H, 12-H), 1.60 − 1.51 (m, 2H, 7-H, 14-H), 1.47 (s, 3H, 20-H), 1.44 − 1.33 (m, 3H, 3-H, 12-H, 14-H), 1.34 − 1.19 (m, 3H, 5-H, 9-H, 11-H), 1.05 (td, J = 13.2, 4.4 Hz, 1H, 1-H), 0.98 (s, 3H, 17-H), 0.91 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.03 (C-16), 176.18 (C-18), 148.08 (C-23), 133.47 (C-22), 130.62 (C-27), 125.31 (C-21), 124.06 (C-29), 123.41 (C-25, C-26), 120.78 (C-24, C-28), 57.72 (C-5), 54.77 (C-9), 54.20 (C-14), 48.69 (C-13), 48.34 (C-15), 44.89 (C-4), 41.66 (C-7), 40.09 (C-1), 39.51 (C-8), 38.38 (C-3), 38.24 (C-10), 37.24 (C-12), 30.28 (C-20), 22.36 (C-6), 20.38 (C-11), 19.82 (C-17), 19.40 (C-2), 14.09 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 445 (90%, [M+H]+), 911 (100%, [2M+Na]+); analysis calcd for C29H36N2O2 (444.62): C 78.34, H 8.16, N 6.30; found: C 78.07, H 8.36, N 6.13.

3.13. N-(1-Methylisoquinolinium-4-yl)-16-oxostachan-18-amide Iodide (10)

Following GPB from 8 (97 mg, 0.22 mmol), iodomethane (3.0 mL, 0.05 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 10 (93 mg, 72%) was obtained a yellowish solid; Rf = 0.15 (SiO2, hexanes/ethyl acetate, 1:1); m.p. 188 °C; α D 20 = −46.89° (c = 0.110, CHCl3); UV-Vis (MeOH): λmax (log ε) = 228.82 nm (1.50); IR (ATR): ν = 3225w, 3078w, 2926m, 2841m, 1730s, 1690m, 1643w, 1608w, 1519m, 1499m, 1472m, 1445s, 1415w, 1352m, 1259m, 1219w, 1187w, 1157m, 1133w, 1109w, 980w, 868w, 783m, 752w, 638w, 590m, 553w, 524w, 512w, 445w, 425w cm−1; 1H NMR (400 MHz, CDCl3): δ = 10.40 (s, 1H, 23-H), 9.06 (d, J = 1.4 Hz, 1H, 22-H), 8.76 (s, 1H, N-H), 8.54 (d, J = 8.3 Hz, 1H, 28-H), 8.19 − 8.08 (m, 2H, 25-H, 26-H), 7.92 (ddd, J = 8.2, 4.9, 3.1 Hz, 1H, 27-H), 4.52 (s, 3H, 30-H), 2.65 − 2.53 (m, 2H, 3-H, 15-H), 2.21 − 2.12 (m, 1H, 6-H), 1.97 − 1.92 (m, 1H, 2-H), 1.89 (dd, J = 12.8, 2.9 Hz, 1H, 6-H), 1.81 (d, J = 18.7 Hz, 1H, 15-H), 1.81 − 1.65 (m, 4H, 1-H, 2-H, 7-H, 11-H), 1.63 − 1.52 (m, 3H, 7-H, 12-H, 14-H), 1.49 (s, 3H, 20-H), 1.43 (dd, J = 11.8, 3.7 Hz, 1H, 14-H), 1.40 − 1.34 (m, 2H, 3-H, 12-H), 1.32 (dd, J = 12.4, 2.0 Hz, 1H, 5-H), 1.28 − 1.22 (m, 1H, 9-H), 1.19 (dd, J = 12.7, 5.2 Hz, 1H, 11-H), 1.04 (td, J = 13.1, 4.3 Hz, 1H, 1-H), 0.96 (s, 3H, 17-H), 0.79 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.21 (C-16), 177.11 (C-18), 145.95 (C-23), 136.91 (C-26), 134.29 (C-29), 131.83 (C-21), 131.53 (C-27), 131.31 (C-28), 129.06 (C-22), 127.99 (C-24), 122.37 (C-25), 57.92 (C-5), 54.83 (C-9), 54.24 (C-14), 48.89 (C-30), 48.82 (C-13), 48.49 (C-15), 45.73 (C-4), 41.66 (C-7), 39.97 (C-1), 39.63 (C-8), 38.37 (C-3), 38.32 (C-10), 37.32 (C-12), 30.19 (C-20), 22.54 (C-6), 20.49 (C-11), 19.93 (C-17), 19.64 (C-2), 14.48 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 460 (21%, [M+H-I]+); analysis calcd for C30H39N2O2I (586.56): C 61.43, H 6.70, N 4.78; found: C 71.20, H 6.97, N 4.44.

3.14. N-(1-Methylquinolinium-5-yl)-16-oxostachan-18-amide Iodide (11)

Following GPB from 9 (60 mg, 0.14 mmol), iodomethane (3.0 mL, 0.05 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 11 (65 mg, 79%) was obtained as a yellowish solid; Rf = 0.53 (SiO2, CHCl3/MeOH, 8:2); m.p. 195 °C; α D 20 = −61.93° (c = 0.108, MeOH); UV-Vis (MeOH): λmax (log ε) = 219.17 nm (0.92); IR (ATR): ν = 3428m, 2924m, 2848m, 1732s, 1667w, 1622m, 1592m, 1533m, 1492m, 1450s, 1406w, 1368w, 1336w, 1279w, 1244m, 1161m, 1128w, 1111w, 1088w, 1029w, 977w, 929w, 862w, 793s, 750m, 696w, 559w, 527m, 463m cm−1; 1H NMR (500 MHz, CDCl3): δ = 9.76 (d, J = 5.7 Hz, 1H, 28-H), 9.28 (d, J = 8.6 Hz, 1H, 26-H), 8.77 (s, 1H, N-H), 8.22 − 8.05 (m, 2H, 22-H, 27-H), 7.98 (dd, J = 8.6, 5.7 Hz, 2H, 23-H, 24-H), 4.71 (s, 3H, 30-H), 2.72 − 2.61 (m, 1H, 15-H), 2.59 (d, J = 3.6 Hz, 1H, 3-H), 2.16 (d, J = 13.4 Hz, 1H, 6-H), 2.00 − 1.78 (m, 4H, 1-H, 2-H, 6-H, 15-H), 1.77 − 1.55 (m, 6H, 2-H, 7-H, 11-H, 12-H, 14-H), 1.52 (s, 3H, 20-H), 1.49 − 1.30 (m, 3H, 3-H, 12-H, 14-H), 1.30 − 1.18 (m, 3H, 5-H, 9-H, 11-H), 1.05 (td, J = 13.4, 4.4 Hz, 1H, 1-H), 0.98 (s, 3H, 17-H), 0.87 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.33 (C-16), 177.27 (C-18), 149.55 (C-23), 144.31 (C-22), 139.08 (C-27), 136.96 (C-21), 136.19 (C-29), 127.35 (C-26), 126.15 (C-25), 120.98 (C-24), 115.24 (C-28), 57.94 (C-5), 54.77 (C-9), 54.19 (C-14), 48.71 (C-13, C-15), 48.43 (C-30), 46.84 (C-4), 45.23 (C-7), 41.61 (C-1), 39.97 (C-8), 39.53 (C-3), 38.27 (C-10), 37.27 (C-12), 30.20 (C-20), 22.46 (C-6), 20.39 (C-11), 19.83 (C-17), 19.80 (C-2), 14.38 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 460 (35%, [M+H-I]+); analysis calcd for C30H39N2O2I (586.56): C 61.43, H 6.70, N 4.78; found: C 61.26, H 6.91, N 4.55.

3.15. 16-Oxo-N-phenyl-stachan-18-amide (12)

Following GPA from 1 (300 mg, 0.94 mmol), aniline (0.35 mL, 3.76 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 12 (237 mg, 64%) was obtained as an off-white solid; m.p. = 65 °C; α D 20 = −57.68° (c = 0.108, MeOH); UV-Vis (MeOH): λmax (log ε) = 238.27 nm (1.23); IR (ATR): ν = 3371w, 2925m, 2847m, 1730s, 1667m, 1595w, 1519w, 1499s, 1434s, 1306m, 1237w, 1150w, 1131w, 1109w, 1028w, 976w, 748s, 691s, 596w, 527m cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.47 − 7.43 (m, 2H, 22-H, 26-H), 7.33 − 7.27 (m, 2H, 23-H, 25-H), 7.12 − 7.07 (m, 1H, 24-H), 6.68 − 6.71 (m, 1H, N-H), 2.63 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.18 (dd, J = 14.6, 2.1 Hz, 1H, 3-H), 2.08 − 2.01 (m, 1H, 6-H), 1.95 − 1.89 (m, 1H, 2-H), 1.86 (dd, J = 12.7, 3.1 Hz, 1H, 6-H), 1.81 (s, 1H, 1-H), 1.80 (d, J = 18.7 Hz, 1H, 15-H), 1.72 (dt, J = 13.6, 3.4 Hz, 1H, 7-H), 1.70 − 1.67 (m, 1H, 11-H), 1.63 − 1.59 (m, 1H, 12-H), 1.57 − 1.47 (m, 3H, 2-H, 7-H, 14-H), 1.41 − 1.37 (m, 1H, 12-H), 1.30 (s, 3H, 20-H), 1.27 − 1.19 (m, 4H, 3-H, 5-H, 9-H, 11-H), 1.03 − 0.99 (m, 1H, 1-H), 0.98 (s, 3H, 17-H), 0.82 (s, 3H,19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.07 (C-16), 174.88 (C-18), 137.82 (C-21), 129.00 (C-23, C-25), 124.35 (C-24), 120.41 (C-22, C-26), 57.69 (C-5), 54.80 (C-9), 54.21 (C-14), 48.69 (C-13), 48.32 (C-15), 44.53 (C-4), 41.69 (C-7), 40.14 (C-1), 39.49 (C-8), 38.27 (C-3), 38.17 (C-10), 37.25 (C-12), 29.91 (C-20), 22.30 (C-6), 20.36 (C-11), 19.84 (C-17), 19.17 (C-2), 13.62 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 392 (100%, [M-H]); analysis calcd for C26H35NO2 (393.57): C 79.35, H 8.96, N 3.56; found: C 79.17, H 9.18, N 3.23.

3.16. N-Benzyl-16-oxostachan-18-amide (13)

Following GPA from 1 (250 mg, 0.78 mmol), benzylamine (0.44 mL, 4.0 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 13 (210 mg, 66%) was obtained as a colorless solid; Rf = 0.28 (SiO2, hexanes/ethyl acetate, 8:2); m.p. = 71 °C; α D 20 = −65.44° (c = 0.122, MeOH); IR (ATR): ν = 3371w, 2925m, 2847m, 1730s, 1667m, 1595w, 1519w, 1499s, 1434s, 1306m, 1237w, 1150w, 1131w, 1109w, 1028w, 976w, 748s, 691s, 596w, 527m cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.36 − 7.26 (m, 5H, 23-H, 24-H, 25-H, 26-H, 27-H), 5.86 (t, J = 5.5 Hz, 1H, N-H), 4.40 (dd, J = 5.5, 1.7 Hz, 2H, 21-H), 2.63 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.06 − 2.00 (m, 1H, 3-H), 1.97 − 1.92 (m, 1H, 6-H), 1.84 − 1.71 (m, 4H, 1-H, 2-H, 6-H, 15-H), 1.69 − 1.63 (m, 2H, 7-H, 11-H), 1.62 − 1.57 (m, 1H, 12-H), 1.54 (dd, J = 11.6, 2.7 Hz, 1H, 14-H), 1.50 − 1.42 (m, 2H, 2-H, 7-H), 1.41 − 1.32 (m, 2H, 12-H, 14-H), 1.21 (s, 3H, 20-H), 1.20 − 1.10 (m, 4H, 3-H, 5-H, 9-H, 11-H), 0.97 (s, 3H, 17-H), 0.96 − 0.89 (m, 1H, 1-H), 0.74 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.50 (C-16), 176.51 (C-18), 138.64 (C-22), 128.85 (C-24, C-26), 128.11 (C-23, C-27), 127.63 (C-25), 57.77 (C-5), 54.89 (C-9), 54.41 (C-14), 48.84 (C-13), 48.52 (C-15), 43.85 (C-4, C-21), 41.84 (C-7), 40.30 (C-1), 39.63 (C-8), 38.27 (C-3), 38.23 (C-10), 37.43 (C-12), 30.34 (C-20), 22.40 (C-6), 20.47 (C-11), 19.99 (C-17), 19.36 (C-2), 13.74 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 408 (100%, [M+H]+), 430 (95%, [M+Na]+), 837 (80%, [2M+Na]+); analysis calcd for C27H37NO2 (407.60): C 79.56, H 9.15, N 3.44; found: C 79.31, H 9.36, N 3.20.

3.17. 16-Oxo-N-(2-phenylethyl)-stachan-18-amide (14)

Following GPA from 1 (500 mg, 1.57 mmol), phenethylamine (0.8 mL, 6.28 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 14 (470 mg, 71%) was obtained as a colorless solid; Rf = 0.18 (SiO2, hexanes/ethyl acetate, 8:2); m.p. = 82 °C; α D 20 = −53.68° (c = 0.106, MeOH); UV-Vis (MeOH): λmax (log ε) = 213.81 nm (3.41); IR (ATR): ν = 3371w, 2925m, 2847m, 1730s, 1667m, 1595w, 1519w, 1499s, 1434s, 1306m, 1237w, 1150w, 1131w, 1109w, 1028w, 976w, 748s, 691s, 596w, 527m cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.34 − 7.07 (m, 5H, 24-H, 25-H, 26-H, 27-H, 28-H), 5.56 (s, 1H, N-H), 3.57 − 3.43 (m, 2H, 21-H), 2.88 − 2.72 (m, 2H, 22-H), 2.55 (dd, J = 18.7, 3.7 Hz, 1H, 15-H), 1.94 (d, J = 14.1 Hz, 1H, 3-H), 1.82 − 1.76 (m, 1H, 6-H), 1.72 (d, J = 18.7 Hz, 1H, 15-H), 1.69 − 1.60 (m, 3H, 1-H, 2-H, 11-H), 1.59 − 1.53 (m, 3H, 6-H, 7-H, 12-H), 1.50 (dd, J = 11.6, 2.7 Hz, 2H, 14-H), 1.41 (dd, J = 13.2, 3.3 Hz, 1H, 7-H), 1.38 − 1.29 (m, 3H, 2-H, 12-H, 14-H), 1.17 (dd, J = 12.9, 5.2 Hz, 1H, 11-H), 1.14 − 1.12 (m, 1H, 9-H), 1.10 (s, 3H, 20-H), 1.06 − 1.02 (m, 2H, 3-H, 5-H), 0.95 (s, 3H, 17-H), 0.85 (td, J = 13.4, 12.0, 6.9 Hz, 1H, 1-H), 0.66 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.36 (C-16), 176.76 (C-18), 139.03 (C-23), 128.80 (C-24, C-25, C-27, C-28), 126.65 (C-26), 57.44 (C-5), 54.78 (C-9), 54.30 (C-14), 48.73 (C-13), 48.54 (C-15), 43.70 (C-4), 41.73 (C-7), 40.52 (C-21), 40.23 (C-1), 39.51 (C-8), 38.17 (C-3), 38.11 (C-10), 37.34 (C-12), 35.25 (C-22), 30.24 (C-20), 22.14 (C-6), 20.37 (C-11), 19.92 (C-17), 19.12 (C-2), 13.52 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 420 (100%, [M-H]); analysis calcd for C28H39NO2 (421.63): C 79.63, H 9.32, N 3.32; found: C 79.41, H 9.57, N 3.01.

3.18. N-(2-Fluorobenzyl)-16-oxostachan-18-amide (15)

Following GPA from 1 (300 mg, 0.94 mmol), 2-fluorobenzylamine (0.32 mL, 2.82 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 15 (368 mg, 92%) was obtained as a colorless solid; Rf = 0.32 (SiO2, hexanes/ethyl acetate, 8:2); m.p. = 60 °C; α D 20 = −51.6° (c = 0.05, MeOH); UV-Vis (MeOH): λmax (log ε) = 238.27 nm (1.23); IR (ATR): ν = 3371w, 2925m, 2847m, 1730s, 1667m, 1595w, 1519w, 1499s, 1434s, 1306m, 1237w, 1150w, 1131w, 1109w, 1028w, 976w, 748s, 691s, 596w, 527m cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.38 − 7.33 (m, 1H, 23-H), 7.28 − 7.22 (m, 1H, 25-H), 7.10 − 7.06 (m, 1H, 24-H), 7.06 − 7.01 (m, 1H, 26-H), 6.00 (t, J = 5.7 Hz, 1H, N-H), 4.46 − 4.37 (m, 2H, 21-H), 2.56 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.06 − 2.01 (m, 1H, 3-H), 1.95 − 1.90 (m, 1H, 6-H), 1.82 − 1.73 (m, 3H, 2-H, 6-H, 15-H), 1.72 − 1.61 (m, 3H, 1-H, 7-H, 11-H), 1.60 − 1.55 (m, 1H, 12-H), 1.52 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.49 − 1.42 (m, 2H, 2-H, 7-H), 1.38 (dd, J = 11.6, 3.9 Hz, 1H, 14-H), 1.35 − 1.30 (m, 1H, 12-H), 1.17 (s, 3H, 20-H), 1.16 − 1.12 (m, 3H, 3-H, 9-H, 11-H), 1.10 (dd, J = 12.2, 2.2 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.94 − 0.85 (m, 1H, 1-H), 0.55 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): 13C NMR (126 MHz, CDCl3): δ = 222.55 (C-16), 176.57 (C-18), 161.36 (d, J = 245.4 Hz, C-27), 131.14 (d, J = 4.4 Hz, C-23), 129.47 (d, J = 8.2 Hz, C-25), 125.37 (d, J = 14.7 Hz, C-22), 124.40 (d, J = 3.8 Hz, C-24), 115.37 (d, J = 21.2 Hz, C-26), 57.71 (C-5), 54.84 (C-9), 54.39 (C-14), 48.83 (C-13), 48.47 (C-15), 43.85 (C-4), 41.82 (C-7), 40.27 (C-1), 39.61 (C-10), 38.20 (C-3), 38.15 (C-8), 38.10 (C-21), 37.43 (C-12), 30.19 (C-20), 22.27 (C-6), 20.44 (C-11), 19.98 (C-17), 19.22 (C-2), 13.27 (C-19) ppm; 19F NMR (470 MHz, CDCl3): δ = −119.37 − 119.47 (m) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 424 (100%, [M-H]); analysis calcd for C27H36FNO2 (425.59): C 76.20, H 8.53, N 3.29; found: C 75.96, H 8.77, N 2.97.

3.19. N-(3-Fluorobenzyl)-16-oxostachan-18-amide (16)

Following GPA from 1 (300 mg, 0.94 mmol), 3-fluorobenzylamine (0.32 mL, 2.82 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 16 (304 mg, 38%) was obtained as a colorless solid; Rf = 0.32 (SiO2, hexanes/ethyl acetate, 8:2); m.p. = 60 °C; α D 20 = −51.6° (c = 0.05, MeOH); UV-Vis (MeOH): λmax (log ε) = 238.27 nm (1.23); IR (ATR): ν = 3371w, 2925m, 2847m, 1730s, 1667m, 1595w, 1519w, 1499s, 1434s, 1306m, 1237w, 1150w, 1131w, 1109w, 1028w, 976w, 748s, 691s, 596w, 527m cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.31 − 7.26 (m, 1H, 24-H), 7.07 − 7.02 (m, 1H, 23-H), 6.99 − 6.92 (m, 2H, 25-H, 27-H), 5.93 (t, J = 5.8 Hz, 1H, N-H), 4.44 − 4.34 (m, 2H, 21-H), 2.61 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.07 − 2.01 (m, 1H, 3-H), 1.97 − 1.92 (m, 1H, 6-H), 1.83 − 1.72 (m, 4H, 1-H, 2-H, 6-H, 15-H), 1.70 − 1.64 (m, 2H, 7-H, 11-H), 1.62 − 1.57 (m, 1H, 12-H), 1.54 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.50 − 1.43 (m, 2H, 2-H, 7-H), 1.40 (dd, J = 11.7, 4.0 Hz, 1H, 14-H), 1.35 (dd, J = 12.6, 5.2 Hz, 1H, 12-H), 1.21 (s, 3H, 3-H, 9-H, 11-H), 1.27 − 1.16 (m, 3H, 20-H), 1.13 (dd, J = 12.3, 2.2 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.95 − 0.88 (m, 1H, 1-H), 0.72 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.44 (C-16), 176.65 (C-18), 164.09 (d, J = 246.4 Hz, C-26), 141.30 (d, J = 7.1 Hz, C-22), 130.33 (d, J = 8.1 Hz, C-24), 123.53 (d, J = 2.9 Hz, C-23), 114.86 (d, J = 21.5 Hz, C-27), 114.47 (d, J = 21.0 Hz, C-25), 57.73 (C-5), 54.88 (C-9), 54.39 (C-14), 48.83 (C-13), 48.50 (C-15), 43.91 (C-4), 43.24 (C-21), 41.82 (C-7), 40.26 (C-1), 39.61 (C-8), 38.25 (C-3), 38.22 (C-10), 37.42 (C-12), 30.33 (C-20), 22.40 (C-6), 20.47 (C-11), 19.98 (C-17), 19.35 (C-2), 13.74 (C-19) ppm; 19F NMR (470 MHz, CDCl3): δ = -112.73 (td, J = 9.2, 5.9 Hz) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 424 (100%, [M-H]); analysis calcd for C27H36FNO2 (425.59): C 76.20, H 8.53, N 3.29; found: C 75.86, H 8.71, N 3.11.

3.20. N-(4-Fluorobenzyl)-16-oxostachan-18-amide (17)

Following GPA from 1 (250 mg, 0.78 mmol), 4-fluoro-benzylamine (0.27 mL, 2.34 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 17 (302 mg, 91%) was obtained as a colorless solid; Rf = 0.2 (SiO2, hexanes/ethyl acetate, 8:2); m.p. = 62 °C; α D 20 = −87.89° (c = 0.09, MeOH); UV-Vis (MeOH): λmax (log ε) = 211 nm (3.10); IR (ATR): ν = 3371w, 2925m, 2847m, 1730s, 1667m, 1595w, 1519w, 1499s, 1434s, 1306m, 1237w, 1150w, 1131w, 1109w, 1028w, 976w, 748s, 691s, 596w, 527m cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.27 − 7.20 (m, 2H, 23-H, 27-H), 7.05 − 6.93 (m, 2H, 24-H, 26-H), 5.88 (t, J = 5.7 Hz, 1H, N-H), 4.43 − 4.29 (m, 2H, 21-H), 2.62 (dd, J = 18.6, 3.7 Hz, 1H, 15-H), 2.06 − 1.98 (m, 1H, 3-H), 1.98 − 1.90 (m, 1H, 6-H), 1.83 − 1.63 (m, 6H, 1-H, 2-H, 6-H, 7-H, 11-H, 15-H), 1.62 − 1.57 (m, 1H, 12-H), 1.54 (dd, J = 11.6, 2.7 Hz, 1H, 14-H), 1.50 − 1.31 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.28 − 1.21 (m, 2H, 3-H, 11-H), 1.20 (s, 3H, 20-H), 1.18 (s, 1H, 9-H), 1.13 (dd, J = 12.1, 2.2 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.90 (dd, J = 13.8, 3.9 Hz, 1H, 1-H), 0.72 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.45 (C-16), 176.55 (C-18), 162.28 (d, J = 245.7 Hz, C-25), 134.50 (d, J = 3.0 Hz, C-22), 129.76 (d, J = 7.6 Hz, C-23, C-27), 115.66 (d, J = 21.4 Hz, C-24, C-26), 57.74 (C-5), 54.86 (C-9), 54.39 (C-14), 48.82 (C-13), 48.51 (C-15), 43.86 (C-4), 43.06 (C-21), 41.82 (C-7), 40.27 (C-1), 39.62 (C-8), 38.23 (C-3, C-10), 37.41 (C-12), 30.31 (C-20), 22.38 (C-6), 20.47 (C-11), 19.97 (C-17), 19.34 (C-2), 13.75 (C-19) ppm; 19F NMR (470 MHz, CDCl3): δ = -114.97 (ddd, J = 14.0, 8.8, 5.2 Hz) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 424 (100%, [M-H]); analysis calcd for C27H36FNO2 (425.59): C 76.20, H 8.53, N 3.29; found: C 75.87, H 8.76, N 3.03.

3.21. N-(2-Methylbenzyl)-16-oxostachan-18-amide (18)

Following GPA from 1 (465 mg, 1.46 mmol), 2-methyl-benzylamine (0.75 mL, 5.8 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 18 (425 mg, 69%) was obtained as a colorless solid; Rf = 0.87 (SiO2, CHCl3/MeOH, 9:1); m.p. = 75 °C; α D 20 = −57.17° (c = 0.16, CHCl3); IR (ATR): ν = 3391w, 2924m, 2847m, 1732m, 1644m, 1511m, 1454m, 1238w, 1189w, 1109w, 1005w, 976w, 740s, 695w, 665w, 589w, 506w, 456w, 430w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.25 − 7.09 (m, 4H, 23-H, 24-H, 25-H, 26-H), 5.67 (t, J = 5.2 Hz, 1H, N-H), 4.46 − 4.32 (m, 2H, 21-H), 2.63 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.33 (s, 3H, 28-H), 2.07 − 1.98 (m, 1H, 3-H), 1.98 − 1.90 (m, 1H, 6-H), 1.85 − 1.56 (m, 7H, 1-H, 2-H, 6-H, 7-H, 11-H, 12-H, 15-H), 1.54 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.50 − 1.32 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.21 (s, 3H, 20-H), 1.19 (s, 3H, 3-H, 9-H, 11-H), 1.13 (dd, J = 12.1, 2.1 Hz, 1H, 5-H), 0.97 (s, 3H, 17-H), 0.95 − 0.89 (m, 1H, 1-H), 0.76 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.49 (C-16), 176.46 (C-18), 136.58 (C-22), 136.19 (C-27), 130.73 (C-26), 128.97 (C-23), 127.93 (C-25), 126.38 (C-24), 57.81 (C-5), 54.91 (C-9), 54.43 (C-14), 48.85 (C-13), 48.53 (C-15), 43.93 (C-4), 42.01 (C-21), 41.86 (C-7), 40.33 (C-1), 39.64 (C-8), 38.28 (C-3), 38.22 (C-10), 37.45 (C-12), 30.39 (C-20), 22.39 (C-6), 20.49 (C-11), 20.00 (C-17), 19.39 (C-2), 19.20 (C-28), 13.73 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 420 (100%, [M-H]); analysis calcd for C28H39NO2 (421.63): C 79.76, H 9.32, N 3.32; found: C 79.51, H 9.48, N 3.09.

3.22. N-(3-Methylbenzyl)-16-oxostachan-18-amide (19)

Following GPA from 1 (418 mg, 1.31 mmol), 3-methyl-benzylamine (0.66 mL, 3.24 mmol) and chromatography (SiO2, CHCl3/MeOH, 9:1), 19 (453 mg, 82%) was obtained as a colorless solid; Rf = 0.76 (SiO2, CHCl3/MeOH, 9:1); m.p. = 74.5 °C; α D 20 = −62.8° (c = 0.12, CHCl3); IR (ATR): ν = 3389w, 2923m, 2847m, 1733s, 1641s, 1609w, 1513s, 1453s, 1402w, 1374w, 1352w, 1316w, 1239m, 1187w, 1134w, 1109w, 1088w, 1028w, 1012w, 976w, 928w, 875w, 754m, 697m, 665w, 589w, 569w, 507w, 455w cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.26 − 6.98 (m, 4H, 23-H, 24-H, 25-H, 27-H), 5.82 (t, J = 5.5 Hz, 1H, N-H), 4.41 − 4.31 (m, 2H, 21-H), 2.63 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.34 (s, 3H, 28-H), 2.07 − 1.99 (m, 1H, 6-H), 1.99 − 1.91 (m, 1H, 3-H), 1.87 − 1.57 (m, 7H, 1-H, 2-H, 6-H, 7-H, 11-H, 12-H, 15-H), 1.54 (dd, J = 11.6, 2.7 Hz, 1H, 14-H), 1.52 − 1.32 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.21 (s, 3H, 20-H), 1.31 − 1.13 (m, 3H, 3-H, 9-H, 11-H), 1.13 (dd, J = 12.1, 2.3 Hz, 1H, 5-H), 0.97 (s, 3H, 17-H), 0.95 − 0.87 (m, 1H, 1-H), 0.76 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.49 (C-16), 176.47 (C-18), 138.59 (C-22), 138.55 (C-26), 128.94 (C-24), 128.77 (C-27), 128.36 (C-25), 125.06 (C-23), 57.79 (C-5), 54.92 (C-9), 54.44 (C-14), 48.85 (C-13), 48.54 (C-15), 43.86 (C-21), 43.83 (C-4), 41.87 (C-7), 40.33 (C-1), 39.64 (C-10), 38.29 (C-3), 38.25 (C-8), 37.45 (C-12), 30.36 (C-20), 22.42 (C-6), 21.54 (C-28), 20.49 (C-11), 20.00 (C-17), 19.37 (C-2), 13.74 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 420 (100%, [M-H]); analysis calcd for C28H39NO2 (421.63): C 79.76, H 9.32, N 3.32; found: C 79.58, H 9.47, N 3.14.

3.23. N-(4-Methylbenzyl)-16-oxostachan-18-amide (20)

Following GPA from 1 (460 mg, 1.44 mmol), 4-methyl-benzylamine (0.74 mL, 5.8 mmol), and chromatography (SiO2, CHCl3/MeOH, 9:1), 20 (510 mg, 84%) was obtained as a colorless solid; Rf = 0.8 (SiO2, CHCl3/MeOH, 9:1); m.p. = 76 °C; α D 20 = −71.55° (c = 0.06, CHCl3); IR (ATR): ν = 3388w, 2923m, 2847m, 1734s, 1642s, 1514s, 1453s, 1318w, 1240m, 1182m, 1109w, 1008w, 976w, 814w, 749m, 695w, 586w, 506w, 473m cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.20 − 7.06 (m, 4H, 23-H, 24-H, 26-H, 27-H), 5.80 (t, J = 5.5 Hz, 1H, N-H), 4.44 − 4.30 (m, 2H, 21-H), 2.64 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.34 (s, 3H, 28-H), 2.08 − 1.99 (m, 1H, 3-H), 1.99 − 1.90 (m, 1H, 6-H), 1.85 − 1.70 (m, 4H, 1-H, 2-H, 6-H, 15-H), 1.67 (dt, J = 13.2, 3.4 Hz, 2H, 7-H, 11-H), 1.63 − 1.57 (m, 1H, 12-H), 1.54 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.50 − 1.31 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.21 (s, 3H, 20-H), 1.29 − 1.13 (m, 3H, 3-H, 9-H, 11-H), 1.13 (dd, J = 12.1, 2.1 Hz, 1H, 5-H), 0.97 (s, 3H, 17-H), 0.92 (td, J = 13.2, 4.5 Hz, 1H, 1-H), 0.76 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.53 (C-16), 176.44 (C-18), 137.34 (C-22), 135.59 (C-25), 129.54 (C-24, C-26), 128.12 (C-23, C-27), 57.79 (C-5), 54.91 (C-9), 54.44 (C-14), 48.86 (C-13), 48.54 (C-15), 43.84 (C-4), 43.63 (C-21), 41.87 (C-7), 40.33 (C-1), 39.65 (C-8), 38.28 (C-3), 38.25 (C-10), 37.46 (C-12), 30.35 (C-20), 22.41 (C-6), 21.25 (C-28), 20.49 (C-11), 20.00 (C-17), 19.38 (C-2), 13.77 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 420 (100%, [M-H]); analysis calcd for C28H39NO2 (421.63): C 79.63, H 9.32, N 3.32; found: C 79.42, H 9.50, N 3.06.

3.24. N-(2-Methoxybenzyl)-16-oxostachan-18-amide (21)

Following GPA from 1 (460 mg, 1.44 mmol), 2-methoxy-benzylamine (0.75 mL, 5.76 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 21 (529 mg, 84%) was obtained as a colorless solid; Rf = 0.87 (SiO2, CHCl3/MeOH, 9:1); m.p. = 56 °C; α D 20 = −64.66° (c = 0.115, MeOH); UV-Vis (MeOH): λmax (log ε) = 270 nm (0.09); IR (ATR): ν = 3392w, 2924m, 2846m, 1734s, 1648m, 1602w, 1492s, 1457m, 1401w, 1370w, 1317w, 1289w, 1240s, 1171w, 1112m, 1043w, 1028m, 976w, 929w, 855w, 815w, 750s, 696w, 665w, 615w, 586w, 531w, 507w, 490w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.30 − 7.19 (m, 2H, 23-H, 25-H), 6.95 − 6.83 (m, 2H, 24-H, 26-H), 6.21 (t, J = 5.7 Hz, 1H, N-H), 4.40 − 4.33 (m, 2H, 21-H), 3.85 (s, 3H, 28-H), 2.54 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.08 − 1.98 (m, 1H, 3-H), 1.96 − 1.89 (m, 1H, 6-H), 1.81 − 1.59 (m, 6H, 1-H, 2-H, 6-H, 7-H, 11-H, 15-H), 1.59 − 1.54 (m, 1H, 12-H), 1.53 − 1.49 (m, 1H, 14-H), 1.49 − 1.29 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.16 (s, 3H, 20-H), 1.15 − 1.10 (m, 3H, 3-H, 9-H, 11-H), 1.09 − 1.05 (m, 1H, 5-H), 0.95 (s, 3H, 17-H), 0.88 (td, J = 13.1, 4.4 Hz, 1H, 1-H), 0.51 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.51 (C-16), 176.27 (C-18), 157.63 (C-27), 130.56 (C-25), 129.00 (C-23), 126.30 (C-22), 120.87 (C-24), 110.21 (C-26), 57.72 (C-5), 55.30 (C-28), 54.83 (C-9), 54.39 (C-14), 48.80 (C-13), 48.51 (C-15), 43.74 (C-4), 41.90 (C-7), 40.32 (C-1), 40.00 (C-21), 39.57 (C-8), 38.19 (C-3), 38.11 (C-10), 37.41 (C-12), 30.19 (C-20), 22.18 (C-6), 20.41 (C-11), 19.97 (C-17), 19.08 (C-2), 13.07 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 438 (90%, [M+H]+), 897 (100%, [2M+Na]+); analysis calcd for C28H39NO3 (437.62): C 76.85, H 8.98, N 3.20; found: C 76.60, H 9.22, N 2.97.

3.25. N-(3-Methoxybenzyl)-16-oxostachan-18-amide (22)

Following GPA from 1 (500 mg, 1.57 mmol), 3-methoxy-benzylamine (0.82 mL, 6.28 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 22 (498 mg, 71%) was obtained as a colorless solid; Rf = 0.89 (SiO2, CHCl3/MeOH, 9:1); m.p. = 58.5 °C; α D 20 = −56.57° (c = 0.069, MeOH); UV-Vis (MeOH): λmax (log ε) = 273 nm (0.17); IR (ATR): ν = 3390w, 2925m, 2846m, 1733s, 1650m, 1601m, 1586m, 1507s, 1489s, 1454s, 1352w, 1316w, 1262s, 1189w, 1151m, 1110w, 1087w, 1043m, 1008w, 976w, 874w, 854w, 776m, 738m, 694m, 569w, 554w, 507w, 465w cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.28 − 7.21 (m, 1H, 24-H), 6.90 − 6.79 (m, 3H, 23-H, 25-H, 27-H), 5.85 (t, J = 5.6 Hz, 1H, N-H), 4.42 − 4.29 (m, 2H, 21-H), 3.79 (s, 3H, 28-H), 2.63 (dd, J = 18.6, 3.8 Hz, 1H, 15-H), 2.07 − 1.99 (m, 1H, 3-H), 1.99 − 1.91 (m, 1H, 6-H), 1.87 − 1.64 (m, 6H, 1-H, 2-H, 6-H, 7-H, 11-H, 15-H), 1.63 − 1.57 (m, 1H, 12-H), 1.54 (dd, J = 11.6, 2.7 Hz, 1H, 14-H), 1.51 − 1.31 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.22 (s, 3H, 20-H), 1.19 (s, 3H, 3-H, 9-H, 11-H), 1.13 (m, 1H, 5-H), 0.97 (s, 3H, 17-H), 0.94 − 0.88 (m, 1H, 1-H), 0.76 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.48 (C-16), 176.50 (C-18), 160.04 (C-26), 140.26 (C-22), 129.89 (C-24), 120.27 (C-23), 113.62 (C-25), 113.10 (C-27), 57.77 (C-5), 55.41 (C-28), 54.91 (C-9), 54.42 (C-14), 48.84 (C-13), 48.53 (C-15), 43.89 (C-4), 43.77 (C-21), 41.85 (C-7), 40.32 (C-1), 39.63 (C-8), 38.28 (C-3), 38.24 (C-10), 37.44 (C-12), 30.36 (C-20), 22.41 (C-6), 20.48 (C-11), 19.99 (C-17), 19.37 (C-2), 13.77 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 436 (100%, [M-H]); analysis calcd for C28H39NO3 (437.62): C 76.85, H 8.98, N 3.20; found: C 76.58, H 9.13, N 3.07.

3.26. N-(4-Methoxybenzyl)-16-oxostachan-18-amide (23)

Following GPA from 1 (500 mg, 1.57 mmol), 3-methoxy-benzylamine (0.61 mL, 4.71 mmol), and chromatography (SiO2, hexanes/ethyl acetate, 95:5), 23 (618 mg, 90%) was obtained as a colorless solid; Rf = 0.9 (SiO2, CHCl3/MeOH, 9:1); m.p. = 59 °C; α D 20 = −59.89° (c = 0.1, MeOH); UV-Vis (MeOH): λmax (log ε) = 224 nm (0.66); IR (ATR): ν = 3396w, 2925m, 2846m, 1733m, 1642m, 1612w, 1511s, 1453m, 1356w, 1317w, 1301w, 1245s, 1179m, 1159w, 1109w, 1087w, 1032m, 976w, 929w, 828m, 751m, 696w, 665w, 588w, 563w, 508m, 415w cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.20 − 7.13 (m, 2H, 23-H, 27-H), 6.88 − 6.82 (m, 2H, 24-H, 26-H), 5.79 (t, J = 5.0 Hz, 1H, N-H), 4.40 − 4.26 (m, 2H, 21-H), 3.80 (s, 3H, 28-H), 2.63 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.05 − 1.98 (m, 1H, 3-H), 1.98 − 1.91 (m, 1H, 6-H), 1.85 − 1.64 (m, 6H, 1-H, 2-H, 6-H, 7-H, 11-H, 15-H), 1.63 − 1.57 (m, 1H, 12-H), 1.54 (dd, J = 11.6, 2.7 Hz, 1H, 14-H), 1.42 (m, 4H, 2-H, 7-H, 12-H, 14-H), 1.29 − 1.13 (m, 3H, 3-H, 9-H, 11-H), 1.20 (s, 3H, 20-H), 1.12 (m, 1H, 5-H), 0.97 (s, 3H, 17-H), 0.95 − 0.86 (m, 1H, 1-H), 0.75 (s, 3H, 19-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 222.53 (C-16), 176.41 (C-18), 159.16 (C-25), 130.71 (C-22), 129.44 (C-23, C-27), 114.24 (C-24, C-26), 57.78 (C-5), 55.44 (C-28), 54.89 (C-9), 54.42 (C-14), 48.85 (C-13), 48.53 (C-15), 43.82 (C-4), 43.31 (C-21), 41.85 (C-7), 40.3(C-1), 39.64 (C-8) 38.24 (C-3, C-10), 37.45 (C-12), 30.33 (C-20), 22.40 (C-6), 20.48 (C-11), 19.99 (C-17), 19.36 (C-2), 13.76 (C-19) ppm; MS (ESI, MeOH/CHCl3 4:1): m/z (%) = 436 (100%, [M-H]); analysis calcd for C28H39NO3 (437.62): C 76.85, H 8.98, N 3.20; found: C 76.63, H 9.17, N 3.01.

3.27. 18-Oxo-18-piperazin-1-yl-stachan-16-one (24)

Following GPA from 1 (2.0 g, 6.28 mmol), piperazine (3.1 g, 36 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 24 (2.28 g, 94%) was obtained as a colorless solid; Rf = 0.5 (SiO2, CHCl3/MeOH, 9:1); m.p. = 137 °C; α D 20 = −26.12° (c = 0.117, CHCl3); IR (ATR): ν = 2855w, 1726s, 1640s, 1453m, 1397m, 1328w, 1313w, 1252w, 1220w, 1177m, 1142w, 1108w, 1056w, 1030m, 978w, 796m, 590w, 556w, 519w, 505w cm−1; 1H NMR (500 MHz, CDCl3): δ = 4.28 (s, 1H, N-H), 3.72 − 3.57 (m, 4H, 21-H, 24-H), 2.99 − 2.86 (m, 4H, 22-H, 23-H), 2.72 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.28 (dd, J = 14.2, 3.7 Hz, 1H, 3-H), 2.16 − 2.04 (m, 1H, 6-H), 1.83 − 1.75 (m, 2H, 6-H, 15-H), 1.71 − 1.62 (m, 3H, 1-H, 7-H, 11-H), 1.61 − 1.57 (m, 1H, 12-H), 1.55 (s, 1H, 2-H), 1.53 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.45 (dt, J = 6.4, 2.8 Hz, 1H, 2-H), 1.41 (dd, J = 11.3, 3.7 Hz, 1H, 7-H), 1.42 − 1.36 (m, 1H, 14-H), 1.34 (dd, J = 12.3, 5.2 Hz, 1H, 12-H), 1.28 (s, 3H, 20-H), 1.24 (td, J = 12.9, 4.9 Hz, 1H, 11-H), 1.20 − 1.11 (m, 2H, 3-H, 9-H), 1.01 (dd, J = 11.8, 1.8 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.91 (td, J = 13.2, 4.3 Hz, 1H, 1-H), 0.82 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.79 (C-16), 176.61 (C-18), 61.99 (C-5), 56.23 (C-9), 54.57 (C-14), 48.84 (C-13), 48.68 (C-15), 46.96 (C-22), 46.28 (C-4), 46.13 (C-21), 45.88 (C-25), 45.59 (C-24), 42.60 (C-7), 40.90 (C-1), 39.81 (C-3), 39.78 (C-8), 38.73 (C-10), 37.49 (C-12), 28.14 (C-20), 22.64 (C-6), 20.54 (C-11), 20.02 (C-17), 19.99 (C-2), 16.19 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 387 (100%, [M+H]+), 795 (30%, [2M+Na]+); analysis calcd for C24H38N2O2 (386.58): C 74.57, H 9.91, N 7.23; found: C 74.41, H 10.08, N 7.02.

3.28. 18-(1,4-Diazepan-1-yl)-18-oxostachan-16-one (25)

Following GPA from 1 (2.0 g, 6.28 mmol), homopiperazine (2.52 g, 36 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 25 (1.78 g, 71%) was obtained as a colorless solid; Rf = 0.4 (SiO2, CHCl3/MeOH, 9:1); m.p. = 162 °C; α D 20 = −17.37° (c = 0.019, CHCl3); IR (ATR): ν = 2922m, 1735s, 1628s, 1458m, 1401m, 1172m cm−1; 1H NMR (500 MHz, CDCl3): δ = 5.29 (s, 1H, N-H), 3.74 − 3.57 (m, 4H, 21-H, 25-H), 3.14 − 2.86 (m, 4H, 22-H, 23-H), 2.76 − 2.64 (m, 1H, 15-H), 2.34 (td, J = 14.5, 3.5 Hz, 1H, 3-H), 2.18 − 2.08 (m, 1H, 6-H), 1.97 (ttt, J = 12.8, 8.9, 4.0 Hz, 2H, 24-H), 1.87 − 1.75 (m, 2H, 6-H, 15-H), 1.73 − 1.56 (m, 5H, 1-H, 2-H, 7-H, 11-H, 12-H), 1.53 (dd, J = 11.5, 2.7 Hz, 1H, 14-H), 1.50 − 1.32 (m, 4H, 2-H, 7-H, 11-H, 12.H), 1.29 (s, 3H, 20-H), 1.28 − 1.10 (m, 3H, 3-H, 9-H, 11-H), 1.01 (dd, J = 11.8, 1.9 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.95 − 0.90 (m, 1H, 1-H), 0.83 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.84 (C-16), 176.77 (C-18), 62.63 (C-5), 56.25 (C-9), 54.58 (C-14), 50.16 (C-26), 48.85 (C-13), 48.72 (C-22), 48.66 (C-15), 47.91 (C-21), 46.85 (C-4), 46.61 (C-23), 42.66 (C-7), 41.06 (C-1), 39.85 (C-3), 39.49 (C-8), 38.78 (C-10), 37.51 (C-12), 28.79 (C-25), 28.35 (C-20), 22.89 (C-6), 20.58 (C-11), 20.17 (C-17), 20.03 (C-2), 16.22 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 401 (100%, [M+H]+); analysis calcd for C25H40N2O2 (400.61): C 74.96, H 10.06, N 6.99; found: C 74.70, H 10.24, N 6.72.

3.29. 18-Morpholin-4-yl-18-oxostachan-16-one (26)

Following GPA from 1 (270 mg, 0.85 mmol), morpholine (0.44 mL, 5.1 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 26 (247 mg, 75%) was obtained as a colorless solid; Rf = 0.51 (SiO2, CHCl3/MeOH, 9:1); m.p. = 155 °C; α D 20 = −27.15° (c = 0.11, CHCl3); IR (ATR): ν = 2922m, 2850m, 1733s, 1644m, 1452m, 1389m, 1373m, 1264m, 1224m, 1174m, 1111s, 1068w, 1027m, 977w, 928w, 892w, 844w, 752w, 694w, 605w, 508w cm−1; 1H NMR (500 MHz, CDCl3): δ = 3.75 − 3.48 (m, 8H, 21-H, 22-H, 23-H, 24-H), 2.73 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.29 (dt, J = 15.1, 3.5 Hz, 1H, 3-H), 2.10 (td, J = 13.9, 3.2 Hz, 1H, 6-H), 1.91 − 1.76 (m, 2H, 6-H, 15-H), 1.71 − 1.62 (m, 3H, 1-H, 7-H, 11-H), 1.62 − 1.56 (m, 2H, 2-H, 12-H), 1.53 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.49 − 1.41 (m, 2H, 2-H, 7-H), 1.41 − 1.32 (m, 2H, 12-H, 14-H), 1.28 (s, 3H, 20-H), 1.24 (s, 1H, 11-H), 1.21 − 1.15 (m, 2H, 3-H, 9-H), 1.01 (dd, J = 11.8, 1.9 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.94 − 0.88 (m, 1H, 1-H), 0.84 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.80 (C-16), 176.63 (C-18), 67.11 (C-22, C-23), 61.96 (C-5), 56.23 (C-9), 54.59 (C-14), 48.85 (C-13), 48.68 (C-15), 46.84 (C-21, C-24), 46.27 (C-4), 42.61 (C-7), 40.93 (C-1), 39.82 (C-8), 39.76 (C-3), 38.73 (C-10), 37.50 (C-12), 28.15 (C-20), 22.67 (C-6), 20.56 (C-11), 20.02 (C-17), 19.98 (C-2), 16.17 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 388 (100%, [M+H]+); analysis calcd for C24H37NO3 (387.56): C 74.77, H 9.79, N 3.49; found: C 74.50, H 9.97, N 3.28.

3.30. 18-(1,4-Oxazepan-4-yl)-18-oxostachan-16-one (27)

Following GPA from 1 (250 mg, 0.785 mmol), homomorpholine (166 mg, 1.21 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 27 (195 mg, 62%) was obtained as a colorless solid; Rf = 0.65 (SiO2, CHCl3/MeOH, 9:1); m.p. = 229 °C; α D 20 = −11.26° (c = 0.091, CHCl3); IR (ATR): ν = 2922m, 2845m, 1736s, 1626s, 1459m, 1404w, 1363w, 1252w, 1219w, 1183w, 1123s, 1013w, 976w, 963w, 931w, 849w, 751w, 696w, 574w, 507w cm−1; 1H NMR (500 MHz, CDCl3): δ = 3.85 − 3.56 (m, 8H, 21-H, 22-H, 23-H, 25-H), 2.71 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.49 − 2.41 (m, 1H, 3-H), 2.34 (ddt, J = 14.4, 4.1, 2.1 Hz, 1H, 6-H), 2.23 − 2.10 (m, 1H, 24-H), 1.99 − 1.88 (m, 1H, 24-H), 1.87 − 1.81 (m, 1H, 6-H), 1.78 (d, J = 18.8 Hz, 1H, 15-H), 1.73 − 1.56 (m, 5H, 1-H, 2-H, 7-H, 11-H, 12-H), 1.53 (dd, J = 11.7, 2.6 Hz, 1H, 14-H), 1.50 − 1.42 (m, 1H, 2-H), 1.42 − 1.31 (m, 3H, 7-H, 12-H, 14-H), 1.29 (s, 3H, 20-H), 1.26 (s, 1H, 11-H), 1.21 − 1.09 (m, 2H, 3-H, 9-H), 1.01 (dd, J = 11.8, 1.9 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.94 (s, 1H, 1-H), 0.84 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.87 (C-16), 176.64 (C-18), 71.05 (C-23), 69.63 (C-22), 62.68 (C-5), 56.26 (C-9), 54.61 (C-14), 51.89 (C-25), 48.85 (C-13), 48.67 (C-15), 47.80 (C-21), 46.85 (C-4), 42.69 (C-7), 41.14 (C-1), 39.86 (C-8), 39.59 (C-3), 38.80 (C-10),37.53 (C-12), 30.51 (C-24), 28.39 (C-20), 22.93 (C-6), 20.59 (C-11), 20.15 (C-2), 20.04 (C-17), 19.90, 16.22 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 402 (85%, [M+H] +), 425 (80%, [M+Na]+), 826 (100%, [2M+H]+); analysis calcd for C25H39NO3 (401.59): C 74.77, H 9.79, N 3.49; found: C 74.47, H 9.97, N 3.29.

3.31. 18-Oxo-18-thiomorpholin-4-yl-stachan-16-one (28)

Following GPA from 1 (270 mg, 0.85 mmol), thiomorpholine (0.52 mL, 5.1 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 28 (198 mg, 58%) was obtained as a colorless solid; Rf = 0.86 (SiO2, CHCl3/MeOH, 9:1); m.p. = 137 °C; α D 20 = −31.96° (c = 0.148, CHCl3); IR (ATR): ν = 2921m, 2844m, 1736s, 1639s, 1459m, 1393m, 1359m, 1274w, 1243w, 1215w, 1160s, 1112w, 1025w, 959s, 848w, 758w, 695w, 604w, 496w cm−1; 1H NMR (500 MHz, CDCl3): δ = 3.89 − 3.75 (m, 4H, 21-H, 24-H), 2.72 (dd, J = 18.7, 3.8 Hz, 1H, 15-H), 2.68 − 2.50 (m, 4H, 22-H, 23-H), 2.28 (dt, J = 14.0, 3.0 Hz, 1H, 3-H), 2.19 − 2.06 (m, 1H, 6-H), 1.79 (d, J = 18.8 Hz, 1H, 15-H), 1.78 (s, 1H, 6-H), 1.71 (dt, J = 18.8, 2.3 Hz, 1H, 1-H), 1.68 − 1.63 (m, 2H, 7-H, 11-H), 1.63 − 1.56 (m, 1H, 12-H), 1.53 (dd, J = 11.5, 2.8 Hz, 1H, 14-H), 1.54 − 1.44 (m, 1H, 2-H), 1.47 − 1.38 (m, 2H, 7-H, 14-H), 1.37 − 1.32 (m, 1H, 12-H), 1.29 (s, 3H, 20-H), 1.28 − 1.23 (m, 1H, 11-H), 1.17 (dd, J = 11.5, 3.5 Hz, 2H, 9-H), 1.13 (d, J = 3.2 Hz, 1H, 3-H), 1.00 (dd, J = 11.7, 1.6 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.92 (td, J = 13.1, 4.3 Hz, 1H, 1-H), 0.82 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.84 (C-16), 176.56 (C-18), 62.37 (C-5), 56.31 (C-9), 54.60 (C-14), 48.92 (C-21, C-24), 48.86 (C-13), 48.68 (C-15), 46.46 (C-4), 42.68 (C-7), 41.02 (C-1), 39.85 (C-8), 39.63 (C-3), 38.76 (C-10), 37.51 (C-12), 28.23 (C-20), 27.67 (C-22, C-23), 22.71 (C-6), 20.56 (C-11), 20.07 (C-2), 20.03 (C-17), 16.31 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 404 (100%, [M+H]+); analysis calcd for C24H37NSO2 (403.63): C 71.42, H 9.24, N 3.47; found: C 71.25, H 9.40, N 3.28.

3.32. 18-Oxo-18-(1,4-thiazepan-4-yl)-stachan-16-one (29)

Following GPA from 1 (270 mg, 0.85 mmol), homothiomorpholine (194 mg, 1.27 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 29 (245 mg, 69%) was obtained as a colorless solid; Rf = 0.5 (SiO2, CHCl3/MeOH, 9:1); m.p. = 198 °C; α D 20 = −18.43° (c = 0.1, CHCl3); IR (ATR): ν = 2920m, 2843m, 1737s, 1624s, 1462m, 1401m, 1358m, 1274w, 1162m, 1111w, 975w, 881m, 753w, 489w cm−1; 1H NMR (500 MHz, CDCl3): δ = 4.00 (ddd, J = 14.3, 5.5, 4.1 Hz, 1H, 25-H), 3.81 (dt, J = 14.4, 5.3 Hz, 1H, 21-H), 3.65 − 3.52 (m, 2H, 21-H, 25-H), 2.86 − 2.67 (m, 4H, 15-H, 22-H, 24-H), 2.61 (ddd, J = 14.7, 9.4, 5.1 Hz, 1H, 22-H), 2.32 (dt, J = 12.8, 2.7 Hz, 1H, 3-H), 2.22 − 2.12 (m, 1H, 6-H), 2.11 − 2.04 (m, 1H, 23-H), 2.00 − 1.90 (m, 1H, 23-H), 1.84 (dt, J = 13.7, 2.9 Hz, 1H, 6-H), 1.79 (d, J = 18.7 Hz, 1H, 15-H), 1.76 − 1.69 (m, 1H, 1-H), 1.69 − 1.55 (m, 4H, 2-H, 7-H, 11-H, 12-H), 1.53 (dd, J = 11.6, 2.8 Hz, 1H, 14-H), 1.50 − 1.46 (m, 1H, 2-H), 1.45 -1.34 (m, 2H, 7-H, 14-H), 1.36 − 1.21 (m, 2H, 11-H, 12-H), 1.29 (s, 3H, 20-H), 1.21 − 1.13 (m, 2H, 3-H, 9-H), 1.00 (dd, J = 11.8, 1.9 Hz, 1H, 5-H), 0.96 (s, 3H, 17-H), 0.93 (d, J = 4.2 Hz, 1H, 1-H), 0.86 − 0.83 (m, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.91 (C-16), 176.43 (C-18), 62.82 (C-5), 56.25 (C-9), 54.61 (C-14), 53.95 (C-25), 49.50 (C-21), 48.88 (C-15), 48.68 (C-13), 47.01 (C-4), 42.73 (C-7), 41.16 (C-1), 39.89 (C-8), 39.27 (C-3), 38.82 (C-10), 37.55 (C-12), 34.32 (C-24), 31.88 (C-22), 30.37 (C-23), 28.55 (C-20), 22.98 (C-6), 20.62 (C-11), 20.45 (C-2), 20.06 (C-17), 16.23 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 419 (100%, [M+H]+), 859 (67%, [2M+Na]+); analysis calcd for C25H39NSO2 (417.65): C 71.90, H 9.41, N 3.35; found: C 71.70, H 9.65, N 3.16.

3.33. N-(2-Aminoethyl)-16-oxostachan-18-amide (30)

Following GPA from 1 (270 mg, 0.85 mmol), ethylenediamine (0.34 mL, 5.1 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 30 (270 mg, 88%) was obtained as a colorless solid; Rf = 0.25 (SiO2, CHCl3/MeOH, 9:1); m.p. = 105 °C; α D 20 = −71.24° (c = 0.121, CHCl3); IR (ATR): ν = 2924s, 1735s, 1637s, 1516s, 1453s cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.21 − 8.16 (m, 1H, NH), 6.75 − 6.70 (m, 2H, NH2), 3.57 − 3.27 (m, 2H, 22-H), 3.23 (s, 2H, 21-H), 2.66 − 2.55 (m, 1H, 15-H), 2.18 − 2.09 (m, 1H, 3-H,), 2.05 (d, J = 16.2 Hz, 1H, 6-H), 1.80 − 1.64 (m, 5H, 1-H, 2-H, 7-H, 11-H, 12-H), 1.46 − 1.45 (dd, 1H, 14-H), 1.36 − 1.22 (m, 4H, 2-H, 7-H, 11-H, 12-H), 1.17 (s, 3H, 20-H), 1.15 (m, 1H, 9-H, 11-H), 1.12 − 1.06 (m, 1H, 5-H), 0.96 (d, J = 1.4 Hz, 3H, 17-H), 0.91 − 0.82 (m, 1H, 1-H), 0.80 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.57 (C-16), 178.63 (C-18), 139.92 (C-22), 106.67 (C-23), 57.48 (C-5), 55.57 (C-9), 54.76 (C-14), 50.06 (C-13), 48.70 (C-15), 48.47 (C-4), 43.84 (C-7), 40.16 (C-1), 40.09 (C-3), 39.51 (C-8), 38.17 (C-10), 37.29 (C-12), 29.96 (C-20), 22.12 (C-6), 20.33 (C-11), 19.83 (C-17), 19.13 (C-2), 13.54 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 359 (100%, [M-H]); analysis calcd for C22H36N2O2 (360.54): C 73.29, H 10.06, N 7.77; found: C 72.96, H 10.30, N 7.49.

3.34. 18-(4-{2-[3,6-Bis(diethylamino)xanthenium-9-yl]-benzoyl}-piperazin-1-yl)-18-oxostachan-16-one Chloride (31)

Following GPC from 24 (400 mg, 1.03 mmol), oxalyl chloride (0.35 mL, 4.14 mmol), rhodamine B (744 mg, 1.55 mmol), NEt3 (0.16 mL, 1.14 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 31 (410 mg, 47%) was obtained as a purple solid; Rf = 0.3 (SiO2, CHCl3/MeOH, 9:1); m.p. = 193 °C; UV-Vis (MeOH): λmax (log ε) = 561.85 nm (1.74); IR (ATR): ν = 2924w, 1733w, 1632w, 1585s, 1528w, 1451m, 1411m, 1335s, 1272m, 1247m, 1179s, 1132m, 1072m, 1003m, 976w, 922w, 824w, 747m, 683m, 498w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.75 − 7.27 (m, 6H, 28-H, 29-H, 30-H, 31-H, 35-H, 38-H), 7.12 − 6.98 (m, 2H, 37-H), 6.78 (s, 2H, 35-H), 3.88 − 3.14 (m, 16H, 21-H, 22-H, 23-H, 24-H, 39-H), 2.66 (dd, J = 18.6, 3.7 Hz, 1H, 15-H), 2.29 − 2.22 (m, 1H, 3-H), 2.07 − 1.96 (m, 1H, 6-H), 1.80 − 1.72 (m, 2H, 6-H, 15-H), 1.70 − 1.54 (m, 4H, 1-H, 7-H, 11-H, 12-H), 1.51 (dd, J = 11.7, 2.6 Hz, 1H, 14-H), 1.47 − 1.08 (m, 11H, 2-H, 3-H, 7-H, 9-H, 11-H, 12-H, 14-H, 20-H), 0.98 (d, J = 11.8 Hz, 1H, 5-H), 0.96 − 0.86 (m, 15H, 17-H, 40-H), 0.84 − 0.81 (m, 1H, 1-H), 0.75 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.87 (C-16), 177.31 (C-18), 167.85 (C-25), 157.86 (C-36), 155.94 (C-32), 155.77 (C-34), 135.24 (C-27), 132.58 (C-26), 132.39 (C-28), 130.98 (C-38), 130.84 (C-33), 130.44 (C-29), 130.38 (C-31), 130.28 (C-30), 114.55 (C-37), 96.50 (C-35), 61.81 (C-5), 56.02 (C-9), 54.47 (C-14), 48.83 (C-13), 48.66 (C-15), 46.36 (C-21, C-24), 46.33 (C-22, C-23), 46.28 (C-4), 42.48 (C-7), 42.16 (C-39), 40.78 (C-1), 39.78 (C-8), 39.51 (C-3), 38.65 (C-10), 37.44 (C-12), 28.09 (C-20), 22.54 (C-6), 20.50 (C-11), 19.98 (C-17), 19.88 (C-2), 12.82 (C-40), 11.07 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 812 (78%, [M-Cl]+); analysis calcd for C52H67N4O4Cl (847.58): C 73.69, H 7.97, N 6.61; found: C 73.40, H 8.16, N 6.45.

3.35. 18-(4-{2-[3,6-Bis(diethylamino)xanthenium-9-yl]-benzoyl}-1,4-diazepan-1-yl)-18-oxostachan-16-one Chloride (32)

Following GPC from 25 (200 mg, 0.49 mmol), oxalyl chloride (0.17 mL, (2.0 mmol), rhodamine B (359.3 mg, 0.75 mmol), NEt3 (0.1 mL, 0.05 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 32 (207 mg, 49%) was obtained as a purple solid; Rf = 0.2 (SiO2, CHCl3/MeOH, 9:1); m.p. = 185 °C; UV-Vis (MeOH): λmax (log ε) = 561.92 nm (2.55); IR (ATR): ν = 2925w, 1734w, 1586s, 1528w, 1466m, 1412w, 1336s, 1274m, 1246m, 1179s, 1132m, 1073m, 1011w, 976w, 920w, 822w, 771m, 682m, 619w, 577w, 497w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.68 − 7.22 (m, 6H, 29-H, 30-H, 31-H, 32-H, 39-H), 6.98 − 6.74 (m, 4H, 38-H, 39-H), 3.98 − 3.11 (m, 16H, 21-H, 22-H, 23-H, 25-H, 40-H), 2.76 − 2.64 (m, 1H, 15-H), 2.31 (d, J = 14.4 Hz, 1H, 3-H), 2.19 − 1.97 (m, 1H, 6-H), 1.91 − 1.73 (m, 4H, 6-H, 15-H, 24-H), 1.72 − 1.54 (m, 4H, 1-H, 7-H, 11-H, 12-H), 1.55 − 1.05 (m, 24H, 2-H, 3-H, 7-H, 9-H, 11-H, 12-H, 14-H, 20-H, 41-H), 1.06 − 0.74 (m, 8H, 1-H, 5-H, 17-H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.94 (C-16), 176.96 (C-18), 168.99 (C-26), 168.49 (C-37), 157.93 (C-33), 155.78 (C-35), 140.56 (C-39), 136.52 (C-28), 136.30 (C-27), 132.65 (C-29), 132.43 (C-30), 129.57 (C-32), 126.87 (C-31), 114.09 (C-38), 113.73 (C-34), 96.90 (C-36), 62.25 (C-5), 56.21 (C-9), 54.56 (C-14), 50.49 (C-25), 49.83 (C-23), 48.86 (C-13), 48.65 (C-15), 46.77 (C-40), 46.55 (C-21), 46.40 (C-22), 44.07 (C-4), 42.60 (C-7), 40.94 (C-1), 39.82 (C-8), 39.43 (C-10), 39.27 (C-3), 37.50 (C-12), 29.31 (C-24), 27.87 (C-20), 22.77 (C-6), 20.56 (C-11), 20.27 (C-2), 20.02 (C-17), 15.36 (C-19), 12.87 (C-41) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 825 (92%, [M-Cl]+); analysis calcd for C53H69N4O4Cl (861.61): C 73.88, H 8.07, N 6.50; found: C 73.68, H 8.21, N 6.36.

3.36. 18-(4-[3-(2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-pyrido[3,2,1-ij]-pyrido[1”,2”,3”:1′,8′]-quinolino[6′,5′:5,6]-pyrano[2,3-f]-quinoline-4-ium-9-yl)-benzoyl]-piperazin-1-yl)-18-oxostachan-16-one Chloride (33)

Following GPC from 24 (500 mg, 1.29 mmol), oxalyl chloride (0.6 mL, 6.78 mmol), rhodamine 101 (423.2 mg, 0.86 mmol), NEt3 (0.5 mL, 3.39 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 33 (416 mg, 36%) was obtained as a purple solid; Rf = 0.26 (SiO2, CHCl3/MeOH, 9:1); m.p. = 197 °C; UV-Vis (MeOH): λmax (log ε) = 582.71 nm (1.14); IR (ATR): ν = 2845w, 1732w, 1633w, 1594m, 1542w, 1493m, 1458w, 1360w, 1293s, 1180m, 1087s, 1024m, 1002m, 747w, 621m, 420m cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 7.78 − 7.53 (m, 6H, 28-H, 29-H, 30-H, 31-H, 35-H, 38-H), 7.40 (dd, J = 5.8, 2.7 Hz, 2H, 37-H), 6.66 (d, J = 2.8 Hz, 2H, 35-H), 3.50 (dt, J = 17.1, 5.6 Hz, 16H, 21-H, 22-H, 23-H, 24-H, 39-H), 3.04 − 2.91 (m, 10H, 40-H, 41-H), 2.66 (t, J = 6.5 Hz, 1H, 15-H), 2.26 − 2.15 (m, 1H, 3-H), 2.05 − 1.92 (m, 1H, 6-H), 1.85 (q, J = 9.3, 5.2 Hz, 2H, 6-H, 15-H), 1.76 − 1.54 (m, 4H, 1-H, 7-H, 11-H, 12-H), 1.54 − 1.29 (m, 12H, 2-H, 3-H, 7-H, 9-H, 11-H, 12-H, 14-H, 20-H), 1.23 (d, J = 2.9 Hz, 1H, 5-H), 1.18 (s, 3H, 20-H), 1.12 -0.95 (m, 3H, 17-H), 0.87 (s, 1H, 1-H), 0.69 (s, 3H, 19-H); 13C NMR (126 MHz, CDCl3): δ = 222.78 (C-16), 177.14 (C-18), 167.87 (C-25), 153.17 (C-36), 152.01 (C-32), 151.30 (C-34), 134.84 (C-27), 131.75 (C-26), 130.16 (C-28), 127.67 (C-38), 126.75 (C-33), 123.64 (C-30), 113.67 (C-37), 105.35 (C-35), 61.66 (C-5), 55.87 (C-9), 54.37 (C-14), 51.15 (C-13), 50.63 (C-15), 48.70 (C-21, C-24), 48.55 (C-22, C-23), 46.18 (C-4), 42.35 (C-39), 40.68 (C-7), 39.66 (C-1), 38.55 (C-8), 37.33 (C-3), 29.66 (C-10), 28.01 (C-12), 27.75 (C-20), 22.47 (C-6), 20.72 (C-41), 20.39 (C-40), 20.00 (C-11), 19.86 (C-17), 19.74 (C-2), 16.02 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) = 860 (90%, [M-Cl]+); analysis calcd for C56H67N4O4Cl (895.63): C 75.10, H 7.54, N 6.26; found: C 74.88, H 7.78, N 6.17.

3.37. 18-(4-[3-(2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-pyrido[3,2,1-ij]-pyrido[1”,2”,3”:1′,8′]-quinolino[6′,5′:5,6]-pyrano[2,3-f]-quinoline-4-ium-9-yl)-benzoyl]-1,4-diazepan-1-yl)-18-oxostachan-16-one chloride (34)

Following GPZ from 25 (636 mg, 1.58 mmol), oxalyl chloride (0.6 mL, 6.78 mmol), rhodamine 101 (408 mg, 0.83 mmol), NEt3 (0.5 mL, 3.39 mmol), and chromatography (SiO2, CHCl3/MeOH, 95:5), 34 (532 mg, 37%) was obtained as a purple solid; Rf = 0.23 (SiO2, CHCl3/MeOH, 9:1); m.p. = 189 °C; UV-Vis (MeOH): λmax (log ε) = 583.47 nm (1.79); IR (ATR): ν = 2924s, 1732w, 1594m, 1543w, 1493m, 1458w, 1361w, 1293s, 1181m, 1088s, 1025m, 746m, 621m, 421m cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 7.75 − 7.61 (m, 6H, 29-H, 30-H, 31-H, 32-H, 39-H), 6.73 − 6.60 (m, 4H, 38-H, 39-H), 3.65 − 3.38 (m, 16H, 21-H, 22-H, 23-H, 24-H, 40-H), 3.26 (d, J = 21.3 Hz, 4H, 41-H, 42-H), 3.01 − 2.83 (m, 4H, 41-H, 42-H), 2.74 − 2.57 (m, 1H, 15-H), 2.48 − 2.40 (m, 1H, 6-H), 2.21 (m, 1H, 3-H), 1.90 − 1.76 (m, 4H, 6-H, 15-H, 24-H), 1.61 (m, 4H, 1-H, 7-H, 11-H, 12-H), 1.35 (dtd, J = 21.8, 12.8, 11.1, 6.9 Hz, 3H, 11-H, 12-H, 14-H), 1.25 − 1.18 (m, 3H, 2-H, 3-H, 7-H), 1.18 − 0.96 (m, 3H, 5-H, 7-H, 9-H), 0.94 (d, J = 12.8 Hz, 3H, 20-H), 0.87 (d, J = 5.5 Hz, 3H, 17-H), 0.75 (s, 1H, 1-H), 0.66 (s, 3H, 19-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 222.81 (C-16), 176,39 (C-18), 168.42 (C-26), 163.05 (C-37), 152.01 (C-33), 152.94 (C-35), 151.35 (C-39), 131.33 (C-28), 130.69 (C-27), 130.15 (C-29), 129.76 (C-30), 129.21 (C-32), 127.75 (C-31), 123.84 (C-38), 123.43 (C-34), 113.27 (C-36), 62.49 (C-5), 62.09 (C-9), 56.07 (C-14), 54.44 (C-41), 50.94 (C-25), 49.97 (C-23), 48.72 (C-13), 48.67 (C-15), 47.14 (C-40), 46.73 (C-21), 46.58 (C-22), 46.37 (C-42), 44.92 (C-4), 42.57 (C-7), 40.98 (C-1), 40.81 (C-8), 39.71 (C-10), 38.64 (C-3), 37.34 (C-12), 28.51 (C-24), 27.54 (C-20), 22.64 (C-6), 20.61 (C-11), 19.90 (C-2), 19.67 (C-17), 16.27 (C-19) ppm; MS (ESI, MeOH/CHCl3, 4:1): m/z (%) 874 (96%, [M-Cl]+); analysis calcd for C57H69N4O4Cl (909.64): C 75.26, H 7.65, N 6.16; found: C 75.01, H 7.83, N 5.97.

4. Conclusions

Acid hydrolysis of stevioside resulted in a 63% yield of isosteviol (1), which was used as a starting material for the preparation of numerous amides. These amides were tested for cytotoxic activity; while almost all the amides were found to be non-cytotoxic in a panel of human tumor cell lines, only the combination of isosteviol, a (homo)piperazinyl spacer and rhodamine B or rhodamine 101 unit proved to be particularly suitable. These spacered rhodamine conjugates showed cytotoxic activity in the sub-micromolar concentration range. In this regard, the homopiperazinyl-spacered derivatives were found to be better than the piperazinyl-spacered compounds, and the rhodamine 101 conjugates were more cytotoxic than the rhodamine B.

Author Contributions

Conceptualization, R.C.; validation, R.C.; investigation: J.H., N.V.H., S.H., D.S. and R.C.; writing—original draft preparation, R.C. writing—review and editing, J.H., N.V.H., S.H., D.S. and R.C. All authors have read and agreed to the published version of the manuscript.

Funding

No external funding was received.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Acknowledgments

We would like to thank Th. Schmidt for numerous MS spectra as well as Y. Schiller and S. Ludwig for additional NMR spectra. UV/Vis and IR spectra were recorded by M. Schneider who also performed the micro-analyses. The cell lines were provided by Th. Müller.

Conflicts of Interest

The authors declare no conflict of interest.

Sample Availability

Samples of the compounds are available from the authors.

References

  1. Gasmalla, M.A.A.; Yang, R.; Hua, X. Stevia rebaudiana Bertoni: An alternative Sugar Replacer and Its Application in Food Industry. Food Eng. Rev. 2014, 6, 150–162. [Google Scholar] [CrossRef]
  2. Geuns, J.M.C. Safety of Stevia and stevioside. Recent Res. Dev. Phytochem. 2000, 4, 75–88. [Google Scholar]
  3. Geuns, J.M.C. Stevioside. Phytochemistry 2003, 64, 913–921. [Google Scholar] [CrossRef]
  4. Kinghorn, A.D.; Wu, C.D.; Soejarto, D.D. Stevioside. Food Sci. Technol. 2001, 112, 167–183. [Google Scholar]
  5. Lemus-Mondaca, R.; Vega-Galvez, A.; Zura-Bravo, L.; Kong, A.-H. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
  6. Chatsudthipong, V.; Muanprasat, C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol. Ther. 2009, 121, 41–54. [Google Scholar] [CrossRef] [PubMed]
  7. Ferrazzano, G.F.; Cantile, T.; Alcidi, B.; Coda, M.; Ingenito, A.; Zarrelli, A.; Di Fabio, G.; Pollio, A. Is Stevia rebaudiana bertoni a non cariogenic sweetener? A review. Molecules 2016, 21, 38. [Google Scholar] [CrossRef] [Green Version]
  8. Heerranz-Lopez, M.; Barrajon-Catalan, E.; Beltran-Debon, R.; Joven, J.; Micol, V. Stevia is a source for alternative sweeteners: Potential medicinal effects. Agro Food Ind. Hi-Tech 2010, 21, 38–42. [Google Scholar]
  9. Iatridis, N.; Kougioumtzi, A.; Vlataki, K.; Papadaki, S.; Magklara, A. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener. Molecules 2022, 27, 1362. [Google Scholar] [CrossRef]
  10. Momtazi-Borojeni, A.A.; Esmaeili, S.-A.; Abdollahi, E.; Sahebkar, A. A Review on the Pharmacology and Toxicology of Steviol Glycosides Extracted from Stevia rebaudiana. Curr. Pharm. Des. 2017, 23, 1616–1622. [Google Scholar] [CrossRef]
  11. Wang, Y.; Luo, X.; Chen, L.; Mustapha, A.T.; Yu, X.; Zhou, C.; Okonkwo, C.E. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 615–642. [Google Scholar] [CrossRef] [PubMed]
  12. Renwick, A.G.; Tarka, S.M. Microbial hydrolysis of steviol glycosides. Food Chem. Toxicol. 2008, 46, S70. [Google Scholar] [CrossRef] [PubMed]
  13. Wang, M.; Li, H.; Xu, F.; Gao, X.; Li, J.; Xu, S.; Zhang, D.; Wu, X.; Xu, J.; Hua, H.; et al. Diterpenoid lead stevioside and its hydrolysis products steviol and isosteviol: Biological activity and structural modification. Eur. J. Med. Chem. 2018, 156, 885–906. [Google Scholar] [CrossRef] [PubMed]
  14. Lohoelter, C.; Weckbecker, M.; Waldvogel, S.R. (−)-Isosteviol as a Versatile Ex-Chiral-Pool Building Block for Organic Chemistry. Eur. J. Org. Chem. 2013, 2013, 5539–5554. [Google Scholar] [CrossRef]
  15. Moons, N.; De Borggraeve, W.; Dehaen, W. Isosteviol as a starting material in organic synthesis. Curr. Org. Chem. 2011, 15, 2731–2741. [Google Scholar] [CrossRef]
  16. Moons, N.; De Borggraeve, W.; Dehaen, W. Stevioside and steviol as starting materials in organic synthesis. Curr. Org. Chem. 2012, 16, 1986–1995. [Google Scholar] [CrossRef]
  17. Ullah, A.; Munir, S.; Mabkhot, Y.; Badshah, S.L. Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules 2019, 24, 678. [Google Scholar] [CrossRef] [Green Version]
  18. Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki, Y.; Murakami-Nakai, C.; Kuriyama, I.; Takeuchi, T.; Sugawara, F.; Yoshida, H. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005, 77, 2127–2140. [Google Scholar] [CrossRef]
  19. Malki, A.; El-Sharkawy, A.; Mohamed, M.; Bergmeier, S. Antitumor activities of the novel isosteviol derivative 10C against liver cancer. Anticancer. Res. 2017, 37, 1591–1601. [Google Scholar] [CrossRef]
  20. Zhang, H.; Zhong, K.; Lu, M.; Mei, Y.; Tan, E.; Sun, X.; Tan, W. Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Brain Res. Bull. 2018, 140, 392–401. [Google Scholar] [CrossRef]
  21. Andreeva, O.V.; Garifullin, B.F.; Sharipova, R.R.; Strobykina, I.Y.; Sapunova, A.S.; Voloshina, A.D.; Belenok, M.G.; Dobrynin, A.B.; Khabibulina, L.R.; Kataev, V.E. Glycosides and Glycoconjugates of the Diterpenoid Isosteviol with a 1,2,3-Triazolyl Moiety: Synthesis and Cytotoxicity Evaluation. J. Nat. Prod. 2020, 83, 2367–2380. [Google Scholar] [CrossRef] [PubMed]
  22. Garifullin, B.F.; Strobykina, I.Y.; Khabibulina, L.R.; Sapunova, A.S.; Voloshina, A.D.; Sharipova, R.R.; Khairutdinov, B.I.; Zuev, Y.F.; Kataev, V.E. Synthesis and cytotoxicity of the conjugates of diterpenoid isosteviol and N-acetyl-D-glucosamine. Nat. Prod. Res. 2021, 35, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
  23. Li, J.; Zhang, D.; Wu, X. Synthesis and biological evaluation of novel exo-methylene cyclopentanone tetracyclic diterpenoids as antitumor agents. Bioorg. Med. Chem. Lett. 2011, 21, 130–132. [Google Scholar] [CrossRef]
  24. Lin, L.-H.; Lee, L.-W.; Sheu, S.-Y.; Lin, P.-Y. Study on the stevioside analogues of steviolbioside, steviol, and isosteviol 19-alkyl amide dimers: Synthesis and cytotoxic and antibacterial activity. Chem. Pharm. Bull. 2004, 52, 1117–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Liu, C.-J.; Liu, Y.-P.; Yu, S.-L.; Dai, X.-J.; Zhang, T.; Tao, J.-C. Syntheses, cytotoxic activity evaluation and HQSAR study of 1,2,3-triazole-linked isosteviol derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett. 2016, 26, 5455–5461. [Google Scholar] [CrossRef] [PubMed]
  26. Liu, C.-J.; Wang, Y.-F.; Yao, J.-H.; Liu, Y.-P.; Jiang, Q.-J.; Liu, P.-P. Cytotoxic Activities and QSAR Studies of Diterpenoid Isosteviol Derivatives as Anti-Esophageal Agents. Russ. J. Bioorg. Chem. 2021, 47, 288–298. [Google Scholar]
  27. Liu, C.-J.; Yu, S.-L.; Liu, Y.-P.; Dai, X.-J.; Wu, Y.; Li, R.-J.; Tao, J.-C. Synthesis, cytotoxic activity evaluation and HQSAR study of novel isosteviol derivatives as potential anticancer agents. Eur. J. Med. Chem. 2016, 115, 26–40. [Google Scholar] [CrossRef]
  28. Liu, C.-J.; Zhang, T.; Yu, S.-L.; Dai, X.-J.; Wu, Y.; Tao, J.-C. Synthesis, cytotoxic activity, and 2D- and 3D-QSAR studies of 19-carboxyl-modified novel isosteviol derivatives as potential anticancer agents. Chem. Biol. Drug Des. 2017, 89, 870–887. [Google Scholar] [CrossRef]
  29. Liu, J.; Li, L.; Li, X.; Wang, X.; Zhao, X.; Qiao, Y.; Xu, Y.; Sun, Y.; Qian, L.; Liu, Z.; et al. Discovery of lysosome-targeted covalent anticancer agents based on isosteviol skeleton. Eur. J. Med. Chem. 2021, 209, 112896. [Google Scholar] [CrossRef]
  30. Malki, A.; Laha, R.; Bergmeier, S.C. Synthesis and cytotoxic activity of MOM-ether analogs of isosteviol. Bioorg. Med. Chem. Lett. 2014, 24, 1184–1187. [Google Scholar] [CrossRef]
  31. Murillo, J.A.; Echeverri, F.; Quinones, W.; Torres, F.; Isaza, L.; Robledo, S.M.; Pineda, T.; Olivo, H.F.; Escobar, G.A. Synthesis, Cytotoxicity, and Leishmanicidal Evaluation of Ent-beyerene and Ent-kaurene Derivatives. Eur. J. Org. Chem. 2021, 2021, 3386–3397. [Google Scholar] [CrossRef]
  32. Sharipova, R.R.; Belenok, M.G.; Garifullin, B.F.; Sapunova, A.S.; Voloshina, A.D.; Andreeva, O.V.; Strobykina, I.Y.; Skvortsova, P.V.; Zuev, Y.F.; Kataev, V.E. Synthesis and anti-cancer activities of glycosides and glycoconjugates of diterpenoid isosteviol. MedChemComm 2019, 10, 1488–1498. [Google Scholar] [CrossRef]
  33. Strobykina, I.Y.; Nemtarev, A.V.; Garifullin, B.F.; Voloshina, A.D.; Sapunova, A.S.; Kataev, V.E. Synthesis and Biological Activity of Alkane-1,1-diylbis(phosphonates) of Diterpenoid Isosteviol. Russ. J. Org. Chem. 2019, 55, 17–24. [Google Scholar] [CrossRef]
  34. Ukiya, M.; Sawada, S.; Kikuchi, T.; Kushi, Y.; Fukatsu, M.; Akihisa, T. Cytotoxic and Apoptosis-Inducing Activities of Steviol and Isosteviol Derivatives against Human Cancer Cell Lines. Chem. Biodivers. 2013, 10, 177–188. [Google Scholar] [CrossRef]
  35. Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Belenok, M.G.; Strobykina, I.Y.; Lyubina, A.P.; Gumerova, S.K.; Kataev, V.E. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg. Med. Chem. 2021, 32, 115974. [Google Scholar] [CrossRef] [PubMed]
  36. Zhang, T.; Lu, L.-H.; Liu, H.; Wang, J.-W.; Wang, R.-X.; Zhang, Y.-X.; Tao, J.-C. D-ring modified novel isosteviol derivatives: Design, synthesis and cytotoxic activity evaluation. Bioorg. Med. Chem. Lett. 2012, 22, 5827–5832. [Google Scholar] [CrossRef] [PubMed]
  37. Zhu, S.-L.; Wu, Y.; Liu, C.-J.; Wei, C.-Y.; Tao, J.-C.; Liu, H.-M. Design and stereoselective synthesis of novel isosteviol-fused pyrazolines and pyrazoles as potential anticancer agents. Eur. J. Med. Chem. 2013, 65, 70–82. [Google Scholar] [CrossRef] [PubMed]
  38. Zhu, S.-L.; Wu, Y.; Liu, C.-J.; Wei, C.-Y.; Tao, J.-C.; Liu, H.-M. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg. Med. Chem. Lett. 2013, 23, 1343–1346. [Google Scholar] [CrossRef]
  39. Brandes, B.; Hoenke, S.; Starke, N.; Serbian, I.; Deigner, H.-P.; Al-Harrasi, A.; Csuk, R. Synthesis and cytotoxicity of apoptosis-inducing N-heterocyclic triterpene amides. Eur. J. Med. Chem. Rep. 2022, 6, 100085. [Google Scholar] [CrossRef]
  40. Macasoi, I.; Pavel, I.Z.; Moaca, A.E.; Avram, S.; David, V.L.; Coricovac, D.; Mioc, A.; Spandidos, D.A.; Tsatsakis, A.; Soica, C.; et al. Mechanistic investigations of antitumor activity of a Rhodamine B-oleanolic acid derivative bioconjugate. Oncol. Rep. 2020, 44, 1169–1183. [Google Scholar] [CrossRef]
  41. Denner, T.C.; Hoenke, S.; Kraft, O.; Deigner, H.-P.; Al-Harrasi, A.; Csuk, R. Hydroxyethylamide substituted triterpenoic acids hold good cytotoxicity for human tumor cells. Results Chem. 2022, 4, 100371. [Google Scholar] [CrossRef]
  42. Kroškins, V.; Lugiņina, J.; Mishnev, A.; Turks, M. Synthesis of 8-Aminoquinoline Amides of Ursonic and Oleanonic Acid. Molbank 2022, 2022, M1361. [Google Scholar] [CrossRef]
  43. Heise, N.V.; Heisig, J.; Hoehlich, L.; Hoenke, S.; Csuk, R. Synthesis and cytotoxicity of diastereomeric benzylamides derived from maslinic acid, augustic acid and bredemolic acid. Results Chem. 2023, 5, 100805. [Google Scholar] [CrossRef]
  44. Heise, N.V.; Hoenke, S.; Serbian, I.; Csuk, R. An improved partial synthesis of corosolic acid and its conversion to highly cytotoxic mitocans. Eur. J. Med. Chem. Rep. 2022, 6, 100073. [Google Scholar] [CrossRef]
  45. Tian, T.; Liu, X.; Lee, E.-S.; Sun, J.; Feng, Z.; Zhao, L.; Zhao, C. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents. Arch. Pharm. Res. 2017, 40, 458–468. [Google Scholar] [CrossRef] [PubMed]
  46. Hoenke, S.; Serbian, I.; Deigner, H.-P.; Csuk, R. Mitocanic Di- and triterpenoid rhodamine B conjugates. Molecules 2020, 25, 5443. [Google Scholar] [CrossRef]
  47. Kahnt, M.; Wiemann, J.; Fischer, L.; Sommerwerk, S.; Csuk, R. Transformation of asiatic acid into a mitocanic, bimodal-acting rhodamine B conjugate of nanomolar cytotoxicity. Eur. J. Med. Chem. 2018, 159, 143–148. [Google Scholar] [CrossRef]
  48. Kozubek, M.; Denner, T.C.; Eckert, M.; Hoenke, S.; Csuk, R. On the influence of the rhodamine substituents onto the cytotoxicity of mitocanic maslinic acid rhodamine conjugates. Results Chem. 2023, 5, 100708. [Google Scholar] [CrossRef]
  49. Kozubek, M.; Hoenke, S.; Deigner, H.-P.; Csuk, R. Betulinic acid and glycyrrhetinic acid derived piperazinyl spacered rhodamine B conjugates are highly cytotoxic and necrotic. Results Chem. 2022, 4, 100429. [Google Scholar] [CrossRef]
  50. Kozubek, M.; Hoenke, S.; Schmidt, T.; Stroehl, D.; Csuk, R. Platanic acid derived amides are more cytotoxic than their corresponding oximes. Med. Chem. Res. 2022, 31, 1049–1059. [Google Scholar] [CrossRef]
  51. Kraft, O.; Hartmann, A.-K.; Brandt, S.; Hoenke, S.; Heise, N.V.; Csuk, R.; Mueller, T. Asiatic acid as a leading structure for derivatives combining sub-nanomolar cytotoxicity, high selectivity, and the ability to overcome drug resistance in human preclinical tumor models. Eur. J. Med. Chem. 2023, 250, 115189. [Google Scholar] [CrossRef] [PubMed]
  52. Kraft, O.; Hartmann, A.-K.; Hoenke, S.; Serbian, I.; Csuk, R. Madecassic Acid-A New Scaffold for Highly Cytotoxic Agents. Int. J. Mol. Sci. 2022, 23, 4362. [Google Scholar] [CrossRef] [PubMed]
  53. Kraft, O.; Hoenke, S.; Csuk, R. A tormentic acid-homopiperazine-rhodamine B conjugate of single-digit nanomolar cytotoxicity and high selectivity for several human tumor cell lines. Eur. J. Med. Chem. Rep. 2022, 5, 100043. [Google Scholar] [CrossRef]
  54. Petrenko, M.; Guettler, A.; Pflueger, E.; Serbian, I.; Kahnt, M.; Eiselt, Y.; Kessler, J.; Funtan, A.; Paschke, R.; Csuk, R.; et al. MSBA-S-A pentacyclic sulfamate as a new option for radiotherapy of human breast cancer cells. Eur. J. Med. Chem. 2021, 224, 113721. [Google Scholar] [CrossRef]
  55. Sommerwerk, S.; Heller, L.; Kerzig, C.; Kramell, A.E.; Csuk, R. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur. J. Med. Chem. 2017, 127, 1–9. [Google Scholar] [CrossRef]
  56. Sommerwerk, S.; Heller, L.; Kuhfs, J.; Csuk, R. Selective killing of cancer cells with triterpenoic acid amides—The substantial role of an aromatic moiety alignment. Eur. J. Med. Chem. 2016, 122, 452–464. [Google Scholar] [CrossRef]
  57. Shao, J.-W.; Dai, Y.-C.; Xue, J.-P.; Wang, J.-C.; Lin, F.-P.; Guo, Y.-H. In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives. Eur. J. Med. Chem. 2011, 46, 2652–2661. [Google Scholar] [CrossRef]
  58. Wolfram, R.K.; Heller, L.; Csuk, R. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur. J. Med. Chem. 2018, 152, 21–30. [Google Scholar] [CrossRef]
  59. Siewert, B.; Pianowski, E.; Csuk, R. Esters and amides of maslinic acid trigger apoptosis in human tumor cells and alter their mode of action with respect to the substitution pattern at C-28. Eur. J. Med. Chem. 2013, 70, 259–272. [Google Scholar] [CrossRef]
  60. Siewert, B.; Pianowski, E.; Obernauer, A.; Csuk, R. Towards cytotoxic and selective derivatives of maslinic acid. Bioorg. Med. Chem. 2014, 22, 594–615. [Google Scholar] [CrossRef]
  61. Guzman-Villanueva, D.; Weissig, V. Mitochondria-targeted agents: Mitochondriotropics, mitochondriotoxics, and mitocans. Handb. Exp. Pharmacol. 2017, 240, 423–438. [Google Scholar] [PubMed]
  62. Huang, M.; Myers, C.R.; Wang, Y.; You, M. Mitochondria as a novel target for cancer chemoprevention: Emergence of mitochondrial targeting agents. Cancer Prev. Res. 2021, 14, 285–306. [Google Scholar] [CrossRef] [PubMed]
  63. Modica-Napolitano, J.S.; Aprille, J.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev. 2001, 49, 63–70. [Google Scholar] [CrossRef]
  64. Murphy, M.P. Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert. Opin. Biol. Ther. 2001, 1, 753–764. [Google Scholar] [CrossRef] [PubMed]
  65. Murphy, M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta Bioenerg. 2008, 1777, 1028–1031. [Google Scholar] [CrossRef] [Green Version]
  66. Spivak, A.Y.; Nedopekina, D.A.; Gubaidullin, R.R.; Dubinin, M.V.; Belosludtsev, K.N. Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J. Pers. Med. 2021, 11, 470. [Google Scholar] [CrossRef]
  67. Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem. Rev. 2017, 117, 10043–10120. [Google Scholar] [CrossRef]
  68. Zinovkin, R.A.; Zamyatnin, A.A. Mitochondria-Targeted Drugs. Curr. Mol. Pharmacol. 2019, 12, 202–214. [Google Scholar] [CrossRef]
  69. Wiemann, J.; Al-Harrasi, A.; Csuk, R. Cytotoxic Dehydroabietylamine Derived Compounds. Anti-Cancer Agents Med. Chem. 2020, 20, 1756–1767. [Google Scholar] [CrossRef]
  70. Wiemann, J.; Fischer, L.; Kessler, J.; Stroehl, D.; Csuk, R. Ugi multicomponent-reaction: Syntheses of cytotoxic dehydroabietylamine derivatives. Bioorg. Chem. 2018, 81, 567–576. [Google Scholar] [CrossRef]
  71. Wiemann, J.; Fischer, L.; Rohmer, M.; Csuk, R. Syntheses of C-ring modified dehydroabietylamides and their cytotoxic activity. Eur. J. Med. Chem. 2018, 156, 861–870. [Google Scholar] [CrossRef]
  72. Kuzu, O.F.; Gowda, R.; Sharma, A.; Robertson, G.P. Leelamine Mediates Cancer Cell Death through Inhibition of Intracellular Cholesterol Transport. Mol. Cancer Ther. 2014, 13, 1690–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Kraft, O.; Kozubek, M.; Hoenke, S.; Serbian, I.; Major, D.; Csuk, R. Cytotoxic triterpenoid-safirinium conjugates target the endoplasmic reticulum. Eur. J. Med. Chem. 2021, 209, 112920. [Google Scholar] [CrossRef] [PubMed]
  74. Kamkaew, A.; Thavornpradit, S.; Puangsamlee, T.; Xin, D.; Wanichacheva, N.; Burgess, K. Oligoethylene glycol-substituted aza-BODIPY dyes as red emitting ER-probes. Org. Biomol. Chem. 2015, 13, 8271–8276. [Google Scholar] [CrossRef] [Green Version]
  75. Chen, P.; Zhang, D.; Li, M.; Wu, Q.; Lam, Y.P.Y.; Guo, Y.; Chen, C.; Bai, N.; Malhotra, S.; Li, W.; et al. Discovery of novel, potent, isosteviol-based antithrombotic agents. Eur. J. Med. Chem. 2019, 183, 111722. [Google Scholar] [CrossRef] [PubMed]
  76. Hsu, F.-L.; Hou, C.-C.; Yang, L.-M.; Cheng, J.-T.; Chi, T.-C.; Liu, P.-C.; Lin, S.-J. Microbial transformations of isosteviol. J. Nat. Prod. 2002, 65, 273–277. [Google Scholar] [CrossRef] [PubMed]
  77. Korochkina, M.; Fontanella, M.; Casnati, A.; Arduini, A.; Sansone, F.; Ungaro, R.; Latypov, S.; Kataev, V.; Alfonsov, V. Synthesis and spectroscopic studies of isosteviol-calix[4]arene and -calix[6]arene conjugates. Tetrahedron 2005, 61, 5457–5463. [Google Scholar] [CrossRef]
  78. Buddrus, J.; Bauer, H. New analytical methods. Part (32). Determination of the carbon skeleton of organic compounds by double quantum coherent carbon-13 NMR spectroscopy, the INADEQUATE pulse sequence. Angew. Chem. 1987, 99, 642. [Google Scholar] [CrossRef]
  79. Buddrus, J.; Lambert, J. Connectivities in molecules by INADEQUATE: Recent developments. Magn. Reson. Chem. 2002, 40, 3–23. [Google Scholar] [CrossRef]
  80. Ismail, F.M.D.; Nahar, L.; Sarker, S.D. Application of INADEQUATE NMR techniques for directly tracing out the carbon skeleton of a natural product. Phytochem. Anal. 2021, 32, 7–23. [Google Scholar] [CrossRef]
  81. Li, D.; Owen, N.L. Structure determination using the NMR “inadequate” technique. Adv. Mol. Struct. Res. 1996, 2, 191–211. [Google Scholar]
  82. Cohen, R.D.; Wang, X.; Sherer, E.C.; Martin, G.E. Application of 1,1-ADEQUATE and DFT to correct 13C misassignments of carbonyl chemical shifts for carbapenem antibiotics. Magn. Reson. Chem. 2022, 60, 963–969. [Google Scholar] [CrossRef]
  83. Martin, G.E. Using 1,1- and 1,n-ADEQUATE 2D NMR data in structure elucidation protocols. Annu. Rep. NMR Spectrosc. 2011, 74, 215–291. [Google Scholar]
  84. Roginkin, M.S.; Ndukwe, I.E.; Craft, D.L.; Williamson, R.T.; Reibarkh, M.; Martin, G.E.; Rovnyak, D. Developing nonuniform sampling strategies to improve sensitivity and resolution in 1,1-ADEQUATE experiments. Magn. Reson. Chem. 2020, 58, 625–640. [Google Scholar] [CrossRef] [PubMed]
  85. Roy, A.; Roberts, F.G.; Wilderman, P.R.; Zhou, K.; Peters, R.J.; Coates, R.M. 16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: Potent Mechanism-Based Inhibitors of Recombinant ent-Kaurene Synthase from Arabidopsis thaliana. J. Am. Chem. Soc. 2007, 129, 12453–12460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Scheme 1. Hydrolysis (methanolic HCl, ∆, 2 h, 63%) of stevioside to isosteviol (1).
Scheme 1. Hydrolysis (methanolic HCl, ∆, 2 h, 63%) of stevioside to isosteviol (1).
Molecules 28 04951 sch001
Figure 1. INADEQUATE spectrum of 1 in CDCl3; total acquisition time: 80 h.
Figure 1. INADEQUATE spectrum of 1 in CDCl3; total acquisition time: 80 h.
Molecules 28 04951 g001
Figure 2. 1,1-ADEQATE spectrum of 1 in CDCl3; total acquisition time: 20 h.
Figure 2. 1,1-ADEQATE spectrum of 1 in CDCl3; total acquisition time: 20 h.
Molecules 28 04951 g002
Scheme 2. Synthesis of isosteviol derived pyridinyl-, (iso)-quinolinyl- and benzylamides. Reactions and conditions: (a) (COCl)2, DCM, DMF (cat.), 1 h, 23 °C, then amine in DCM, 23 °C, 1 h; (b) CH3I, DCM, 23 °C, 2 h.
Scheme 2. Synthesis of isosteviol derived pyridinyl-, (iso)-quinolinyl- and benzylamides. Reactions and conditions: (a) (COCl)2, DCM, DMF (cat.), 1 h, 23 °C, then amine in DCM, 23 °C, 1 h; (b) CH3I, DCM, 23 °C, 2 h.
Molecules 28 04951 sch002
Scheme 3. Synthesis and structure of amides 2430 as well as rhodamine B (31, 32) and rhodamine 101 conjugates 33 and 34. Reactions and conditions: (a) (COCl)2, DCM, DMF (cat.), 1 h, 23 °C, then amine in DCM, 23 °C, 1 h.
Scheme 3. Synthesis and structure of amides 2430 as well as rhodamine B (31, 32) and rhodamine 101 conjugates 33 and 34. Reactions and conditions: (a) (COCl)2, DCM, DMF (cat.), 1 h, 23 °C, then amine in DCM, 23 °C, 1 h.
Molecules 28 04951 sch003
Table 1. Cytotoxicity of compounds: isosteviol (1) and compounds 234 (EC50-values in µM from SRB-assays) after 72 h of treatment; the values are averaged from three independent experiments performed each in triplicate, confidence interval CI = 95%; mean ± standard mean error; malignant cell lines tested: A375 (melanoma), HT29 (colon adenocarcinoma), MCF-7 (breast adenocarcinoma), A2780 (ovarian carcinoma), HeLa (cervical adenocarcinoma); non-malignant cell lines tested: NIH 3T3 (murine fibroblast), HEK293 (embryonic kidney); positive control: doxorubicin (DOX); n.d. not determined.
Table 1. Cytotoxicity of compounds: isosteviol (1) and compounds 234 (EC50-values in µM from SRB-assays) after 72 h of treatment; the values are averaged from three independent experiments performed each in triplicate, confidence interval CI = 95%; mean ± standard mean error; malignant cell lines tested: A375 (melanoma), HT29 (colon adenocarcinoma), MCF-7 (breast adenocarcinoma), A2780 (ovarian carcinoma), HeLa (cervical adenocarcinoma); non-malignant cell lines tested: NIH 3T3 (murine fibroblast), HEK293 (embryonic kidney); positive control: doxorubicin (DOX); n.d. not determined.
A375HT29MCF7A2780HeLaNIH 3T3HEK293
1>20>20>20>20>20>20>20
2–23>20>20>20>20>20>20>20
24>2013.5± 2.1>20>20>2011.2 ± 1.1>20
2514.3 ± 1.711.2 ± 1.311.1 ± 0.913.0 ± 1.3>2011.9 ± 2.50>20
26–30>20>20>20>20>20>20>20
310.91 ± 0.020.81 ± 0.040.42 ± 0.040.40 ± 0.020.81 ± 0.031.28 ± 0.110.40 ± 0.05
320.94 ± 0.150.90 ± 0.060.36 ± 0.060.29 ± 0.081.34 ± 0.91.33 ± 0.090.63 ± 0.07
330.44 ± 0.010.42 ± 0.040.23 ± 0.020.19 ± 0.010.45 ± 0.060.59 ± 0.020.20 ± 0.02
340.40 ± 0.020.47 ± 0.090.23 ± 0.020.16 ± 0.020.44 ± 0.070.08 ± 0.07 0.25 ± 0.04
DOXn.d.0.91 ± 0.011.10 ± 0.300.01 ± 0.01n.d.0.41 ± 0.07n.d.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Heisig, J.; Heise, N.V.; Hoenke, S.; Ströhl, D.; Csuk, R. The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative. Molecules 2023, 28, 4951. https://doi.org/10.3390/molecules28134951

AMA Style

Heisig J, Heise NV, Hoenke S, Ströhl D, Csuk R. The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative. Molecules. 2023; 28(13):4951. https://doi.org/10.3390/molecules28134951

Chicago/Turabian Style

Heisig, Julia, Niels V. Heise, Sophie Hoenke, Dieter Ströhl, and René Csuk. 2023. "The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative" Molecules 28, no. 13: 4951. https://doi.org/10.3390/molecules28134951

APA Style

Heisig, J., Heise, N. V., Hoenke, S., Ströhl, D., & Csuk, R. (2023). The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative. Molecules, 28(13), 4951. https://doi.org/10.3390/molecules28134951

Article Metrics

Back to TopTop