Comparison of Phytochemical Composition, Antibacterial, and Antifungal Activities of Extracts from Three Organs of Pistacia lentiscus from Saudi Arabia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield of Methanolic and Aqueous Extraction
2.2. Chemical Composition
2.3. Secondary Metabolite Content
2.4. Antimicrobial Activities of Methanolic and Aqueous Extracts
3. Materials and Methods
3.1. Plant Material and Yield Determination
3.2. Preparation of Extracts
3.3. HPLC Analysis
3.4. Determination of Secondary Metabolite Content
3.5. Evaluation of Antimicrobial Activity
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palevitch, D.; Yaniv, Z. Medicinal Plants of the Holy Land; Modan Publishing House: Tel Aviv, Istrael, 2000. [Google Scholar]
- Ouelmouhoub, S. Gestion multi-usage et conservation du patrimoine forestier: Cas des subéraies du Parc National d’El Kala (Algérie). 2005. Available online: https://www.iamm.ciheam.org/ress_doc/opac_css/doc_num.php?explnum_id=4403 (accessed on 12 May 2023).
- Sanz, M.J.; Terencio, M.C.; Paya, M. Isolation and hypotensive activity of a polymeric procyanidin fraction from Pistacia lentisucs L. Pharmazie 1992, 47, 466–471. [Google Scholar]
- Scherrer, A.M.; Motti, R.; Weckeerie, C.S. Traditional plant use in the areas of Ethnopharm. J. Ethnopharmacol. 2005, 97, 129–143. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Zengin, H.; Duru, M.E. Antifungal activities of the leaves of three Pistacia species grown in turkey. Fitoterapia 2003, 74, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Paraschos, S.; Magiatis, P.; Mitaku, S.; Petraki, K.; Kaliaropoulos, A.; Maragoudakis, P.; Mentis, A.; Sgouras, D.; Skaltsounis, A.L. In vitro and in vivo activity of chios mastic gum extracts and constituents against Helicobacter pylori. Antim. Agents Chemother 2007, 51, 551–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali-Shtayeh, M.S.; Yaniv, Z.; Mahajna, J. Ethnobotanical survey in the palestinian area: A classification of the healing potential of medicinal plants. J. Ethnopharm. 2000, 73, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Lev, E.; Amar, Z. Ethnopharmacological survey of traditional drugs sold in Israel at the end of the 20th century. J. Ethnopharm. 2000, 72, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Amar, Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J. Ethnopharm. 2002, 82, 131–145. [Google Scholar]
- Said, O.; Khalil, K.; Fluder, S.; Azaizeh, H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J. Ethnopharm. 2002, 83, 251–265. [Google Scholar] [CrossRef]
- Yasilada, E.; Honda, G.; Sezik, E.; Tabata, M.; Fujita, T.; Tanaka, T.; Takeda, Y.; Takalshi, Y. Traditional medicine in Turkey. V: Folk medicine in the inner Taurus Mountains. J. Ethnopharm. 1995, 46, 133–152. [Google Scholar] [CrossRef]
- Tuzlaci, E.; Aymaz, P.E. Turkish folk medicinal plants, Part IV: Gonen (Bahkesir). Fitoterapia 2001, 72, 323–343. [Google Scholar] [CrossRef]
- De Pooter, H.L.; Schamp, N.M.; Aboutabl, E.A.; Eltohamy, S.F.; Doss, S.C. Essential oils from the leaves of three Pistacia species grown in Egypt. Flav. Fra. J. 1991, 6, 229–232. [Google Scholar] [CrossRef]
- Prichard, A.J.N. The use of essential oils to treat snoring. Phyto. Res. 2004, 18, 696–699. [Google Scholar] [CrossRef]
- Dedoussis, G.V.Z.; Kaliora, A.C.; Psarras, S.; Chiou, A.; Mylona, A.; Papadopoulos, N.G.; Andrikopoulos, N.K. Antiatherogenic effect of Pistacia lentiscus via GSH restoration and downregulation of CD36 mRNA expression. Atherosclerosis 2004, 174, 293–303. [Google Scholar] [CrossRef]
- Marone, P.; Bono, L.; Leone, E.; Bona, S.; Carretto, E.; Perversi, L. Bactericidal activity of Pistacia lentiscus mastic gum against Helicobacter pylori. J. Chem. 2001, 13, 611–614. [Google Scholar]
- Balan, K.V.; Demetzos, C.; Prince, J.; Dimas, K.; Cladaras, M.; Han, Z.; Wyche, J.H.; Pantazis, P. Induction of apoptosis in human colon cancer HCT116 cells treated with an extract of the plant product. Chios mastic gum. In Vivo 2005, 19, 93–102. [Google Scholar] [PubMed]
- Balan, K.V.; Prince, J.; Han, Z.; Dimas, K.; Cladaras, M.; Wyche, G.H.; Sitaras, N.M.; Pantazis, P. Antiproliferative activity and induction of apoptosis in human colon cancer celles treated in vitro with constituents of a product derived from Pistacia lentiscus L. var. Chia. Phytomedicine 2007, 14, 263–272. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Abu Ghdeib, S.I. Antifungal Activity of Plant Extracts Against Dermatophytes. Mycoses 1999, 42, 665–672. [Google Scholar] [CrossRef]
- Duru, M.E.; Cakir, A.; Kordali, S.; Zengin, H.; Harmadar, M.; Izumi, S.; Hirata, T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia 2003, 74, 170–176. [Google Scholar] [CrossRef]
- Giner-Larza, E.M.; Manez, S.; Recio, M.C.; Giner-Pons, R.; Prieto, J.M.; Cerda-Nicolas, M. Oleanolic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur. J. Pharma. 2001, 428, 137–143. [Google Scholar] [CrossRef]
- Papachristos, D.P.; Stamopoulos, D.C. Repellent, Toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtechus (Say) (Coleoptera Bruchidae). J. Stored Pro. Res. 2002, 38, 117–128. [Google Scholar] [CrossRef]
- Gardeli, C.; Papageorgiou, V.; Mallouchos, A.; Theodosis, K.; Komaitis, M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methalonic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Mehenni, C.; Atmani-Kilani, D.; Dumarçay, S.; Perrin, D.; Gérardin, P.; Atmani, D. Hepatoprotective and antidiabetic effects of Pistacia lentiscus leaf and fruit extracts. J. Food. Drug Anal. 2016, 24, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Yemmen, M.; Landolsi, A.; Ben Hamida, J.; Mégraud, F.M.; Trabelsi, A. Antioxidant activities, anticancer activity and polyphenolics profile of leaf, fruit and stem extracts of Pistacia lentiscus from Tunisia. Cell. Mol. Biol. 2017, 63, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Bougandoura, N. Pouvoir antioxydant et antimicrobien des extraits d’espèces végétales Saturejacalaminthasspnepta (nabta) et Ajugaiva L. (chendgoura) de l’ouest d’Algérie 2011, p. 39. Available online: http://www.secheresse.info/spip.php?article26567 (accessed on 12 May 2023).
- Zitouni, A.; Belyagoubi-Benhammou, N.; Ghembaza, N.; Toul, F.; Bekkara, A.F. Assessment of Phytochemical Composition and Antioxidant Properties of Extracts from the Leaf, Stem, Fruit and Root of Pistacia lentiscus L. Int. J. Pharm. Phytochem. Res. 2016, 8, 627–633. [Google Scholar]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Riahi, L.; Chogranib, H.; Elferchichi, M.; Zaoualib, Y.; Zoghlamia, N.; Mlika, A. Variations in Tunisian wormwood essential oil profiles and phenolic contents between leaves and flowers and their effects on antioxidant activities. Ind. Crops Prod. 2013, 46, 290–296. [Google Scholar] [CrossRef]
- Zaouali, Y.; Chograni, H.; Trimech, R.; Boussaid, M. Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Indu. Crops Prod. 2013, 43, 412–441. [Google Scholar]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Atmani, D.; Kilani, N.C.; Berboucha, M.; Tamani, D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009, 112, 303–309. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Trosznska, A.; Estrella, I.; López-Amóres, M.L.; Hernández, T. Antioxidant activity of pea (Pisum sativum L.) seed coat acetone extract. LWT Lebensm. Wiss. U. Technol. 2002, 35, 158–164. [Google Scholar] [CrossRef]
- Azaizeh, H.; Halahleh, F.; Abbas, N.; Markovics, A.; Muklada, H.; Un-gar, E.D.; Landau, S.Y. Polyphenols from Pistacia lentiscus and Phil-lyrea latifolia impair the exsheathment of gastro-intestinal nematode larvae. Vet. Paras. 2013, 191, 44–50. [Google Scholar] [CrossRef]
- Teow, C. Antioxidant Activity and Bioactive Compounds of Sweetpotatoes. Master’s Thesis, Graduate Faculty of North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoprotein. J. Agr. Food Chem. 1995, 43, 890–894. [Google Scholar] [CrossRef]
- Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Zongo, C.; Savadogo, A.; Somda, K.M.; Koudou, J.; Traore, A.S. In vitro evaluation of the antimicrobial and antioxidant properties of extracts from whole plant of Alternanthera pungens H.B. & K. and leaves of Combretum sericeum G. Don. Int. J. Phytomedicine 2011, 3, 182–191. [Google Scholar]
- Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S. Antioxidant and antibacterial acti activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr. J. Biotechnol. 2005, 4, 823–828. [Google Scholar]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Caillet, S.; Lacroix, M. Les huiles essentielles: Leurs propriétés antimicrobiennes et leurs applications potentielles en alimentaire. Laboratoire de Recherche en Sciences Appliquées à l’Alimentation (RESALA) INRS-Institut Armand-Frappier, Université de Laval (Québec). 2007, 1–9. Available online: http://www.labo-resala.com/fiches/fiches_huiles_essentielles.pdf (accessed on 12 May 2023).
- Sarac, N.; Ugur, A. Antimicrobial activities and usage in folkloric medicine of some Lamiaceae species growing in Mugla, Turkey. Eur. Asia J. Bio. Sci. 2007, 4, 28–37. [Google Scholar]
- Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Hogg, S. Essential Microbiology; John Wiley and Sons Ltd.: Chichester, UK, 2005; Volume 481, pp. 4–189. [Google Scholar]
- Marzouk, B.; Ben Hadj Ferid, M.; Chraief, I.; Mastouri, M.; Boukef, K.; Marzouk, Z. Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L. J. Food Agr. Environ. 2008, 6, 78–82. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Iauk, L.; Ragusa, S.; Rapisarda, A.; Franco, S.; Nicolosi, V.M. In vitro antimicrobial activity of Pistacia lentiscus L. extracts: Preliminary report. J. Chem. 1996, 8, 207–209. [Google Scholar]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; De Bruyne, T.; Hermans, N.; Totte, J.; Pieters, L.; Vlietinck, A.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharm. 2002, 79, 213–220. [Google Scholar] [CrossRef]
- Hernandez, T.; Canales, M.; Avila, J.G.; García, A.M.; Martínez, A.; Caballero, J.; Romo de Vivar, A.; Lira, R. Composition and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). J. Ethnopharm. 2005, 96, 551–554. [Google Scholar] [CrossRef]
- Chaudhary, S.A. Flora of the Kingdom of Saudi; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 2000; Volume 2, pp. 1–3. [Google Scholar]
- Al-Zaban, M.; Naghmouchi, S.; AlHArbi, N.K. HPLC-Analysis, Biological Activities and Characterization of Action Mode of Saudi Marrubium vulgare against Foodborne Diseases Bacteria. Molecules 2021, 26, 5112. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticul. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Aouadhi, C.; Ghazghazi, H.; Hasnaoui, B.; Maaroufi, A. Total phenolic content, antioxidant and antibacterial activities of Marrubium vulgare methanolic extract. Tun. J. Med. Plants Nat. Prod. 2014, 11, 1–8. [Google Scholar]
Retention Time | Compounds | Leaves (%) | Roots (%) | Stems (%) |
---|---|---|---|---|
2.3 | Tannic acid (1) | 9.1 ± 0.00 b | 6 ± 0.07 c | 12.0 ± 0.04 a |
2.5 | Gallic acid (2) | 12 ± 0.03 a | 8.2 ± 0.06 b | 8.31 ± 0.05 b |
2.9 | 3,5-O-digalloyl quinic acid | 41.11 ± 0.05 b | 23 ± 0.09 c | 52 ± 0.09 a |
3.8 | Catechin hydrate (4) | 9.45 ± 0.02 a | 3.8 ± 0.02 b | 1.92 ± 0.03 b |
5.2 | Chlorogenic acid (5) | 5.11 ± 0.06 a | 1.07 ± 0.02 b | 0.7 ± 0.01 b |
6.37 | Epicatechin (6) | 1.36 ± 0.07 a | Nd | Nd |
9.95 | Vanillic acid (7) | 12.5 ± 0.03 a | 1.77 ± 0.05 b | Nd |
10.1 | p-coumaric acid (8) | 9.63 ± 0.03 a | Nd | 0.61 ± 0.01 b |
10.5 | Taxifolin (9) | 16.01 ± 0.02 a | 0.43 ± 0.04 b | Nd |
10.8 | Quercetin (10) | 11 ± 0.0 a | 0.45 ± 0.05 b | Nd |
12.1 | Ferulic acid (11) | 4.46 ± 0.00 a | Nd | Nd |
12.02 | Rutin hydrate (12) | 2.2 ± 0.02 a | 0.65 ± 0.01 b | Nd |
13.09 | Myricetin (13) | 0.6 ± 0.00 a | 0.5 ± 0.03 a | 1.2 ± 0.02 b |
Bacterial Strains | Diameters of the Inhibition Zones (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Aqueous Extracts | Methanolic Extracts | Antibiotic (Gentamicin) | Solvent Extract | |||||
Stems | Leaves | Roots | Stems | Leaves | Roots | |||
E. coli | - | - | - | 7 ± 0.5 b | 8 ± 0.4 a | 7 ± 0.5 a | 24 ± 1.1 c | - |
S. arizona | - | - | - | 8 ± 0.6 a | 7 ± 0.6 a | 7 ± 0.7 a | 23 ± 0.8 c | - |
S. typhimurium | - | - | - | 8 ± 0.9 a | 8 ± 0.5 a | 8 ± 0.6 a | 21 ± 0.9 b | - |
L. monocytogenes | - | - | - | 9 ± 0.6 b | 10 ± 0.3 b | 8 ± 0.4 a | 17 ± 1 a | - |
K. pneumoniae | - | - | - | 10 ± 0.7 b | 11 ± 0.2 c | 9 ± 0.3 b | 18 ± 0.7 a | - |
S. aureus | - | - | - | 10 ± 0.6 b | 10 ± 0.6 b | 9 ± 0.6 b | 21 ± 1.2 b | - |
B. subtillis | - | - | - | 9 ± 0.8 b | 11 ± 0.5 c | 9 ± 0.4 b | 16 ± 0.9 a | - |
A. hydrophila | - | - | - | 8 ± 0.5 a | 9 ± 0.7 b | 8 ± 0.6 a | 22 ± 0.8 b | - |
P. aeruginosa | - | - | - | 8 ± 0.7 a | 8 ± 0.6 a | 7 ± 0.3 a | 21 ± 0.5 b | - |
Microbial Strains | Methanolic Extracts | |||||||
---|---|---|---|---|---|---|---|---|
Minimum Inhibitory Concentrations (µg/mL) | Minimum Bactericidal Concentration (µg/mL) | |||||||
Stems | Leaves | Roots | Antibiotics | Stems | Leaves | Roots | Antibiotics | |
E. coli | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 4 c | 5 ± 0.0 a | 5 ± 0.0 a | 5 ± 0.0 a | 8 ± 0.0 c |
S. arizona | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 4 c | 5 ± 0.0 a | 5 ± 0.0 a | 5 ± 0.0 a | 8 ± 0.0 c |
S. typhimurium | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 4 c | 5 ± 0.0 a | 5 ± 0.0 a | 5 ± 0.0 a | 8 ± 0.0 c |
L. monocytogenes | 1.25 ± 0.0 b | 1.25 ± 0.0 b | 2.5 ± 0.0 a | 2 b | 2.5 ± 0.0 b | 5 ± 0.0 a | 5 ± 0.0 a | 4 ± 0.0 b |
K. pneumoniae | 1.25 ± 0.0 b | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 1 a | 2.5 ± 0.0 b | 5 ± 0.0 a | 5 ± 0.0 a | 2 ± 0.0 a |
S. aureus | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 1 a | 5 ± 0.0 b | 5 ± 0.0 a | 5 ± 0.0 a | 2 ± 0.0 a |
B. subtillis | 1.25 ± 0.0 b | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2 b | 2.5 ± 0.0 b | 5 ± 0.0 a | 5 ± 0.0 a | 4 ± 0.0 b |
A. hydrophila | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2 b | 5 ± 0.0 a | 5 ± 0.0 a | 5 ± 0.0 a | 4 ± 0.0 b |
P. aeruginosa | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2.5 ± 0.0 a | 2 b | 5 ± 0.0 a | 5 ± 0.0 a | 5 ± 0.0 a | 4 ± 0.0 b |
C. albicans | - | - | - | 10 ± 0.4 c | 11 ± 0.5 c | 10 ± 0.2 b | 20 ± 1 c | - |
Strains | Minimum Inhibitory Concentration (µg/mL) | Minimum Fungicidal Concentration (µg/mL) | ||||
---|---|---|---|---|---|---|
Stems | Leaves | Roots | Stems | Leaves | Roots | |
A. niger | 12.5 ± 0.0 a | 12.5 ± 0.0 a | 25 ± 0.0 a | 25 ± 0.0 a | 25 ± 0.0 a | 50 ± 0.0 a |
A. flavus | 3.12 ± 0.0 b | 3.12 ± 0.0 b | 1.56 ± 0.0 b | 6.25 ± 0.0 b | 6.25 ± 0.0 b | 3.12 ± 0.0 b |
C. albicans | 3.12 ± 0.0 b | 3.12 ± 0.0 b | 1.56 ± 0.0 b | 6.25 ± 0.0 b | 6.25 ± 0.0 b | 3.12 ± 0.0 b |
Microbial Groups | Strains | Growing Conditions |
---|---|---|
Gram-positive bacteria | Listeria monocytogenes ATCC 7644 Bacillus subtillis ATCC 6059 Staphylococcus aureus ATCC25923 | Culture medium: trypto-casein agar soy (TCS). Incubation temperature: 37 °C. |
Gram-negative bacteria | Salmonella typhimurium NCTC 6017 Salmonella arizona ATCC25922 Pseudomonas aeruginosa ATCC9027 Escherichia coli ATCC8739 Aeromonas hydrophila Klebsiella pneumoniae | |
Yeast | Candida albicans ATCC 2091 | Culture medium: Sabouraud Dextrose Agar (SDA). Incubation temperature: 30 °C. |
Fungal species | Aspergillus niger Aspergillus flavus | Culture medium: Potate Dextrose Agar (PDA). Incubation temperature: 30 °C. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zaben, M.; Zaban, M.A.; Naghmouchi, S.; Nasser Alsaloom, A.; Al-Sugiran, N.; Alrokban, A. Comparison of Phytochemical Composition, Antibacterial, and Antifungal Activities of Extracts from Three Organs of Pistacia lentiscus from Saudi Arabia. Molecules 2023, 28, 5156. https://doi.org/10.3390/molecules28135156
Al-Zaben M, Zaban MA, Naghmouchi S, Nasser Alsaloom A, Al-Sugiran N, Alrokban A. Comparison of Phytochemical Composition, Antibacterial, and Antifungal Activities of Extracts from Three Organs of Pistacia lentiscus from Saudi Arabia. Molecules. 2023; 28(13):5156. https://doi.org/10.3390/molecules28135156
Chicago/Turabian StyleAl-Zaben, Maha, Mayasar Al Zaban, Souheila Naghmouchi, Albandary Nasser Alsaloom, Nada Al-Sugiran, and Ahlam Alrokban. 2023. "Comparison of Phytochemical Composition, Antibacterial, and Antifungal Activities of Extracts from Three Organs of Pistacia lentiscus from Saudi Arabia" Molecules 28, no. 13: 5156. https://doi.org/10.3390/molecules28135156
APA StyleAl-Zaben, M., Zaban, M. A., Naghmouchi, S., Nasser Alsaloom, A., Al-Sugiran, N., & Alrokban, A. (2023). Comparison of Phytochemical Composition, Antibacterial, and Antifungal Activities of Extracts from Three Organs of Pistacia lentiscus from Saudi Arabia. Molecules, 28(13), 5156. https://doi.org/10.3390/molecules28135156