Multidirectional Effects of Red Clover (Trifolium pratense L.) in Support of Menopause Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Analysis
2.2. Determination of Total Phenolic Content (TPC)
2.3. Antioxidant Activity
2.4. α-Glucosidase Inhibition
2.5. Collagenase Inhibition
2.6. Lipase Inhibition
2.7. Parallel Artificial Membrane Permeability Assay (PAMPA)
2.8. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Experimental Material
- Tenia—a diploid, medium-early variety from Małopolska Hodowla Roślin Spółka z o.o., entered in the National Register in 2006. Plants of this variety are characterized by very good winter hardiness. It has a very fast rate of plant regrowth in spring. After swathing, the rate of plant regrowth is rated as average. During the growth period, this variety shows a low tendency to lodge. It is distinguished by a significantly higher seed yield than other red clover varieties. Plants of this variety show high total protein content and high protein yield during the growing season.
- Milena—a diploid variety from Małopolska Hodowlia Roślin Spółka z o.o., entered in the National Register in 2008. It has good winter hardiness and a low tendency to lodge. The regrowth rate in the early spring vegetation period and after mowing is assessed as average. The variety shows good resistance to clover canker and powdery mildew infestation. Intended for hay use in open field cultivation. Performs well in pure sowing and in mixtures with grasses. Pure sowing gives a high yield of fresh and dry matter with very good quality parameters. Plants show a high content of total protein in dry matter. It yields fairly well when grown for seed and the seed yield ranges from 300 to 600 kg per ha.
- Atlantis—a medium-early tetraploid variety from DSV company. The variety is characterized by good winter hardiness. It scores highly in terms of dry matter yields in all offshoots. In addition to an even yield distribution over the growing season, it has the additional characteristic of being highly competitive in the sward, thanks to its high plant growth. It stays in the sward for quite a long time and also has medium resistance to disease infestation.
- Lucrum—a diploid variety. In the year of sowing, it has a medium tendency to flower. The plant is characterized by a stem of medium length. Plants show a tendency to flower late.
- Magellan—a tetraploid variety. In the year of sowing, it is characterized by a weak tendency to flower. It is characterized by a medium stem length, which is characterized by medium hairiness. Plants tend to flower moderately in the year of sowing.
- Lemmon—a diploid variety. It shows a medium tendency to flower in the year of sowing, a stem of medium length, sparse to medium stem hairiness, and medium tendency to flower in the year of sowing.
3.2. Extraction
3.3. Determination of the Content of Active Compounds Using HPLC Method
3.4. Total Phenolic Content (TPC)
3.5. Antioxidant Activity
3.5.1. DPPH Assay
3.5.2. CUPRAC Assay
3.6. α-Glucosidase Inhibitory Assay
3.7. Collagenase Inhibition Assay [44]
3.8. Lipase Inhibition Assay
3.9. Parallel Artificial Membrane Permeability Assay (PAMPA)
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Depypere, H.T.; Comhaire, F.H. Herbal Preparations for the Menopause: Beyond Isoflavones and Black Cohosh. Maturitas 2014, 77, 191–194. [Google Scholar] [CrossRef]
- Naseer, N.M.; Aburjai, T.A.; Al-Jubori, I.S. Isolation of Isoflavones from Iraqi Trifolium pratense. Res. J. Pharm. Technol. 2022, 15, 4692–4696. [Google Scholar] [CrossRef]
- Van Patten, C.L.; Olivotto, I.A.; Chambers, G.K.; Gelmon, K.A.; Hislop, T.G.; Templeton, E.; Wattie, A.; Prior, J.C. Effect of Soy Phytoestrogens on Hot Flashes in Postmenopausal Women with Breast Cancer: A Randomized, Controlled Clinical Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Estrella, R.E.N.; Landa, A.I.; Lafuente, J.V.; Gargiulo, P.A. Effects of Antidepressants and Soybean Association in Depressive Menopausal Women. Acta Pol. Pharm. 2014, 71, 323–327. [Google Scholar] [PubMed]
- Liu, Y.; Zhou, Y.; Nirasawa, S.; Tatsumi, E.; Cheng, Y.; Li, L. In Vivo Anti-Fatigue Activity of Sufu with Fortification of Isoflavones. Pharmacogn. Mag. 2014, 10, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfarpour, M.; Sadeghi, R.; Roudsari, R.L.; Khorsand, I.; Khadivzadeh, T.; Muoio, B. Red Clover for Treatment of Hot Flashes and Menopausal Symptoms: A Systematic Review and Meta-Analysis. J. Inst. Obstet. Gynaecol. 2016, 36, 301–311. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Pereira, L. Effects of Red Clover on Perimenopausal and Postmenopausal Women’s Blood Lipid Profile: A Meta-Analysis. Climacteric J. Int. Menopause Soc. 2018, 21, 446–453. [Google Scholar] [CrossRef]
- Błaszczuk, A.; Barańska, A.; Kanadys, W.; Malm, M.; Jach, M.E.; Religioni, U.; Wróbel, R.; Herda, J.; Polz-dacewicz, M. Role of Phytoestrogen-Rich Bioactive Substances (Linum usitatissimum L., Glycine max L., Trifolium pratense L.) in Cardiovascular Disease Prevention in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2467. [Google Scholar] [CrossRef]
- Masuda, T.; Ino, Y.; Hirai, A.; Okamura, A.; Ishikawa, H.; Yokoyama, S.-I.; Osawa, T. Effects of Isoflavone-Rich Red Clover Extract on Blood Glucose Level: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Food Sci. 2021, 86, 1393–1399. [Google Scholar] [CrossRef]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.-O.; Kang, H.W. Anti-Inflammatory and Antioxidant Effects of Anthocyanins of Trifolium pratense (Red Clover) in Lipopolysaccharide-Stimulated RAW-267.4 Macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [Green Version]
- Tsao, R.; Papadopoulos, Y.; Yang, R.; Young, J.C.; McRae, K. Isoflavone Profiles of Red Clovers and Their Distribution in Different Parts Harvested at Different Growing Stages. J. Agric. Food Chem. 2006, 54, 5797–5805. [Google Scholar] [CrossRef]
- Petrauskas, G.; Norkevičienė, E.; Baistruk-Hlodan, L. Genetic Differentiation of Red Clover (Trifolium pratense L.) Cultivars and Their Wild Relatives. Agriculture 2023, 13, 1008. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry Leaves as New Functional Food? Screening Antioxidant, Anti-Inflammatory and Microbiological Activities in Correlation with Phytochemical Analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef]
- Rapisarda, S.; Abu-Ghannam, N. Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential. Sustainability 2023, 15, 634. [Google Scholar] [CrossRef]
- Ates, E.; Tenikecier, H.S. Content of Isoflavones and Macroelements in Five Clover Species (Trifolium spp.) Grown on Pasture: The Influence of a Slope Aspect. J. Elem. 2022, 27, 2240. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Marksa, M.; Bernatoniene, J. The Effect of Traditional and Cyclodextrin-Assisted Extraction Methods on Trifolium pratense L. (Red Clover) Extracts Antioxidant Potential. Antioxidants 2022, 11, 435. [Google Scholar] [CrossRef]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.-M.; Nadăș, G.C.; Novac, C.Ú.; Filip, G.A.; Vlase, L.; Crișan, G. Red Clover and the Importance of Extraction Processes—Ways in Which Extraction Techniques and Parameters Affect Trifolium pratense L. Extracts’ Phytochemical Profile and Biological Activities. Processes 2022, 10, 2581. [Google Scholar] [CrossRef]
- Akbaribazm, M.; Khazaei, F.; Naseri, L.; Pazhouhi, M.; Zamanian, M.; Khazaei, M. Pharmacological and Therapeutic Properties of the Red Clover (Trifolium pratense L.): An Overview of the New Findings. J. Tradit. Chin. Med. 2021, 41, 642. [Google Scholar] [CrossRef]
- Cardullo, N.; Muccilli, V.; Pulvirenti, L.; Tringali, C. Natural Isoflavones and Semisynthetic Derivatives as Pancreatic Lipase Inhibitors. J. Nat. Prod. 2021, 84, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Marrelli, M.; Conforti, F.; Tenuta, M.C.; Bonesi, M.; Menichini, F.; Loizzo, M. Trifolium pratense and T. Repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods 2015, 4, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, G.G.J.M.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; Van Der Saag, P.T.; Van Der Burg, B.; Gustafsson, J.Å. Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor Beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Lemežienė, N.; Padarauskas, A.; Butkutė, B.; Ceseviciene, J.; Taujenis, L.; Norkevičienė, E.J.M. The Concentration of Isoflavones in Red Clover (Trifolium pratense L.) at Flowering Stage. Zemdirbyste 2015, 102, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Fecka, I. Comparison of Polyphenol Content and Antioxidant Capacity of Strawberry Fruit from 90 Cultivars of Fragaria×ananassa Duch. Food Chem. 2019, 270, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Oney-Montalvo, J.; Uc-Varguez, A.; Ramírez-Rivera, E.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I. Influence of Soil Composition on the Profile and Content of Polyphenols in Habanero Peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 1234. [Google Scholar] [CrossRef]
- Kovalikova, Z.; Lnenicka, J.; Andrys, R. The Influence of Locality on Phenolic Profile and Antioxidant Capacity of Bud Extracts. Foods 2021, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Saviranta, N.M.M.; Anttonen, M.J.; Von Wright, A.; Karjalainen, R.O. Red Clover (Trifolium pratense L.) Isoflavones: Determination of Concentrations by Plant Stage, Flower Colour, Plant Part and Cultivar. J. Sci. Food Agric. 2008, 88, 125–132. [Google Scholar] [CrossRef]
- Swinny, E.E.; Ryan, K.G. Red Clover Trifolium pratense L. Phytoestrogens: UV-B Radiation Increases Isoflavone Yield, and Postharvest Drying Methods Change the Glucoside Conjugate Profiles. J. Agric. Food Chem. 2005, 53, 8273–8278. [Google Scholar] [CrossRef]
- Garbiec, E.; Cielecka-Piontek, J.; Kowalówka, M.; Hołubiec, M.; Zalewski, P. Genistein—Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022, 27, 815. [Google Scholar] [CrossRef]
- Esmaeili, A.K.; Taha, R.M.; Mohajer, S.; Banisalam, B. Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from In Vivo and In Vitro Grown Trifolium pratense L. (Red Clover). BioMed Res. Int. 2015, 2015, 643285. [Google Scholar] [CrossRef] [Green Version]
- Kicel, A.M.W. Phenolic Acids in Flowers and Leaves of Trifolium repens L. and Trifolium pratense L. Herba Pol. 2007, 54, 52–60. [Google Scholar]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of Phenolic Compounds in Trifolium pratense L. Extracts at Different Growth Stages and Their Biological Activities. Int. J. Food Prop. 2017, 20, 3090–3101. [Google Scholar] [CrossRef] [Green Version]
- Miłek, M.; Marcinčáková, D.; Legáth, J. Polyphenols Content, Antioxidant Activity, and Cytotoxicity Assessment of Taraxacum Officinale Extracts Prepared through the Micelle-Mediated Extraction Method. Molecules 2019, 24, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, T.; Kovarovič, J.; Bystrická, J.; Vollmannová, A.; Musilová, J.; Lenková, M. The Content of Polyphenols and Antioxidant Activity in Leaves and Flowers of Wild Garlic (Allium ursinum L.). Acta Aliment. 2018, 47, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupane, P.; Lamichhane, J. Estimation of Total Phenolic Content, Total Flavonoid Content and Antioxidant Capacities of Five Medicinal Plants from Nepal. Vegetos 2020, 33, 360–366. [Google Scholar] [CrossRef]
- Parikh, B.; Patel, V.H. Total Phenolic Content and Total Antioxidant Capacity of Common Indian Pulses and Split Pulses. J. Food Sci. Technol. 2018, 55, 1499–1507. [Google Scholar] [CrossRef]
- Susano, P.; Silva, J.; Alves, C.; Martins, A.; Gaspar, H.; Pinteus, S.; Mouga, T.; Goettert, M.; Petrovski, Z.; Branco, L.; et al. Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra Costata. Mar. Drugs 2021, 19, 135. [Google Scholar] [CrossRef]
- Samruan, W.; Oonsivilai, A.; Oonsivilai, R. Soybean and Fermented Soybean Extract Antioxidant Activities. Int. J. Nutr. Food Eng. 2012, 6, 1134–1137. [Google Scholar]
- Yokoyama, S.-I.; Kodera, M.; Hirai, A.; Nakada, M.; Ueno, Y.; Osawa, T. Red Clover (Trifolium pratense L.) Sprout Prevents Metabolic Syndrome. J. Nutr. Sci. Vitaminol. 2020, 66, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Oza, M.J.; Kulkarni, Y.A. Trifolium pratense (Red Clover) Improve SIRT1 Expression and Glycogen Content in High Fat Diet-Streptozotocin Induced Type 2 Diabetes in Rats. Chem. Biodivers. 2020, 17, e2000019. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, T.; Zhong, F.; Hong, Y.; Chen, L.; Ye, H. Red Clover Extract Exerts Antidiabetic and Hypolipidemic Effects in Db/Db Mice. Exp. Ther. Med. 2012, 4, 699–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissinen, L.; Kähäri, V.M. Matrix Metalloproteinases in Inflammation. Biochim. Biophys. Acta 2014, 1840, 2571–2580. [Google Scholar] [CrossRef] [PubMed]
- Alqodri, L.; Girsang, E.; Napiah Nasution, A.; Ferdinand Ginting, S. Comparison of Antioxidant and Anti-Collagenase Activities Ethanol Extract of Black Soybeans with Daidzein Compounds. Am. Sci. Res. J. Eng. 2020, 70, 90–98. [Google Scholar]
- Geeta; Widodo, W.S.; Widowati, W.; Ginting, C.N.; Lister, I.N.E.; Armansyah, A.; Girsang, E. Comparison of Antioxidant and Anti-Collagenase Activity of Genistein and Epicatechin. Pharm. Sci. Res. 2019, 6, 4510. [Google Scholar] [CrossRef]
- Manzoureh, R.; Farahpour, M.R. Topical Administration of Hydroethanolic Extract of Trifolium pratense (Red Clover) Accelerates Wound Healing by Apoptosis and Re-Epithelialization. Biotech. Histochem. 2021, 96, 276–286. [Google Scholar] [CrossRef]
- Circosta, C.; Pasquale, R.D.; Palumbo, D.R.; Samperi, S.; Occhiuto, F. Effects of Isoflavones from Red Clover (Trifolium pratense) on Skin Changes Induced by Ovariectomy in Rats. Phytother. Res. 2006, 20, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Niu, Y.; Yang, Z.; Zhang, Y.; Guo, Q.; Yang, Y.; Zhou, X.; Ding, Y.; Liu, C. Biochanin A Alleviates Gingival Inflammation and Alveolar Bone Loss in Rats with Experimental Periodontitis. Exp. Ther. Med. 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Sin, B.Y.; Kim, H.P. Inhibition of Collagenase by Naturally-Occurring Flavonoids. Arch. Pharm. Res. 2005, 28, 1152–1155. [Google Scholar] [CrossRef]
- Kozakowski, J.; Gietka-Czernel, M.; Leszczynska, D.; Majos, A. Obesity in Menopause—Our Negligence or an Unfortunate Inevitability? Przeglad Menopauzalny Menopause Rev. 2017, 16, 61. [Google Scholar] [CrossRef]
- Slanc, P.; Doljak, B.; Kreft, S.; Lunder, M.; Janeš, D.; Štrukelj, B. Screening of Selected Food and Medicinal Plant Extracts for Pancreatic Lipase Inhibition. Phytother. Res. 2009, 23, 874–877. [Google Scholar] [CrossRef]
- Gholamhoseinian, A.; Shahouzehi, B.; Sharifi-far, F. Inhibitory Effect of Some Plant Extracts on Pancreatic Lipase. IJP Int. J. Pharmacol. 2010, 6, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Chhina, S.; Singh, A.; Menon, I.; Singh, R.; Sharma, A.; Aggarwal, V. A Randomized Clinical Study for Comparative Evaluation of Aloe Vera and 0.2% Chlorhexidine Gluconate Mouthwash Efficacy on de-Novo Plaque Formation. J. Int. Soc. Prev. Community Dent. 2016, 6, 251–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Núñez-Gastélum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In Vitro Inhibition of Pancreatic Lipase by Polyphenols: A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study. Food Technol. Biotechnol. 2017, 55, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Tava, A.; Pecio, Ł.; Stochmal, A.; Pecetti, L. Clovamide and Flavonoids from Leaves of Trifolium pratense and T. Pratense Subsp. Nivale Grown in Italy. Nat. Prod. Commun. 2015, 10, 933–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Wu, G.; Su, X.; Yang, H.; Zhang, J. Antiobesity Action of a Daidzein Derivative on Male Obese Mice Induced by a High-Fat Diet. Nutr. Res. 2009, 29, 656–663. [Google Scholar] [CrossRef]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and Its Relationship with Passive Drug Permeation. Pharm. Res. 2011, 28, 962–977. [Google Scholar] [CrossRef]
- Papaj, K.; Kasprzycka, A.; Góra, A.; Grajoszek, A.; Rzepecka, G.; Stojko, J.; Barski, J.J.; Szeja, W.; Rusin, A. Structure–Bioavailability Relationship Study of Genistein Derivatives with Antiproliferative Activity on Human Cancer Cell. J. Pharm. Biomed. Anal. 2020, 185, 113216. [Google Scholar] [CrossRef]
- Luo, L.Y.; Fan, M.X.; Zhao, H.Y.; Li, M.X.; Wu, X.; Gao, W.Y. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their In Vitro Absorption in Ussing Chamber and Caco-2 Cell Models. J. Agric. Food Chem. 2018, 66, 2917–2924. [Google Scholar] [CrossRef]
- Gampe, N.; Dávid, D.N.; Takács-Novák, K.; Backlund, A.; Béni, S. In Vitro and in Silico Evaluation of Ononis Isoflavonoids as Molecules Targeting the Central Nervous System. PLoS ONE 2022, 17, e0265639. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic Activity, Biological Effect and Bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Matthies, A.; Loh, G.; Blaut, M.; Braune, A. Daidzein and Genistein Are Converted to Equol and 5-Hydroxy-Equol by Human Intestinal Slackia Isoflavoniconvertens in Gnotobiotic Rats. J. Nutr. 2012, 142, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kim, Y.H.; Yu, H.J.; Cho, N.S.; Kim, T.H.; Kim, D.C.; Chung, C.B.; Hwang, Y.I.; Kim, K.H. Enhanced Bioavailability of Soy Isoflavones by Complexation with β-Cyclodextrin in Rats. Biosci. Biotechnol. Biochem. 2007, 71, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.R.; Brown, N.M.; Zimmer-Nechemias, L.; Brashear, W.T.; Wolfe, B.E.; Kirschner, A.S.; Heubi, J.E. Evidence for Lack of Absorption of Soy Isoflavone Glycosides in Humans, Supporting the Crucial Role of Intestinal Metabolism for Bioavailability. Am. J. Clin. Nutr. 2002, 76, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, T.; Melzig, M.F. Medicinal Plants Traditionally Used for Treatment of Obesity and Diabetes Mellitus—Screening for Pancreatic Lipase and α-Amylase Inhibition. Phytother. Res. 2016, 30, 260–266. [Google Scholar] [CrossRef] [PubMed]
Total Polyphenol Content (TPC) | ||
---|---|---|
Leaves | Flowers | |
mg GAE/g DW | ||
Tenia | 15.922 ± 1.321 a | 27.909 ± 1.624 b |
Atlantis | 16.747 ± 0.547 ab | 42.303 ± 1.264 a |
Lucrum | 18.397 ± 1.423 b | 56.178 ± 1.102 c |
Magellan | 12.758 ± 0.263 d | 42.575 ± 1.106 a |
Lemmon | 40.584 ± 0.976 e | 43.401 ± 1.317 a |
Milena | 23.124 ± 0.650 c | 42.032 ± 1.004 a |
CUPRAC | DPPH | |||
---|---|---|---|---|
Leaves | Flowers | Leaves | Flowers | |
IC50 (mg/mL) | IC50 (mg/mL) | |||
Tenia | 2.049 ± 0.108 a | 1.206 ± 0.012 a | 6.352 ± 0.262 a | 3.033 ± 0.129 a |
Atlantis | 1.856 ± 0.062 b | 0.814 ± 0.0012 b | 6.469 ± 0.106 a | 2.280 ± 0.039 b |
Lucrum | 1.710 ± 0.029 b | 0.644 ± 0.004 c | 4.854 ± 0.273 b | 1.393 ± 0.096 c |
Magellan | 3.363 ± 0.067 c | 0.955 ± 0.019 d | 7.924 ± 0.082 c | 2.375 ± 0.060 d |
Lemmon | 0.683 ± 0.0037 d | 0.832 ± 0.0017 b | 2.583 ± 0.089 d | 2.197 ± 0.057 be |
Milena | 1.266 ± 0.045 e | 0.723 ± 0.029 e | 4.090 ± 0.029 e | 2.125 ± 0.044 bf |
Ascorbic acid | 0.073 ± 0.003 | 0.068 ± 0.005 |
α-Glucosidase Inhibition | ||
---|---|---|
Leaves | Flowers | |
IC50 (mg/mL) | ||
Tenia | 13.674 ± 0.653 a | 5.357 ± 0.375 a |
Atlantis | 24.935 ± 0.604 b | 4.903 ± 0.147 a |
Lucrum | 15.417 ± 0.396 a | 2.044 ± 0.104 b |
Magellan | 14.768 ± 0.263 a | 5.043 ± 0.156 a |
Lemmon | 4.481 ± 0.263 d | 17.006 ± 0.918 c |
Milena | 13.879 ± 1.083 a | 3.711 ± 0.074 a |
Acarbose | IC50 = 2.871 ± 0.044 mg/ml |
Collagenase Inhibition | ||
---|---|---|
Leaves | Flowers | |
Inhibition (%) | ||
Tenia | 28.920 ± 4.473 a | 49.468 ± 4.639 a |
Atlantis | 34.776 ± 3.010 ba | 72.188 ± 3.568 b |
Lucrum | 41.625 ± 2.005 bc | 89.174 ± 4.206 c |
Magellan | 46.041 ± 4.59 cf | 63.483 ± 3.330 c |
Lemmon | 89.381 ± 4.780 d | 42.036 ± 3.206 a |
Milena | 40.261 ± 3.780 b | 47.894 ± 2.526 a |
EGCG | IC50 = 0.666 ± 0.007 mg/ml |
Lipase Inhibition | ||
---|---|---|
Leaves | Flowers | |
Inhibition (%) | ||
Tenia | 5.321 ± 1.281 a | 11.318 ± 1.888 a |
Atlantis | 19.679 ± 3.758 b | 28.057 ± 1.357 b |
Lucrum | 55.605 ± 5.602 c | 76.583 ± 4.525 b |
Magellan | 33.699 ± 2.671 d | 66.301 ± 7.056 c |
Lemmon | 72.044 ± 5.371 e | 36.402 ± 4.112 d |
Milena | 20.861 ± 3.451 ba | 60.094 ± 3.774 c |
Orlistat | IC50 = 0.400 ± 0.026 mg/ml |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, A.; Szulc, P.; Zielewicz, W.; Walkowiak, J.; Cielecka-Piontek, J. Multidirectional Effects of Red Clover (Trifolium pratense L.) in Support of Menopause Therapy. Molecules 2023, 28, 5178. https://doi.org/10.3390/molecules28135178
Gościniak A, Szulc P, Zielewicz W, Walkowiak J, Cielecka-Piontek J. Multidirectional Effects of Red Clover (Trifolium pratense L.) in Support of Menopause Therapy. Molecules. 2023; 28(13):5178. https://doi.org/10.3390/molecules28135178
Chicago/Turabian StyleGościniak, Anna, Piotr Szulc, Waldemar Zielewicz, Jarosław Walkowiak, and Judyta Cielecka-Piontek. 2023. "Multidirectional Effects of Red Clover (Trifolium pratense L.) in Support of Menopause Therapy" Molecules 28, no. 13: 5178. https://doi.org/10.3390/molecules28135178
APA StyleGościniak, A., Szulc, P., Zielewicz, W., Walkowiak, J., & Cielecka-Piontek, J. (2023). Multidirectional Effects of Red Clover (Trifolium pratense L.) in Support of Menopause Therapy. Molecules, 28(13), 5178. https://doi.org/10.3390/molecules28135178