Pyrrolizidine Alkaloids in Food on the Italian Market
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS/MS Method Validation
2.2. Occurrence of PAs/PANOs in Food
2.2.1. Honey Samples
2.2.2. Bee Pollen Samples
2.2.3. Dried Tea Samples
2.2.4. Dried Herbal Infusion Samples
2.2.5. Dried Herb Samples
2.2.6. Fresh Borage Leaf Samples
3. Materials and Methods
3.1. Sampling
3.2. Materials and Reagents
3.3. Working Solutions
3.4. Sample Preparation
3.4.1. SPE Procedure
3.4.2. QuEChERS Procedure
3.5. LC-MS/MS System and Chromatographic Conditions for Analysis
3.6. Quantification
3.7. Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- EFSA Contam Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on Pyrrolizidine Alkaloids in Food and Feed. EFSA J. 2011, 9, 2406. [Google Scholar] [CrossRef]
- Schmeller, T.; El-Shazly, A.; Wink, M. Allelochemical Activities of Pyrrolizidine Alkaloids: Interactions with Neuroreceptors and Acetylcholine Related Enzymes. J. Chem. Ecol. 1997, 23, 399–416. [Google Scholar] [CrossRef]
- Moreira, R.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. Int. J. Mol. Sci. 2018, 19, 1668. [Google Scholar] [CrossRef] [Green Version]
- Kopp, T.; Abdel-Tawab, M.; Mizaikoff, B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins 2020, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, T. Chemical Ecology of Pyrrolizidine Alkaloids. Planta 1999, 207, 483–495. [Google Scholar] [CrossRef]
- Mulder, P.P.J.; Sánchez, P.L.; These, A.; Preiss-Weigert, A.; Castellari, M. Occurrence of Pyrrolizidine Alkaloids in Food. EFSA Support. Publ. 2015, 12, 859E. [Google Scholar] [CrossRef]
- Smith, L.W.; Culvenor, C.C.J. Plant Sources of Hepatotoxic Pyrrolizidine Alkaloids. J. Nat. Prod. 1981, 44, 129–152. [Google Scholar] [CrossRef]
- Selmar, D.; Wittke, C.; Beck-von Wolffersdorff, I.; Klier, B.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Transfer of Pyrrolizidine Alkaloids between Living Plants: A Disregarded Source of Contaminations. Environ. Pollut. 2019, 248, 456–461. [Google Scholar] [CrossRef]
- Willocx, M.; Van der Beeten, I.; Asselman, P.; Delgat, L.; Baert, W.; Janssens, S.B.; Leliaert, F.; Picron, J.-F.; Vanhee, C. Sorting out the Plants Responsible for a Contamination with Pyrrolizidine Alkaloids in Spice Seeds by Means of LC-MS/MS and DNA Barcoding: Proof of Principle with Cumin and Anise Spice Seeds. Food Chem. Mol. Sci. 2022, 4, 100070. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Sierra, I. The Concerning Food Safety Issue of Pyrrolizidine Alkaloids: An Overview. Trends Food Sci. Technol. 2022, 120, 123–139. [Google Scholar] [CrossRef]
- Nowak, M.; Wittke, C.; Lederer, I.; Klier, B.; Kleinwächter, M.; Selmar, D. Interspecific Transfer of Pyrrolizidine Alkaloids: An Unconsidered Source of Contaminations of Phytopharmaceuticals and Plant Derived Commodities. Food Chem. 2016, 213, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Dusemund, B.; Nowak, N.; Sommerfeld, C.; Lindtner, O.; Schäfer, B.; Lampen, A. Risk Assessment of Pyrrolizidine Alkaloids in Food of Plant and Animal Origin. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 115, 63–72. [Google Scholar] [CrossRef] [PubMed]
- WHO; IARC. Iarc Monograph on the Evaluation of Carcinogenics Risks to Humans. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARCPress: Lyon, France, 2002; Volume 82, ISBN 978-92-832-1282-9. [Google Scholar]
- European Food Safety Authority (EFSA). Opinion of the Panel on contaminants in the food chain CONTAM related to pyrrolizidine alkaloids as undesirable substances in animal feed. EFSA J. 2007, 5, 447. [Google Scholar] [CrossRef]
- Prakash, A.S.; Pereira, T.N.; Reilly, P.E.B.; Seawright, A.A. Pyrrolizidine Alkaloids in Human Diet. Mutat. Res. Toxicol. Environ. Mutagen. 1999, 443, 53–67. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Risks for Human Health Related to the Presence of Pyrrolizidine Alkaloids in Honey, Tea, Herbal Infusions and Food Supplements. EFSA J. 2017, 15, 4908. [Google Scholar] [CrossRef] [Green Version]
- RASFF Food and Feed Safety Alerts. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 5 May 2023).
- European Food Safety Authority (EFSA). Dietary exposure assessment to pyrrolizidine alkaloids in the European population. EFSA J. 2016, 14, 4572. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EU). Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). Off. J. Eur. Union 2023. [Google Scholar]
- Commission Regulation (EU). 2020/2040 of 11 December 2020, Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Pyrrolizidine Al-kaloids in Certain Foodstuffs. Off. J. Eur. Union 2020, L, 420. [Google Scholar]
- European Union Reference Laboratory (EURL) for Mycotoxins and Plant Toxins. EURL-MP-Method_002 v2, 2019, Determination of Pyrrolizidine Alkaloids in Plantbased Food and Feed Materials, Including (Herbal) Teas, Herbal Food Supplements, Fodder and Feedstuffs by LC-MS/MS; Wageningen Food and Safety Research: Wageningen, The Netherlands, 2019. [Google Scholar]
- Polhill, R.M. Crotalaria in Africa and Madagascar; CRC Press: Boca Raton, FL, USA, 1982; ISBN 978-90-6191-090-9. [Google Scholar]
- European Union Reference Laboratory (EURL) for Mycotoxins and Plant Toxins. EURL MP-Background Doc_003 Guidance Document Performance Criteria v1.1 Draft; Wageningen Food and Safety Research: Wageningen, The Netherlands, 2021. [Google Scholar]
- Picron, J.-F.; Herman, M.; Van Hoeck, E.; Goscinny, S. Monitoring of Pyrrolizidine Alkaloids in Beehive Products and Derivatives on the Belgian Market. Environ. Sci. Pollut. Res. Int. 2020, 27, 5693–5708. [Google Scholar] [CrossRef]
- Kast, C.; Dübecke, A.; Kilchenmann, V.; Bieri, K.; Böhlen, M.; Zoller, O.; Beckh, G.; Lüllmann, C. Analysis of Swiss Honeys for Pyrrolizidine Alkaloids. J. Apic. Res. 2014, 53, 75–83. [Google Scholar] [CrossRef]
- Portale Della Flora d’Italia—Portal to the Flora of Italy. Available online: http://dryades.units.it/floritaly (accessed on 12 May 2023).
- Brugnerotto, P.; Seraglio, S.K.T.; Schulz, M.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Pyrrolizidine Alkaloids and Beehive Products: A Review. Food Chem. 2021, 342, 128384. [Google Scholar] [CrossRef]
- Mulder, P.P.J.; López, P.; Castelari, M.; Bodi, D.; Ronczka, S.; Preiss-Weigert, A.; These, A. Occurrence of Pyrrolizidine Alkaloids in Animal- and Plant-Derived Food: Results of a Survey across Europe. Food Addit. Contam. Part A 2018, 35, 118–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, P.P.J.; de Witte, S.L.; Stoopen, G.M.; van der Meulen, J.; van Wikselaar, P.G.; Gruys, E.; Groot, M.J.; Hoogenboom, R.L.A.P. Transfer of Pyrrolizidine Alkaloids from Various Herbs to Eggs and Meat in Laying Hens. Food Addit. Contam. Part A 2016, 33, 1826–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinello, M.; Cristofoli, C.; Gallina, A.; Mutinelli, F. Easy and Rapid Method for the Quantitative Determination of Pyrrolizidine Alkaloids in Honey by Ultra Performance Liquid Chromatography-Mass Spectrometry: An Evaluation in Commercial Honey. Food Control 2014, 37, 146–152. [Google Scholar] [CrossRef]
- Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and Validation of a QuEChERS Method Coupled to Liquid Chromatography and High Resolution Mass Spectrometry to Determine Pyrrolizidine and Tropane Alkaloids in Honey. Food Chem. 2017, 234, 295–302. [Google Scholar] [CrossRef]
- Lucatello, L.; Merlanti, R.; De Jesus Inacio, L.; Bisutti, V.; Montanucci, L.; Capolongo, F. Pyrrolizidine Alkaloid Concentrations in Local Italian and Retail Honeys of Different Origin: A Scenario of Human Exposure. J. Food Compos. Anal. 2021, 104, 104182. [Google Scholar] [CrossRef]
- Roncada, P.; Isani, G.; Peloso, M.; Dalmonte, T.; Bonan, S.; Caprai, E. Pyrrolizidine Alkaloids from Monofloral and Multifloral Italian Honey. Int. J. Environ. Res. Public Health 2023, 20, 5410. [Google Scholar] [CrossRef]
- Dübecke, A.; Beckh, G.; Lüllmann, C. Pyrrolizidine Alkaloids in Honey and Bee Pollen. Food Addit. Contam. Part A 2011, 28, 348–358. [Google Scholar] [CrossRef]
- Kempf, M.; Wittig, M.; Schönfeld, K.; Cramer, L.; Schreier, P.; Beuerle, T. Pyrrolizidine Alkaloids in Food: Downstream Contamination in the Food Chain Caused by Honey and Pollen. Food Addit. Contam. Part A 2011, 28, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Kempf, M.; Reinhard, A.; Beuerle, T. Pyrrolizidine Alkaloids (PAs) in Honey and Pollen-Legal Regulation of PA Levels in Food and Animal Feed Required. Mol. Nutr. Food Res. 2010, 54, 158–168. [Google Scholar] [CrossRef]
- Edgar, J.A.; Colegate, S.M.; Boppré, M.; Molyneux, R.J. Pyrrolizidine Alkaloids in Food: A Spectrum of Potential Health Consequences. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2011, 28, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Fedrizzi, G.; Caprai, E.; Contessi, A.; Piana, L. Alcaloidi Pirrolizidinici Nel Polline—Novità Dalla Ricerca 2022. Lapisonline: Bologna, Italia, 2022. Available online: https://www.lapisonline.it/alcaloidi-pirrolizidinici-nel-polline-novita-dalla-ricerca/ (accessed on 12 May 2023).
- Kast, C.; Kilchenmann, V.; Reinhard, H.; Droz, B.; Lucchetti, M.A.; Dübecke, A.; Beckh, G.; Zoller, O. Chemical Fingerprinting Identifies Echium Vulgare, Eupatorium Cannabinum and Senecio Spp. as Plant Species Mainly Responsible for Pyrrolizidine Alkaloids in Bee-Collected Pollen. Food Addit. Contam. Part A 2018, 35, 316–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinello, M.; Manzinello, C.; Gallina, A.; Mutinelli, F. In-House Validation and Application of UHPLC-MS/MS Method for the Quantification of Pyrrolizidine and Tropane Alkaloids in Commercial Honey Bee-Collected Pollen, Teas and Herbal Infusions Purchased on Italian Market in 2019–2020 Referring to Recent European Union Regulations. Int. J. Food Sci. Technol. 2022, 57, 7505–7516. [Google Scholar] [CrossRef]
- Shimshoni, J.A.; Duebecke, A.; Mulder, P.P.J.; Cuneah, O.; Barel, S. Pyrrolizidine and Tropane Alkaloids in Teas and the Herbal Teas Peppermint, Rooibos and Chamomile in the Israeli Market. Food Addit. Contam. Part A 2015, 32, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Picron, J.-F.; Herman, M.; Van Hoeck, E.; Goscinny, S. Analytical Strategies for the Determination of Pyrrolizidine Alkaloids in Plant Based Food and Examination of the Transfer Rate during the Infusion Process. Food Chem. 2018, 266, 514–523. [Google Scholar] [CrossRef]
- Huybrechts, B.; Callebaut, A. Pyrrolizidine Alkaloids in Food and Feed on the Belgian Market. Food Addit. Contam. Part A 2015, 32, 1939–1951. [Google Scholar] [CrossRef]
- Schulz, M.; Meins, J.; Diemert, S.; Zagermann-Muncke, P.; Goebel, R.; Schrenk, D.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Detection of Pyrrolizidine Alkaloids in German Licensed Herbal Medicinal Teas. Phytomedicine 2015, 22, 648–656. [Google Scholar] [CrossRef]
- Al-Subaie, S.F.; Alowaifeer, A.M.; Mohamed, M.E. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022, 11, 3873. [Google Scholar] [CrossRef]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples. Foods 2020, 9, 1319. [Google Scholar] [CrossRef]
- Kaltner, F.; Rychlik, M.; Gareis, M.; Gottschalk, C. Occurrence and Risk Assessment of Pyrrolizidine Alkaloids in Spices and Culinary Herbs from Various Geographical Origins. Toxins 2020, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Bundesinstitut für Risikobewertung (BfR). Pyrrolizidine Alkaloid Levels in Dried and Deep-Frozen Spices and Herbs Too High: BfR Opinion No 017/2019 of 13 May 2019. BfR-Stellungnahmen 2019, 2019, 017. [Google Scholar] [CrossRef]
- Thomas, K.; Hagele, F.; Plate, E.-M. UA-BW|Oregano—An Aromatic but Loaded Culinary Herb. Part I: Pyrrolizidine Alkaloids. Available online: https://www.ua-bw.de/pub/beitrag.asp?subid=0&Thema_ID=5&ID=3024&Pdf=No&lang=EN (accessed on 9 May 2023).
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Miniaturized and Modified QuEChERS Method with Mesostructured Silica as Clean-up Sorbent for Pyrrolizidine Alkaloids Determination in Aromatic Herbs. Food Chem. 2022, 380, 132189. [Google Scholar] [CrossRef]
- Schrenk, D.; Fahrer, J.; Allemang, A.; Fu, P.; Lin, G.; Mahony, C.; Mulder, P.P.J.; Peijnenburg, A.; Pfuhler, S.; Rietjens, I.M.C.M.; et al. Novel Insights into Pyrrolizidine Alkaloid Toxicity and Implications for Risk Assessment: Occurrence, Genotoxicity, Toxicokinetics, Risk Assessment—A Workshop Report. Planta Med. 2022, 88, 98–117. [Google Scholar] [CrossRef] [PubMed]
- Schramm, S.; Köhler, N.; Rozhon, W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019, 24, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano-Baena, M.-D.; Tasset, I.; Muñoz-Serrano, A.; Alonso-Moraga, Á.; De Haro-Bailón, A. Cancer Prevention and Health Benefices of Traditionally Consumed Borago officinalis Plants. Nutrients 2016, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Roby, M.R.; Stermitz, F.R. Unsaturated Pyrrolizidines from Borage (Borago officinalis), a Common Garden Herb. J. Nat. Prod. 1984, 47, 747–748. [Google Scholar] [CrossRef]
- Bundesinstitut für Risikobewertung (BfR). Determination of Pyrrolizidine Alkaloids (PA) in Plant Material by SPE-LC-MS/MS—Method Protocol; Berlin, Germany. 2014. Available online: https://www.bfr.bund.de/cm/349/determination-of-pyrrolizidine-alkaloids-pa-in-plant-material.pdf (accessed on 11 May 2023).
- European Commission; Health and Food Safety Directorate-General (DG SANTE). Guidance Document on Identification of Mycotoxins in Food and Feed. SANTE/12089/2016; European Commission DG SANTE: Bruxelles, Belgium, 2017. [Google Scholar]
- European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Off. J. Eur. Union 2006, 70, 12–34. [Google Scholar]
PAs—Subtype | PAs—Group 1 | Botanical Origins |
---|---|---|
Senecionine-type | Sn-group, Rt-group, Sp-group, and their N-oxides and Sk | Senecio spp. (Asteraceae family) Crotalaria spp. (Fabaceae family) |
Lycopsamine-type | Em-group, Ly-group, and their N-oxides | Echium spp., Borago officinalis (Boraginaceae family) Eupatorium spp. (Asteraceae family) |
Heliotrine-type | Eu, Ht, Lc, and their N-oxides | Heliotropium spp. (Boraginaceae family) |
Monocrotaline-type | Mc and Mc-N-oxide (n.i. 2) | Crotalaria spp. (Fabaceae family) |
Matrix | LOQ 1 (µg/kg) | Sum PA/PANO Min Content (µg/kg) | Sum PA/PANO Max Content (µg/kg) | PAs Maximum Level 2 (µg/kg) | Predominant Analyte | Sub-Type |
---|---|---|---|---|---|---|
Bee pollen | 5 | 6 ± 1.2 | 10,168 ± 2033 | 500 | Echinatine-N-oxide | Lyc 4-type |
Dried herbs (e.g., dried borage, marjoram, oregano) | 5 | 11 ± 2.2 | 4678 ± 935 | 1000 | Lycopsamine-N-oxide | Lyc-type |
Fresh borage leaves | 5 | 5 ± 1 | 3410 ± 682 | 750 | Lycopsamine-N-oxide | Lyc-type |
Dried tea (Camellia sinensis) | 5 | 5 ± 1 | 1346 ± 269 | 150 | Retrorsine-N-oxide | Sen 5-type |
Herbal Infusions (e.g., lemon balm, chamomile, peppermint) | 5 | 5 ± 1 | 1171 ± 234 | 400 | Retrorsine-N-oxide | Sen-type |
Honey | 1 | 1 ± 0.2 | 121.1 ± 24 | / 3 | Echimidine | Lyc-type |
Food Categories | Matrix | Botanical Origin | No. of Samples | % |
---|---|---|---|---|
Fresh borage leaves | Fresh borage leaves | Borago officinalis | 13 | 2 |
Dried herbs | Rosemary, marjoram, basil, borage, oregano, coriander, and cinnamon | Rosmarinus officinalis, Origanum majorana, Ocimum basilicum, Borago officinalis, Origanum L., Coriandrum sativum L., and Cinnamomun verum L. | 24 | 4 |
Dried herbal infusions | Lemon balm, chamomile, and herbal teas made from mallow, peppermint, karkadè, ginger, and fennel seeds | Melissa officinalis, Matricaria chamomilla, Malva sylvestris L., Mentha x piperita, Hibiscus sabdariffa L., Zingiber officinalis, and Foeniculum vulgare Mill. | 41 | 7 |
Dried tea | Black and green tea | Camellia sinensis | 74 | 12 |
Pollen | Bee pollen | Unknown 1 | 130 | 22 |
Honey | Monofloral (acacia, chestnut, linden, rapeseed, honeydew, betony, and sunflower) and multi-floral | Robinia pseudoacacia, Castanea sativa, Tilia L., Brassica napus, Sulla coronaria, Stachys officinalis and Heliantus annuus L. | 320 | 53 |
Pyrrolizidine Alkaloids | MH+ | CE | m/z | Q, q |
---|---|---|---|---|
Sn group | 336.2 | 25 | 120.2 | Q |
25 | 138.0 | q | ||
Ly group | 299.7 | 20 | 138.0 | Q |
25 | 156.0 | q | ||
Ht | 314.1 | 20 | 138.0 | Q |
25 | 156.0 | q | ||
Eu | 330 | 20 | 138.0 | Q |
15 | 156.0 | q | ||
Sk | 366.1 | 30 | 122.0 | Q |
25 | 167.9 | q | ||
LyN group | 316.1 | 25 | 172.0 | Q |
25 | 138.0 | q | ||
HtN | 330.2 | 25 | 172.0 | Q |
25 | 111.0 | q | ||
EuN | 346.2 | 25 | 172.0 | Q |
20 | 328.1 | q | ||
Lc | 412.1 | 25 | 120.1 | Q |
18 | 220.0 | q | ||
Sp group | 334 | 25 | 120.1 | Q |
25 | 138.0 | q | ||
Em group | 398.6 | 20 | 119.9 | Q |
15 | 220.4 | q | ||
Rt group | 352.1 | 25 | 120.0 | Q |
25 | 138.3 | q | ||
SnN group | 352.1 | 25 | 94.0 | Q |
30 | 118.0 | q | ||
LcN | 428.1 | 30 | 254.0 | Q |
25 | 94.0 | q | ||
SpN group | 350.1 | 30 | 94.0 | Q |
25 | 120.0 | q | ||
EmN group | 414.2 | 30 | 254.0 | Q |
25 | 220.0 | q | ||
RtN group | 368.3 | 30 | 94.0 | Q |
20 | 120.0 | q |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peloso, M.; Minkoumba Sonfack, G.; Paduano, S.; De Martino, M.; De Santis, B.; Caprai, E. Pyrrolizidine Alkaloids in Food on the Italian Market. Molecules 2023, 28, 5346. https://doi.org/10.3390/molecules28145346
Peloso M, Minkoumba Sonfack G, Paduano S, De Martino M, De Santis B, Caprai E. Pyrrolizidine Alkaloids in Food on the Italian Market. Molecules. 2023; 28(14):5346. https://doi.org/10.3390/molecules28145346
Chicago/Turabian StylePeloso, Mariantonietta, Gaetan Minkoumba Sonfack, Sandra Paduano, Michele De Martino, Barbara De Santis, and Elisabetta Caprai. 2023. "Pyrrolizidine Alkaloids in Food on the Italian Market" Molecules 28, no. 14: 5346. https://doi.org/10.3390/molecules28145346
APA StylePeloso, M., Minkoumba Sonfack, G., Paduano, S., De Martino, M., De Santis, B., & Caprai, E. (2023). Pyrrolizidine Alkaloids in Food on the Italian Market. Molecules, 28(14), 5346. https://doi.org/10.3390/molecules28145346