Impact of Low Lithium Concentrations on the Fatty Acids and Elemental Composition of Salvinia natans
Abstract
:1. Introduction
2. Result and Discussion
2.1. Lithium Impact on the Plant’s Photosynthetic Pigments and Total Protein Content
2.2. The Li Impact on the Macro and Micro Elements Content in S. natans
2.3. Lithium Impact on S. natans Fatty Acids
2.4. Cluster Analysis
2.5. FT-IR Analysis
3. Materials and Methods
3.1. Experimental Design
3.2. Chemicals and Reagents
3.3. Elemental Composition
3.4. Photosynthetic Pigments Content Determination
3.5. Oil Extraction from S. natans
3.6. Instrumentation and Chromatographic Conditions
3.7. FT-IR Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amulya, K.; Morris, S.; Lens, P.N.L. Aquatic biomass as sustainable feedstock for biorefineries. Biofuels Bioprod. Biorefining 2023, 17, 1012–1029. [Google Scholar] [CrossRef]
- Polechonska, L.; Klink, A.; Dambiec, M. Trace element accumulation in Salvinia natans from areas of various land use types. Environ. Sci. Pollut. Res. Int. 2019, 26, 30242–30251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Zhu, S.; Wu, Y.; Huai, H. The effects of cooking oil fume condensates (COFCs) on the vegetative growth of Salvinia natans (L.) All. J. Hazard. Mater. 2009, 172, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elnaby, A.M.; Egorov, M.A. Efficiency of different particle sizes of dried Salvinia natans in the removing of Cu(II) and oil pollutions from water. J. Water Chem. Technol. 2012, 34, 143–146. [Google Scholar] [CrossRef]
- Escolà Casas, M.; Matamoros, V. Linking plant-root exudate changes to micropollutant exposure in aquatic plants (Lemna minor and Salvinia natans). A prospective metabolomic study. Chemosphere 2022, 287, 132056. [Google Scholar] [CrossRef]
- Naeem, A.; Aslam, M.; Saifullah; Muhling, K.H. Lithium: Perspectives of nutritional beneficence, dietary intake, biogeochemistry, and biofortification of vegetables and mushrooms. Sci. Total Environ. 2021, 798, 149249. [Google Scholar] [CrossRef]
- Muztar, A.J.; Slinger, S.J.; Burton, J.H. The chemical composition of aquatic macrophytes. II. Amino acid composition of the protein and non-protein fractions. Can. J. Plant Sci. 1978, 58, 843–849. [Google Scholar] [CrossRef]
- Kalinowska, M.; Hawrylak-Nowak, B.; Szymanska, M. The influence of two lithium forms on the growth, L-ascorbic acid content and lithium accumulation in lettuce plants. Biol. Trace Elem. Res. 2013, 152, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, N.; Adeel, M.; Azeem, I.; Ahmad, M.A.; Zain, M.; Abbas, A.; Zhou, P.; Li, Y.; Ming, X.; Rui, Y. Responses of agricultural plants to lithium pollution: Trends, meta-analysis, and perspectives. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Kalinowska, M.; Szymanska, M. A study on selected physiological parameters of plants grown under lithium supplementation. Biol. Trace Elem. Res. 2012, 149, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, M.A.; Romero, C.; Belles, J.M.; Montesinos, C.; Vicente, O.; Serrano, R. Lithium treatment induces a hypersensitive-like response in tobacco. Planta 2003, 217, 417–424. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Gjetvaj, B.; Westcott, N.; Gruber, M.Y. Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci. 2009, 177, 68–80. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities—A review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef]
- Huang, Z.; Qadeer, A.; Zheng, S.; Ge, F.; Zhang, K.; Yin, D.; Zheng, B.; Zhao, X. Fatty acid profile as an efficient bioindicator of PCB bioaccumulation in a freshwater lake food web: A stable isotope guided investigation. J. Hazard. Mater. 2022, 423, 127121. [Google Scholar] [CrossRef]
- Singh, R.; Tripathi, R.D.; Dwivedi, S.; Kumar, A.; Trivedi, P.K.; Chakrabarty, D. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 2010, 101, 3025–3032. [Google Scholar] [CrossRef]
- Bejaoui, S.; Fouzai, C.; Trabelsi, W.; Rabeh, I.; Chetoui, I.; Telahigue, K.; El Cafsi, M.; Soudani, N. Evaluation of lead chloride toxicity on lipid profile in venus verrucosa gills. Int. J. Environ. Res. 2019, 13, 793–800. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Ahmad, M.A.; Zain, M.; Waheed, U.; Javaid, R.A.; Haider, F.U.; Azeem, I.; Zhou, P.; Li, Y.; et al. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. Environ. Sci. Ecotechnol. 2023, 15, 100252. [Google Scholar] [CrossRef]
- Medeiros Vicentini-Polette, C.; Rodolfo Ramos, P.; Bernardo Gonçalves, C.; Lopes De Oliveira, A. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem. X 2021, 12, 100166. [Google Scholar] [CrossRef]
- Rozentsvet, O.A.; Rezanka, T.; Bosenko, E.S.; Uzhametskaya, E.A.; Dembitskii, V.M. Fatty Acids, Phospholipids, and the Betaine Lipid DGTS from the Aquatic Fern Salvinia natans. Chem. Nat. Compd. 2005, 41, 487–490. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Rodríguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Carmona-García, R.; Juárez-Barrientos, J.M.; Chávez-Zamudio, R.; Martínez-Sánchez, C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason. Sonochem. 2016, 31, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, A.; Ferrentino, G.; Angeli, L.; Morozova, K.; Zatelli, D.; Scampicchio, M. Ultrasound assisted extraction of oils from apple seeds: A comparative study with supercritical fluid and conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 2023, 86, 103370. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Rasul, K.; Farooq, A.B.U.; Zia, Z.; Natasha; Fahad, S.; Abbas, S.; Shah, G.M.; Rabbani, F.; Hammad, H.M. Growth and physiological response of spinach to various lithium concentrations in soil. Environ. Sci. Pollut. Res. 2020, 27, 39717–39725. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, N.; Adeel, M.; Azeem, I.; Ahmad, M.A.; Zain, M.; Abbas, A.; Hussain, M.; Jiang, Y.; Zhou, P.; Li, Y.; et al. Interplay of higher plants with lithium pollution: Global trends, meta-analysis, and perspectives. Chemosphere 2023, 310, 136663. [Google Scholar] [CrossRef] [PubMed]
- Maclean, W.; Harnly, J.; Chen, J.; Chevassus-Agnes, S.; Gilani, G.; Livesey, G.; Warwick, P. Food energy–Methods of analysis and conversion factors. In Food and Agriculture Organization of the United Nations Technical Workshop Report; The Food and Agriculture Organization: Rome, Italy, 2003; pp. 8–9. [Google Scholar]
- Jampeetong, A.; Brix, H. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecol. Eng. 2009, 35, 695–702. [Google Scholar] [CrossRef]
- Mohan, B.S.; Hosetti, B.B. Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. J. Environ. Biol. 2006, 27, 701–704. [Google Scholar]
- Sen, A.K.; Bhattacharyya, M. Studies of uptake and toxic effects of NI (II) on Salvinia natans. Water Air Soil. Poll. 1994, 78, 141–152. [Google Scholar] [CrossRef]
- Mandal, C.; Ghosh, N.; Maiti, S.; Das, K.; Gupta, S.; Dey, N.; Adak, M.K. Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it’s modulation by polyamine. Physiol. Mol. Biol. Plants 2013, 19, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Lafarga, T.; Acién-Fernández, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research 2020, 48, 101909. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Robinson, B.; Wijesekara, H.; Wijesooriya, M.; Keerthanan, S.; et al. From mine to mind and mobiles—Lithium contamination and its risk management. Environ. Pollut. 2021, 290, 118067. [Google Scholar] [CrossRef]
- Rzymski, P.; Niedzielski, P.; Siwulski, M.; Mleczek, M.; Budzynska, S.; Gasecka, M.; Poniedzialek, B. Lithium biofortification of medicinal mushrooms Agrocybe cylindracea and Hericium erinaceus. J. Food Sci. Technol. 2017, 54, 2387–2393. [Google Scholar] [CrossRef]
- Watanabe, T.; Maejima, E.; Yoshimura, T.; Urayama, M.; Yamauchi, A.; Owadano, M.; Okada, R.; Osaki, M.; Kanayama, Y.; Shinano, T. The Ionomic Study of Vegetable Crops. PLoS ONE 2016, 11, e0160273. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Ali, A.; Khan, M.A.U.; Khan, T.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities-a review. Environ. Sci. Pollut. Res. Int. 2019, 26, 12673–12688. [Google Scholar] [CrossRef]
- Ragsdale, S.W. Nickel biochemistry. Curr. Opin. Chem. Biol. 1998, 2, 208–215. [Google Scholar] [CrossRef]
- Mubarak, M.; Shaija, A.; Suchithra, T.V. Ultrasonication: An effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production. Res. Eff. Technol. 2016, 2, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Sharma, J.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R.; Kumar, N.; Chakrabarti, R. Freshwater macrophytes: A potential source of minerals and fatty acids for fish, poultry, and livestock. Front. Nutr. 2022, 9, 869425. [Google Scholar] [CrossRef]
- Prado, C.; Chocobar Ponce, S.; Pagano, E.; Prado, F.E.; Rosa, M. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquat. Toxicol. 2016, 175, 213–221. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; pp. XXVI, 550. [Google Scholar] [CrossRef]
- Shahzad, B.; Mughal, M.N.; Tanveer, M.; Gupta, D.; Abbas, G. Is lithium biologically an important or toxic element to living organisms? An overview. Environ. Sci. Pollut. Res. Int. 2017, 24, 103–115. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Zhang, Y.H.; Xiao, A.F.; Zhang, A.H.; Fang, B.S. Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Front. Nutr. 2022, 9, 851402. [Google Scholar] [CrossRef]
- Gumber, S.C.; Loewus, M.W.; Loewus, F.A. myo-Inositol-1-phosphate synthase from pine pollen: Sulfhydryl involvement at the active site. Arch. Biochem. Biophys. 1984, 231, 372–377. [Google Scholar] [CrossRef]
- Carvalho, I.S.; Teixeira, M.C.; Brodelius, M. Fatty acids profile of selected Artemisia spp. plants: Health promotion. LWT-Food Sci. Technol. 2011, 44, 293–298. [Google Scholar] [CrossRef]
- Wysokinski, A.; Lozak, I.; Kuziemska, B. The dynamics of molybdenum, boron, and iron uptake, translocation and accumulation by pea (Pisum sativum L.). Agronomy 2022, 12, 935. [Google Scholar] [CrossRef]
- Török, A.I.; Moldovan, A.; Kovacs, E.; Cadar, O.; Becze, A.; Levei, E.A.; Neag, E. Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant. Materials 2022, 15, 7243. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Abbasi, T.; Abbasi, S.A. Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta. Environ. Sci. Pollut. Res. Int. 2018, 25, 4989–5002. [Google Scholar] [CrossRef]
- Bock, P.; Gierlinger, N. Infrared and Raman spectra of lignin substructures: Coniferyl alcohol, abietin, and coniferyl aldehyde. J. Raman Spectrosc. 2019, 50, 778–792. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Senila, L.; Neag, E.; Cadar, O.; Kovacs, M.H.; Becze, A.; Senila, M. Chemical, nutritional and antioxidant characteristics of different food seeds. Appl. Sci. 2020, 10, 1589. [Google Scholar] [CrossRef] [Green Version]
Element (%, DW) | 0 mg/L Li | 1 mg/L Li | 3 mg/L Li | 5 mg/L Li |
---|---|---|---|---|
C | 35.9 ± 1.79 a | 39.1 ± 1.96 a | 37.1 ± 1.85 a | 36.6 ± 1.83 a |
H | 4.76 ± 0.24 a | 5.03 ± 0.25 a | 5.00 ± 0.25 a | 4.73 ± 0.24 a |
N | 3.64 ± 0.18 ab | 2.57 ± 0.13 c | 3.26 ± 0.16 b | 3.78 ± 0.19 a |
Protein * | 22.8 ± 1.14 ab | 16.1 ± 0.80 c | 20.4 ± 1.02 b | 23.6 ±1.18 a |
Fatty Acid | 0 mg/L Li | 1 mg/L Li | 3 mg/L Li | 5 mg/L Li |
---|---|---|---|---|
C14:0 | 5.59 ± 0.56 efg | 8.76 ± 0.88 cde | 5.13 ± 0.88 fg | 8.19 ± 0.82 def |
C16:0 | 17.26 ± 1.73 a | 16.84 ± 1.68 a | 18.90 ± 1.89 a | 16.27 ± 1.63 a |
C16:1(n9) | 5.90 ± 0.59 fg | 5.96 ± 0.60 fg | 5.22 ± 0.52 fgh | 5.49 ± 0.55 fgh |
C17:0 | 2.61 ± 1.68 gh | nd. | nd. | nd. |
C17:1 | 2.81 ± 0.28 h | nd. | nd. | nd. |
C18:0 | 9.84 ± 0.98 bcd | 9.44 ± 0.98 cd | 10.10 ± 1.00 bcd | 9.42 ± 0.94 cd |
C18:1(c + t)(n9) | 9.76 ± 0.98 de | 13.50 ± 1.35 ab | 15.03 ± 1.50 a | 12.99 ± 1.30 ab |
C18:2(c + t)(n6) | 7.99 ± 0.80 ef | 9.93 ± 0.99 de | 11.19 ± 1.12 bcd | 11.08 ± 1.11 bcd |
C18:3(n6) | 12.81 ± 1.28 abc | 15.06 ± 1.51 a | 9.97 ± 0.98 cde | 10.01 ± 1.12 cde |
C18:3(n3) | 6.15 ± 0.62 fg | 6.06 ± 0.61 fg | 6.54 ± 0.65 fg | 5.88 ± 0.58 fg |
C20:0 | 11.87 ± 1.19 bc | 10.09 ± 1.01 bcd | 12.88 ± 1.29 b | 10.78 ± 1.08 bcd |
C20:4(n6) | 5.05 ± 0.51 gh | 4.36 ± 0.44 gh | 5.05 ± 0.51 gh | 5.04 ± 0.50 gh |
C24:0 | 2.37 ± 0.24 gh | nd. | nd. | 3.36 ± 0.34 fg |
Σ SFAs | 49.5 | 45.1 | 47.0 | 48.0 |
Σ MUFAs | 24.1 | 28.2 | 25.4 | 26.7 |
Σ PUFAs | 32.0 | 35.4 | 32.8 | 32.0 |
PUFAs/MUFAs | 1.3 | 1.3 | 1.3 | 1.2 |
PUFAs/SFAs | 0.65 | 0.78 | 0.70 | 0.67 |
omega-6 | 17.86 | 19.42 | 15.02 | 15.05 |
omega-3 | 6.15 | 6.06 | 6.54 | 5.88 |
omega3/omega 6 | 0.34 | 0.31 | 0.44 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Török, A.I.; Moldovan, A.; Senila, L.; Kovacs, E.; Resz, M.-A.; Senila, M.; Cadar, O.; Tanaselia, C.; Levei, E.A. Impact of Low Lithium Concentrations on the Fatty Acids and Elemental Composition of Salvinia natans. Molecules 2023, 28, 5347. https://doi.org/10.3390/molecules28145347
Török AI, Moldovan A, Senila L, Kovacs E, Resz M-A, Senila M, Cadar O, Tanaselia C, Levei EA. Impact of Low Lithium Concentrations on the Fatty Acids and Elemental Composition of Salvinia natans. Molecules. 2023; 28(14):5347. https://doi.org/10.3390/molecules28145347
Chicago/Turabian StyleTörök, Anamaria Iulia, Ana Moldovan, Lacrimioara Senila, Eniko Kovacs, Maria-Alexandra Resz, Marin Senila, Oana Cadar, Claudiu Tanaselia, and Erika Andrea Levei. 2023. "Impact of Low Lithium Concentrations on the Fatty Acids and Elemental Composition of Salvinia natans" Molecules 28, no. 14: 5347. https://doi.org/10.3390/molecules28145347
APA StyleTörök, A. I., Moldovan, A., Senila, L., Kovacs, E., Resz, M. -A., Senila, M., Cadar, O., Tanaselia, C., & Levei, E. A. (2023). Impact of Low Lithium Concentrations on the Fatty Acids and Elemental Composition of Salvinia natans. Molecules, 28(14), 5347. https://doi.org/10.3390/molecules28145347