An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structural Characterization
2.2. Electrochemical Characterization of Different Modified Electrodes
2.3. Optimization of Analytical Parameters
2.4. DPASV Determination of Hg2+
2.5. Repeatability, Reproducibility, Stability, and Selectivity Experiments
2.6. Performance Evaluation for Practical Application
3. Experimental Section
3.1. Reagents and Chemicals
3.2. Instruments
3.3. Preparation of Cu2O/BC Composite
3.4. Preparation of Working Electrode
3.5. Measurement of Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lei, P.; Zhou, Y.; Zhao, S.; Dong, C.; Shuang, S. Carbon-supported X-manganate (X-Ni, Zn, and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions. J. Hazard. Mater. 2022, 435, 129036–129046. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(II) ions. Anal. Chem. 2012, 84, 5351–53577. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Palmer, T.A. Determination of mercaptans by titration with mercury (II). Anal. Chem. 1961, 33, 98–100. [Google Scholar] [CrossRef]
- Ekeanyanwu, C.L.; Alisi, C.S.; Ekean, R.C.; Wu, Y. Levels of aflatoxin M1 and selected heavy metals (Pb, Cd, Cr, Cu, Zn, Fe, As, and Hg) in the breast milk of lactating mothers in South Eastern, Nigeria. Food Control 2020, 112, 107150–107157. [Google Scholar] [CrossRef]
- Yao, L.L.; Gao, S.J.; Liu, S.; Bi, Y.L.; Wang, R.R.; Qu, H.; Wu, Y.E.; Mao, Y.; Zheng, L. Single atom enzyme functionalized solution gated graphene transistor for real time detection of mercury ion. ACS Appl. Mater. Int. 2020, 12, 6268–6275. [Google Scholar] [CrossRef]
- Cotruvo, J.A. Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- McGeehan, S.; Baszler, T.; Gaskill, C.; Johnson, J.; Smith, L.; Raisbeck, M.; Schrier, N.; Harris, H.; Talcott, P. Interlaboratory comparison of heavy metal testing in animal diagnostic specimens and feed using inductively coupled plasma-mass spectrometry. J. Vet. Diagn. Investig. 2020, 32, 291–300. [Google Scholar] [CrossRef]
- Kongor, A.; Panchal, M.; Athar, M.; Makwana, B.; Sindhav, G.; Jha, P.C.; Jain, V. Synthesis and modeling of calix 4 pyrrole wrapped Au nanoprobe for specific detection of Pb(II): Antioxidant and radical scavenging efficiencies. J. Photochem. Photobiol. A Chem. 2018, 364, 801–810. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, J.; Wang, L.; Shang, L.; Cui, L.; Gao, Y.; Li, B.; Li, Y.F. Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. TrAc-Trends Anal. Chem. 2020, 122, 115721–115732. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Khan, A.; Asiri, A.M.; Alam, M.M.; Rahman, M.M.; Shaban, M. Surfactant-assisted graphene oxide/methylaniline nanocomposites for lead ionic sensor development for the environmental remediation in real sample matrices. Int. J. Environ. Sci. Technol. 2019, 16, 8461–8470. [Google Scholar] [CrossRef]
- Guo, H.; Zheng, Z.; Zhang, Y.; Lin, H.; Xu, Q. Highly selective detection of Pb2+ by a nanoscale Ni-based metal-organic framework fabricated through one-pot hydrothermal reaction. Sens. Actuators B Chem. 2017, 248, 430–436. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L. Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals. J. Hazard. Mater. 2017, 333, 23–31. [Google Scholar] [CrossRef]
- Mohadeseh, S.; Hadi, B.; Masoud Reza, S.; Somayeh, T.; Rahman, H. Electrocatalytic determination of captopril using a carbon paste electrode modifed with N-(ferrocenyl-methylidene) fuorene-2-amine and graphene/ZnO nanocomposite. J. Serbian Chem. Soc. 2019, 84, 175–185. [Google Scholar]
- Chen, J.; Meng, H.; Tian, Y.; Yang, R.; Du, D.; Li, Z.; Qu, L.; Lin, Y. Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz. 2019, 4, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Song, Y.; Yan, X.; Zhu, C.; Du, D.; Wang, S.; Asiri, A.; Lin, Y. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today Off. 2018, 21, 164–177. [Google Scholar] [CrossRef]
- Buledi, J.A.; Mahar, N.; Mallah, A.; Solangi, A.R.; Palabiyik, I.M.; Qambrani, N.; Karimi, F.; Vasseghian, Y.; Karimi-Maleh, H. Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation. Food Chem. Toxicol. 2022, 161, 112843–112851. [Google Scholar] [CrossRef] [PubMed]
- Baghayeri, M.; Amiri, A.; Maleki, B.; Alizadeh, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem. 2018, 273, 1442–1450. [Google Scholar] [CrossRef]
- Pang, J.; Jin, S.; Hou, J.; Wang, G.; Sun, K.; Zheng, Y.; Li, H.; Shen, Y.; Yang, X.; Chen, L. Ultra-trace simultaneous detection of Hg(II), Cd(II), and Cu(II) and mechanism based on Co/CoO/Co3O4 Z-type heterojunctions. Sens. Actuators B Chem. 2023, 374, 132725–132734. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Qiu, S.Y.; Gao, J.; Gu, L.L.; Wang, K.X.; Zuo, P.J.; Sun, K.N.; Zhu, X.D. Integrating Co3O4 nanoparticles with MnO2 nanosheets as bifunctional electrocatalysts for water splitting. Int. J. Hydrogen Energy 2021, 46, 10356–10365. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Wang, J.; Li, Y.; Jiang, H.; Li, C. Dual-defective Co3O4 nanoarrays enrich target intermediates and promise high-efficient overall water splitting. Chem. Eng. J. 2021, 424, 130328–130334. [Google Scholar] [CrossRef]
- Zhang, P.; O’Connora, D.; Wang, Y.N.; Jiang, L.; Xia, T.X.; Wan, L.W.; Tsang, D.C.W.; Okd, Y.S.; Hou, D.Y. A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater. 2020, 384, 121286–121293. [Google Scholar] [CrossRef]
- Hei, Y.S.; Li, X.Q.; Zhou, X.; Liu, J.J.; Hassan, M.; Zhang, S.Y.; Yang, Y.; Bo, X.J.; Wang, H.L.; Zhou, M. Cost effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal. Chim. Acta 2018, 1029, 15–23. [Google Scholar] [CrossRef]
- Zhao, S.P.; Liu, W.; Liu, S.; Zhang, Y.; Wang, H.L.; Chen, S.G. The hierarchical cobalt oxide-porous carbons composites and their high performance as an anode for Lithium-ion batteries enhanced by the excellent synergistic effect. Electrochim. Acta 2017, 231, 511–520. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Y.J.; Yang, Z.; Tang, X.H.; Li, X.L.; He, G.L.; Cheng, Y.Q.; Fang, Z.B.; He, R.; Zhang, Y.F. Analysis of synergistic effect between graphene and octahedral cuprous oxide in cuprous oxide-graphene composites and their photocatalytic application. J. Alloys Compd. 2017, 712, 704–713. [Google Scholar] [CrossRef]
- Ma, Y.J.; Li, X.L.; Yang, Z.; Xu, S.S.; Zhang, W.; Su, Y.J.; Hu, N.T.; Lu, W.J.; Feng, J.; Zhang, Y.F. Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots. Langmuir 2016, 32, 9418–9427. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.A.; Bedford, N.M.; Ren, Y.; Zahran, E.M.; Goodin, R.C.; Chagani, F.F.; Bachas, L.G.; Knecht, M.R. Direct synthetic control over the size, composition, and photocatalytic activity of octahedral copper oxide materials: Correlation between surface structure and catalytic functionality. ACS Appl. Mater. Interfaces 2015, 7, 13238–13250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Hong, M.; Ho, G.W. Fabrication of wheat grain textured TiO2/CuO composite nanofibers for enhanced solar H2 generation and degradation performance. Nano Energy 2015, 11, 28–37. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Ma, H.N.; Li, X.G.; Liu, B.B.; Liu, R.Q.; Komarneni, S. Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Appl. Clay Sci. 2021, 200, 105907–105916. [Google Scholar] [CrossRef]
- Alshawi, J.M.; Mohammed, M.Q.; Alesary, H.F.; Ismail, H.K.; Barton, S. Voltammetric determination of Hg2+, Zn2+, and Pb2+ ions using a PEDOT/NTA-modified electrode. ACS Omega 2022, 7, 20405–20419. [Google Scholar] [CrossRef]
- Mohammed, M.Q.; Ismail, H.K.; Alesary, H.F.; Barton, S. Use of a Schiff base-modified conducting polymer electrode for electrochemical assay of Cd(II) and Pb(II) ions by square wave voltammetry. Chem. Pap. 2022, 76, 715–729. [Google Scholar] [CrossRef]
- Govindasamy, M.; Sriram, B.; Wang, S.; Chang, Y.; Rajabathar, J. Highly sensitive determination of cancer toxic mercury ions in biological and human sustenance samples based on green and robust synthesized stannic oxide nanoparticles decorated reduced graphene oxide sheets. Anal. Chim. Acta 2020, 1137, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.Q.; Jia, M.M.; Wang, Z.Z.; Zhang, W.; Zhang, Q.; Liu, G.Z.; Zhang, Z.W.; Li, P.W. Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim. Acta 2019, 186, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.P.; Zhao, M.G.; He, Y.; Cheng, F.; Chen, S.G. Fabrication of ZnO/rGO/ppy heterostructure for electrochemical detection of mercury ion. J. Electroanal. Chem. 2018, 826, 90–95. [Google Scholar] [CrossRef]
- Singh, S.; Numan, A.; Zhan, Y.Q.; Singh, V.; Hung, T.V.; Nam, N.D. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (Ⅱ) ions in canned tuna fish and tap water based on a copper metal-organic framework. J. Hazard. Mater. 2020, 399, 123042–123050. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.X.; Pan, M.F.; Zhang, Z.W.; Hong, L.P.; Xie, X.Q.; Yang, J.Y.; Wang, S.; Wang, Z.J.; Song, Y.; Wang, S. Electrochemical sensor applying ZrO2/nitrogen-doped three-dimensional porous carbon nanocomposite for efficient detection of ultra-trace Hg2+ ions. Anal. Chim. Acta 2022, 1231, 340392–340399. [Google Scholar] [CrossRef]
Electrode Substrate | Measurement Technique | Linear Range (μg·L−1) | LOD (μg·L−1) | References |
---|---|---|---|---|
rGOS a@SnO2 | DPV | 50.15–141,476 | 16.72 | [31] |
Fe3O4/F-MWCNTs b | SWV | 2.61–6519 | 0.78 | [32] |
ZnO/rGO/Ppy c | DPV | 0.40–7.22 | 0.13 | [33] |
GCE/Cu-MOF | DPV | 0.02–10.03 | 0.013 | [34] |
ZrO2/N-3DPC d | DPASV | 0.1–220 | 0.062 | [35] |
BC/Cu2O | DPASV | 0.001–1000 | 0.0003 | This work |
Sample | Added (μg·L−1) | Founded (μg·L−1) | RSD (%) | Recovery (%) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 0 |
2 | 0.1 | 0.107 | 3.81 | 102.7 |
3 | 0.3 | 0.301 | 4.43 | 104.3 |
4 | 0.5 | 0.449 | 3.39 | 99.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Liu, J.; Peng, G.; Huang, H.; Wang, L.; Lu, L.; Gao, Y.; Hu, D.; Chen, S. An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II). Molecules 2023, 28, 5352. https://doi.org/10.3390/molecules28145352
Zou J, Liu J, Peng G, Huang H, Wang L, Lu L, Gao Y, Hu D, Chen S. An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II). Molecules. 2023; 28(14):5352. https://doi.org/10.3390/molecules28145352
Chicago/Turabian StyleZou, Jin, Jiawei Liu, Guanwei Peng, Haiyan Huang, Linyu Wang, Limin Lu, Yansha Gao, Dongnan Hu, and Shangxing Chen. 2023. "An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II)" Molecules 28, no. 14: 5352. https://doi.org/10.3390/molecules28145352
APA StyleZou, J., Liu, J., Peng, G., Huang, H., Wang, L., Lu, L., Gao, Y., Hu, D., & Chen, S. (2023). An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II). Molecules, 28(14), 5352. https://doi.org/10.3390/molecules28145352