Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments
Abstract
:1. Introduction
2. Chemical Classification of Natural Pigments
2.1. Carotenoid
2.2. Polyphenols
2.3. Quinones
2.4. Pyrrole
2.5. Pyridines
3. Extraction Methods of Natural Plant Pigments
3.1. Supercritical Fluid Extraction
3.2. Ultrasound-Assisted Extraction
3.3. Microwave-Assisted Extraction
3.4. Enzyme-Assisted Extraction
3.5. Ultra High Pressure Assisted Extraction
3.6. Joint Application
4. Biological Activity of Natural Plant Pigments
4.1. Anti-Oxidation
4.2. Anti-Inflammation
4.3. Anti-Cancer
4.4. Neuro Protection
4.5. Cardiovascular Protection
5. Modification of Natural Plant Pigments
5.1. Lipid Nanoparticles
5.2. Protein Nanoparticles
5.3. Chitosan Nanoparticles
5.4. Metal Ions
6. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simon, J.E.; Decker, E.A.; Ferruzzi, M.G.; Giusti, M.M.; Mejia, C.D.; Goldschmidt, M.; Talcott, S.T. Establishing Standards on Colors from Natural Sources. J. Food Sci. 2017, 82, 2539–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mejia, E.G.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu. Rev. Food Sci. Technol. 2020, 11, 145–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul Tania, B.T.K.; Mondal, A.; Tiwari, O.N.; Muthuraj, M.; Bhunia, B. A comprehensive review on recent trends in production, purification, and applications of prodigiosin. In Biomass Conversion and Biore-Finery; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Mereddy, R.; Maqsood, S. Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chem. 2021, 356, 129611. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Ren, J.; Liu, Y.; Sun, W.; Li, Y.; Xin, H.; Cui, Y. Natural edible pigments: A comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chem. 2023, 403, 134422. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit. Rev. Food Sci. Nutr. 2022, 5, 1–24. [Google Scholar] [CrossRef]
- Slonimskiy, Y.B.; Egorkin, N.A.; Friedrich, T.; Maksimov, E.G.; Sluchanko, N.N. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J. 2022, 289, 999–1022. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Q.; Wu, F.G.; Dai, Y.; Chen, X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Adv. Mater. 2021, 33, e2007356. [Google Scholar] [CrossRef]
- Bai, S.K.; Lee, S.J.; Na, H.J.; Ha, K.S.; Han, J.A.; Lee, H.; Kwon, Y.G.; Chung, C.K.; Kim, Y.M. β-Carotene inhibits inflam-matory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-kappa B activation. Exp. Mol. Med. 2005, 37, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.-O.; Park, C.U.; Kim, M.-J.; Lee, J. Antioxidant and prooxidant activities of β-carotene in accelerated autoxidation and photosensitized model systems. Food Sci. Biotechnol. 2012, 21, 607–611. [Google Scholar] [CrossRef]
- Yang, S.-S.; Kim, S.-G.; Park, B.-S.; Go, D.-S.; Yu, S.-K.; Kim, C.S.; Kim, J.; Kim, D.K. Effect of β-carotene on Cell Growth In-hibition of KB Human Oral Cancer Cells. Int. J. Oral. Biol. 2016, 41, 105–111. [Google Scholar] [CrossRef]
- Ou, S.; Fang, Y.; Tang, H.; Wu, T.; Chen, L.; Jiang, M.; Zhou, L.; Xu, J.; Guo, K. Lycopene protects neuroblastoma cells against oxidative damage via depression of ER stress. J. Food Sci. 2020, 85, 3552–3561. [Google Scholar] [CrossRef]
- Polat, H.; Sagit, M.; Gurgen, S.G.; Yasar, M.; Ozcan, I. Protective role of lycopene in experimental allergic rhinitis in rats. Int. J. Pediatr. Otorhinolaryngol. 2021, 150, 110905. [Google Scholar] [CrossRef]
- Marzocco, S.; Singla, R.K.; Capasso, A. Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules 2021, 26, 5333. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Liu, Z.; Wang, Q.; Liu, J.; Feng, D.; Zou, J. Lycopene Reduces Cholesterol Absorption and Prevents Athero-sclerosis in ApoE(-/-) Mice by Downregulating HNF-1alpha and NPC1L1 Expression. J. Agric. Food Chem. 2021, 69, 10114–10120. [Google Scholar] [CrossRef]
- Chang, M.X.; Xiong, F. Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules 2020, 25, 5342. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, Y.; Liu, B.; Wu, P.; Xu, S.; Shi, H. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: Reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochem. 2019, 121, 56–63. [Google Scholar] [CrossRef]
- Diao, W.; Chen, W.; Cao, W.; Yuan, H.; Ji, H.; Wang, T.; Chen, W.; Zhu, X.; Zhou, H.; Guo, H.; et al. Astaxanthin protects against renal fibrosis through inhibiting myofibroblast activation and promoting CD8(+) T cell recruitment. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 1360–1370. [Google Scholar] [CrossRef]
- Karimian, A.; Mir Mohammadrezaei, F.; Hajizadeh Moghadam, A.; Bahadori, M.H.; Ghorbani-Anarkooli, M.; Asadi, A.; Abdolmaleki, A. Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines. Acta Histochem. 2022, 124, 151832. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, Q. Assessment of the antioxidant activities of representative optical and geometric isomers of astaxanthin against singlet oxygen in solution by a spectroscopic approach. Food Chem. 2022, 395, 133584. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Huang, S.; Ke, J.; Wang, Q.; Zhou, Z.; Chang, W. Lutein attenuates angiotensin II- induced cardiac re-modeling by inhibiting AP-1/IL-11 signaling. Redox. Biol. 2021, 44, 102020. [Google Scholar] [CrossRef]
- Jv, D.J.; Ji, T.H.; Xu, Z.; Li, A.; Chen, Z.Y. The remarkable enhancement of photo-stability and antioxidant protection of lutein coupled with carbon-dot. Food Chem. 2023, 405, 134551. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Pour, M.; Farjah, G.H.; Karimipour, M.; Pourheidar, B.; Khadem Ansari, M.H. Protective effect of lutein on spinal cord ischemia-reperfusion injury in rats. Iran. J. Basic Med. Sci. 2019, 22, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Song, X. Lutein induces an inhibitory effect on the malignant progression of pancreatic adenocarcinoma by targeting BAG3/cholesterol homeostasis. J. Biochem. Mol. Toxicol. 2022, 36, e22958. [Google Scholar] [CrossRef] [PubMed]
- El-Akabawy, G.; El-Sherif, N.M. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed. Pharmacother. 2019, 111, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shi, C.; Li, J. The protective effect of zeaxanthin on human limbal and conjunctival epithelial cells against UV-induced cell death and oxidative stress. Int. J. Ophthalmol. 2019, 12, 369–374. [Google Scholar] [CrossRef]
- Sheng, Y.N.; Luo, Y.H.; Liu, S.B.; Xu, W.T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Wang, C.Y.; et al. Zeaxanthin Induces Apoptosis via ROS-Regulated MAPK and AKT Signaling Pathway in Human Gastric Cancer Cells. Onco. Targets Ther. 2020, 13, 10995–11006. [Google Scholar] [CrossRef]
- Zhang, L.N.; Li, M.J.; Shang, Y.H.; Liu, Y.R.; Han-Chang, H.; Lao, F.X. Zeaxanthin Attenuates the Vicious Circle Between Endoplasmic Reticulum Stress and Tau Phosphorylation: Involvement of GSK-3 beta Activation. J. Alzheimers Dis. 2022, 86, 191–204. [Google Scholar] [CrossRef]
- Guo, L.; Kang, J.S.; Kang, N.J.; Je, B.I.; Lee, Y.J.; Park, Y.H.; Choi, Y.W. Pelargonidin suppresses adipogenesis in 3T3-L1 cells through inhibition of PPAR-gamma signaling pathway. Arch. Biochem. Biophys. 2020, 686, 108365. [Google Scholar] [CrossRef]
- Tian, Z.; Sun, C.; Liu, J. Pelargonidin inhibits vascularization and metastasis of brain gliomas by blocking the PI3K/AKT/mTOR pathway. J. Biosci. 2022, 47, 64. [Google Scholar] [CrossRef]
- Lee, I.C.; Bae, J.S. Pelargonidin Protects Against Renal Injury in a Mouse Model of Sepsis. J. Med. Food 2019, 22, 57–61. [Google Scholar] [CrossRef]
- Seo, M.; Kim, H.; Lee, J.H.; Park, J.W. Pelargonidin ameliorates acetaminophen-induced hepatotoxicity in mice by inhibiting the ROS-induced inflammatory apoptotic response. Biochimie 2020, 168, 10–16. [Google Scholar] [CrossRef]
- Suantawee, T.; Thilavech, T.; Cheng, H.; Adisakwattana, S. Cyanidin Attenuates Methylglyoxal-Induced Oxidative Stress and Apoptosis in INS-1 Pancreatic beta-Cells by Increasing Glyoxalase-1 Activity. Nutrients 2020, 12, 1319. [Google Scholar] [CrossRef]
- Samarpita, S.; Rasool, M. Cyanidin attenuates IL-17A cytokine signaling mediated monocyte migration and differentiation into mature osteoclasts in rheumatoid arthritis. Cytokine 2021, 142, 155502. [Google Scholar] [CrossRef]
- Gan, Y.; Fu, Y.; Yang, L.; Chen, J.; Lei, H.; Liu, Q. Cyanidin-3-O-Glucoside and Cyanidin Protect Against Intestinal Barrier Damage and 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis. J. Med. Food 2020, 23, 90–99. [Google Scholar] [CrossRef]
- Yue, H.; Xu, Q.; Lv, L.; Xu, J.; Fan, H.; Wang, W. Cyanidin and peonidin inhibit SPCA-1 growth in vitro via inducing Cell Cycle Arrest and Apoptosis. Acta Pol. Pharm. Drug Res. 2019, 76, 503–509. [Google Scholar] [CrossRef]
- Yun, J.M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog. 2009, 48, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Tsiogkas, S.G.; Mavropoulos, A.; Skyvalidas, D.N.; Patrikiou, E.; Ntavari, N.; Daponte, A.I.; Grammatikopoulou, M.G.; Dar-diotis, E.; Roussaki-Schulze, A.V.; Sakkas, L.I.; et al. Delphinidin diminishes in vitro interferon-gamma and interleukin-17 producing cells in patients with psoriatic disease. Immunol. Res. 2022, 70, 161–173. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.Y.; Wang, D.; Guo, X.Z. Delphinidin protects beta2m-/Thy1+ bone marrow-derived hepatocyte stem cells against TGF-beta1-induced oxidative stress and apoptosis through the PI3K/Akt pathway in vitro. Chem. Biol. Interact. 2019, 297, 109–118. [Google Scholar] [CrossRef]
- Heysieattalab, S.; Sadeghi, L. Effects of Delphinidin on Pathophysiological Signs of Nucleus Basalis of Meynert Lesioned Rats as Animal Model of Alzheimer Disease. Neurochem. Res. 2020, 45, 1636–1646. [Google Scholar] [CrossRef]
- Ren, Z.T.; Raut, N.A.; Lawal, T.O.; Patel, S.R.; Lee, S.M.; Mahady, G.B. Peonidin-3-O-glucoside and cyanidin increase osteoblast differentiation and reduce RANKL-induced bone resorption in transgenic medaka. Phytother. Res. 2021, 35, 6255–6269. [Google Scholar] [CrossRef]
- Kwon, J.Y.; Lee, K.W.; Hur, H.J.; Lee, H.J. Peonidin inhibits phorbol-ester-induced COX-2 expression and transformation in JB6 P+ cells by blocking phosphorylation of ERK-1 and -2. Ann. N. Y. Acad. Sci. 2007, 1095, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, S.; Zhou, W.; Meng, J.; Deng, K.; Zhou, H.; Hu, N.; Suo, Y. Anthocyanin composition of fruit extracts from Lycium ruthenicum and their protective effect for gouty arthritis. Ind. Crop. Prod. 2019, 129, 414–423. [Google Scholar] [CrossRef]
- Nagaoka, M.; Maeda, T.; Moriwaki, S.; Nomura, A.; Kato, Y.; Niida, S.; Kruger, M.C.; Suzuki, K. Petunidin, a B-ring 5’-O-Methylated Derivative of Delphinidin, Stimulates Osteoblastogenesis and Reduces sRANKL-Induced Bone Loss. Int. J. Mol. Sci. 2019, 20, 2795. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Yang, C.; Shao, L.; Zhu, H.; Wang, Y.; Huang, X.; Wang, S.; Hong, L. Targeting NOX 4 by petunidin improves anox-ia/reoxygenation-induced myocardium injury. Eur. J. Pharmacol. 2020, 888, 173414. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.H.; Yeh, C.T.; Yen, G.C. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem. Toxicol. 2005, 43, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Shi, K.; Chen, G.; Shen, Y.; Pan, T. Malvidin attenuates pain and inflammation in rats with osteoarthritis by suppressing NF-kappaB signaling pathway. Inflamm. Res. 2017, 66, 1075–1084. [Google Scholar] [CrossRef]
- Wei, H.; Li, H.; Wan, S.P.; Zeng, Q.T.; Cheng, L.X.; Jiang, L.L.; Peng, Y.D. Cardioprotective Effects of Malvidin Against Iso-proterenol-Induced Myocardial Infarction in Rats: A Mechanistic Study. Med. Sci. Monit. 2017, 23, 2007–2016. [Google Scholar] [CrossRef] [Green Version]
- Gilani, S.J.; Bin-Jumah, M.N.; Al-Abbasi, F.A.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Shahid Nadeem, M.; Afzal, M.; Alzarea, S.I.; Sayyed, N.; et al. Antiamnesic Potential of Malvidin on Aluminum Chloride Activated by the Free Radical Scavenging Property. ACS Omega 2022, 7, 24231–24240. [Google Scholar] [CrossRef]
- Shehzad, A.; Rehman, G.; Lee, Y.S. Curcumin in inflammatory diseases. Biofactors 2013, 39, 69–77. [Google Scholar] [CrossRef]
- Agrawal, D.K.; Mishra, P.K. Curcumin and its analogues: Potential anticancer agents. Med. Res. Rev. 2010, 30, 818–860. [Google Scholar] [CrossRef]
- Monroy, A.; Lithgow, G.J.; Alavez, S. Curcumin and neurodegenerative diseases. Biofactors 2013, 39, 122–132. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Li, R.Z.; Xu, C.; Fan, X.X.; Li, J.X.; Meng, W.Y.; Wang, X.R.; Liang, T.L.; Guan, X.X.; Pan, H.D.; et al. Emodin induces apoptosis and suppresses non-small-cell lung cancer growth via downregulation of sPLA2-IIa. Phytomedicine 2022, 95, 153786. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, Y.; Wang, R.; Fu, Y.; Zhou, T.; Diao, H.; Wang, Z.; Lin, Y.; Li, Z.; Wen, L.; et al. Emodin alleviates cardiac fibrosis by suppressing activation of cardiac fibroblasts via upregulating metastasis associated protein 3. Acta Pharm. Sin. B 2019, 9, 724–733. [Google Scholar] [CrossRef]
- Song, Y.; Cui, X.; Zhao, R.; Hu, L.; Li, Y.; Liu, C. Emodin protects against lipopolysaccharide-induced inflammatory injury in HaCaT cells through upregulation of miR-21. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2654–2661. [Google Scholar] [CrossRef] [Green Version]
- Leung, S.W.; Lai, J.H.; Wu, J.C.; Tsai, Y.R.; Chen, Y.H.; Kang, S.J.; Chiang, Y.H.; Chang, C.F.; Chen, K.Y. Neuroprotective Effects of Emodin against Ischemia/Reperfusion Injury through Activating ERK-1/2 Signaling Pathway. Int. J. Mol. Sci. 2020, 21, 2899. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.-H.; Song, H.-Y.; Kim, M.-G.; Lee, H.-S. Anticoagulant Properties of Alizarin and Its Derivatives Derived from the Seed Extract of Cassia obtusifolia. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 163–167. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Park, S.; Hu, L.; Lee, J. Phytopigment Alizarin Inhibits Multispecies Biofilm Development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 2022, 14, 1047. [Google Scholar] [CrossRef]
- Saha, M.; Singha, S.; Ghosh, D.; Kumar, S.; Karmakar, P.; Das, S. A Cobalt(II)/Cobalt(III) complex of alizarin that was analyzed from the stand point of binding with DNA, for ROS generation and anticancer drug prospecting was identified as an analogue of anthracyclines. J. Mol. Struct. 2022, 1262, 16. [Google Scholar] [CrossRef]
- Demir, E.; Kaya, B.; Kocaoglu Cenkci, S. Antigenotoxic Activities of Ascorbic acid, Chlorophyll a, and Chlorophyll b in Acrolein and Malondialdehyde-Induced Genotoxicity in Drosophila melanogaster. Ekoloji 2013, 22, 36–42. [Google Scholar] [CrossRef]
- Subramoniam, A.; Asha, V.V.; Nair, S.A.; Sasidharan, S.P.; Sureshkumar, P.K.; Rajendran, K.N.; Karunagaran, D.; Rama-lingam, K. Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-alpha gene by the same. Inflammation 2012, 35, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Guo, W.; Zeng, M.; Zhu, S.; Li, S.; Qian, Y.; Wu, H. Phycocyanin ameliorates mouse colitis via phycocyanobilin-dependent antioxidant and anti-inflammatory protection of the intestinal epithelial barrier. Food Funct. 2022, 13, 3294–3307. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pliego, E.; Franco-Colin, M.; Rojas-Franco, P.; Blas-Valdivia, V.; Serrano-Contreras, J.I.; Penton-Rol, G.; Cano-Europa, E. Phycocyanobilin is the molecule responsible for the nephroprotective action of phycocyanin in acute kidney injury caused by mercury. Food Funct. 2021, 12, 2985–2994. [Google Scholar] [CrossRef] [PubMed]
- Penton-Rol, G.; Marin-Prida, J.; McCarty, M.F. C-Phycocyanin-derived Phycocyanobilin as a Potential Nutraceutical Approach for Major Neurodegenerative Disorders and COVID-19- induced Damage to the Nervous System. Curr. Neuropharmacol. 2021, 19, 2250–2275. [Google Scholar] [CrossRef]
- Yabuta, Y.; Fujimura, H.; Kwak, C.S.; Enomoto, T.; Watanabe, F. Antioxidant Activity of the Phycoerythrobilin Compound Formed from a Dried Korean Purple Laver (Porphyra sp.) during in Vitro Digestion. Food Sci. Technol. Res. 2010, 16, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Kwankaew, N.; Okuda, H.; Aye-Mon, A.; Ishikawa, T.; Hori, K.; Sonthi, P.; Kozakai, Y.; Ozaki, N. Antihypersensitivity effect of betanin (red beetroot extract) via modulation of microglial activation in a mouse model of neuropathic pain. Eur. J. Pain. 2021, 25, 1788–1803. [Google Scholar] [CrossRef]
- Zielinska-Przyjemska, M.; Olejnik, A.; Dobrowolska-Zachwieja, A.; Luczak, M.; Baer-Dubowska, W. DNA damage and apoptosis in blood neutrophils of inflammatory bowel disease patients and in Caco-2 cells in vitro exposed to betanin. Postep. Hig. Med. Dosw. 2016, 70, 265–271. [Google Scholar] [CrossRef]
- Song, F.; Zuo, X.; Zhao, Y.; Li, Q.; Tian, Z.; Yang, Y. Betanin-enriched red beet extract attenuated platelet activation and ag-gregation by suppressing Akt and P38 Mitogen-activated protein kinases phosphorylation. J. Funct. Foods. 2019, 61, 103491. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Wagner, A.E.; Motafakkerazad, R.; Nakajima, Y.; Matsugo, S.; Rimbach, G. Free radical scavenging and an-tioxidant activity of betanin: Electron spin resonance spectroscopy studies and studies in cultured cells. Food Chem. Toxicol. 2014, 73, 119–126. [Google Scholar] [CrossRef]
- Henarejos-Escudero, P.; Hernandez-Garcia, S.; Guerrero-Rubio, M.A.; Garcia-Carmona, F.; Gandia-Herrero, F. Antitumoral Drug Potential of Tryptophan-Betaxanthin and Related Plant Betalains in the Caenorhabditis elegans Tumoral Model. Anti. Oxid. 2020, 9, 646. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, P.; Guerrero-Rubio, M.A.; Hernandez-Garcia, S.; Henarejos-Escudero, P.; Garcia-Carmona, F.; Gan-dia-Herrero, F. Characterization of betalain-loaded liposomes and its bioactive potential in vivo after ingestion. Food Chem. 2023, 407, 135180. [Google Scholar] [CrossRef]
- Lakey-Beitia, J.; Kumar, D.J.; Hegde, M.L.; Rao, K.S. Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis. Int. J. Mol. Sci. 2019, 20, 5553. [Google Scholar] [CrossRef] [Green Version]
- Yabuzaki, J. Carotenoids Database: Structures, chemical fingerprints and distribution among organisms. Database 2017, 2017, bax004. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Carotenoids from fungi and microalgae: A review on their recent pro-duction, extraction, and developments. Bioresour. Technol. 2021, 337, 125398. [Google Scholar] [CrossRef]
- Priyadarshani, A.M. A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Crit. Rev. Food Sci. Nutr. 2017, 57, 1710–1717. [Google Scholar] [CrossRef]
- Melendez-Martinez, A.J.; Mandic, A.I.; Bantis, F.; Bohm, V.; Borge, G.I.A.; Brncic, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef]
- Mahsa Sobhani, M.H.F.; Sarah, K.; Reza, K. Immunomodulatory; Anti-inflammatory antioxidant Effects of Polyphenols A Comparative Review on the Parental Compounds and Their Metabolites. Food Rev. Int. 2021, 37, 759–811. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.; Xiao, J. Stability of polyphenols in food processing. Adv. Food Nutr. Res. 2022, 102, 1–45. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit. Rev. Food Sci. Nutr. 2021, 61, 2297–2325. [Google Scholar] [CrossRef]
- Silva, A.S.; Reboredo-Rodriguez, P.; Suntar, I.; Sureda, A.; Belwal, T.; Loizzo, M.R.; Tundis, R.; Sobarzo-Sanchez, E.; Rastrelli, L.; Forbes-Hernandez, T.Y.; et al. Evaluation of the status quo of polyphenols analysis: Part I-phytochemistry, bioactivity, inter-actions, and industrial uses. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3191–3218. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulo, B.; Phan, K.; Githaiga, J.; Raes, K.; Meester, S.D. Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. Waste Biomass Valorization 2020, 12, 6339–6374. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Huyiligeqi; Ni, J. Emodin: A Review of its Pharmacology, Toxicity and Phar-macokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Ban, E.; An, S.H.; Park, B.; Park, M.; Yoon, N.E.; Jung, B.H.; Kim, A. Improved Solubility and Oral Absorption of Emodin-Nicotinamide Cocrystal Over Emodin with PVP as a Solubility Enhancer and Crystallization Inhibitor. J. Pharm. Sci. 2020, 109, 3660–3667. [Google Scholar] [CrossRef]
- Lu, Z.; Ji, C.; Luo, X.; Lan, Y.; Han, L.; Chen, Y.; Liu, X.; Lin, Q.; Lu, F.; Wu, X.; et al. Nanoparticle-Mediated Delivery of Emodin via Colonic Irrigation Attenuates Renal Injury in 5/6 Nephrectomized Rats. Front. Pharmacol. 2020, 11, 606227. [Google Scholar] [CrossRef]
- Pan, C.J.; Wang, J.; Huang, N. Preparation, characterization and in vitro anticoagulation of emodin-eluting controlled biode-gradable stent coatings. Colloids Surf. B Biointerfaces 2010, 77, 155–160. [Google Scholar] [CrossRef]
- Xu, Z.; Hou, Y.; Zou, C.; Liang, H.; Mu, J.; Jiao, X.; Zhu, Y.; Su, L.; Liu, M.; Chen, X.; et al. Alizarin, a nature compound, inhibits the growth of pancreatic cancer cells by abrogating NF-kappaB activation. Int. J. Biol. Sci. 2022, 18, 2759–2774. [Google Scholar] [CrossRef]
- Senge, M.O.; Ryan, A.A.; Letchford, K.A.; MacGowan, S.A.; Mielke, T. Chlorophylls, Symmetry, Chirality, and Photosyn-thesis. Symmetry 2014, 6, 781–843. [Google Scholar] [CrossRef] [Green Version]
- Solymosi, K.; Mysliwa-Kurdziel, B. Chlorophylls and their Derivatives Used in Food Industry and Medicine. Mini. Rev. Med. Chem. 2017, 17, 1194–1222. [Google Scholar] [CrossRef] [Green Version]
- Mysliwa-Kurdziel, B.; Solymosi, K. Phycobilins and Phycobiliproteins Used in Food Industry and Medicine. Mini. Rev. Med. Chem. 2017, 17, 1173–1193. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhu, Y.; Hu, Z.; Wu, S.; Jin, C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci. Nutr. 2021, 9, 6406–6420. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Biological Properties and Applications of Betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waskiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Cunico, L.P.; Andersson, N.; Nilsson, B.; Turner, C. Multicomponent inverse modeling of supercritical fluid extraction of carotenoids, chlorophyll A, ergosterol and lipids from microalgae. J. Supercrit. Fluids 2018, 139, 53–61. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluids 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Sahin, S.; Nasir, N.T.B.M.; Erken, I.; Cakmak, Z.E.; Cakmak, T. Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: Optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Mater. Res. Express 2019, 6, 095404. [Google Scholar] [CrossRef]
- Zhong, M.; Huang, S.; Wang, H.; Huang, Y.; Xu, J.; Zhang, L. Optimization of ultrasonic-assisted extraction of pigment from Dioscorea cirrhosa by response surface methodology and evaluation of its stability. RSC Adv. 2019, 9, 1576–1585. [Google Scholar] [CrossRef]
- Das, A.; Basak, S.; Chakraborty, S.; Dhibar, M. Microwave: An Ecologically Innovative, Green Extraction Technology. Curr. Anal. Chem. 2022, 18, 858–866. [Google Scholar] [CrossRef]
- Sharma, A.; Mazumdar, B.; Keshav, A. Valorization of unsalable Amaranthus tricolour leaves by microwave-assisted extrac-tion of betacyanin and betaxanthin. Biomass Convers. Bioref. 2020, 17, 1–17. [Google Scholar] [CrossRef]
- Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J. Food Sci. 2019, 84, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Nadar, S.S.; Rathod, V.K. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int. J. Biol. Macromol. 2021, 191, 899–917. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, X.; Liu, H.; Zhu, H.; Zhu, Y. Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Sci. Biotechnol. 2019, 28, 1637–1647. [Google Scholar] [CrossRef]
- Lombardelli, C.; Benucci, I.; Mazzocchi, C.; Esti, M. A Novel Process for the Recovery of Betalains from Unsold Red Beets by Low-Temperature Enzyme-Assisted Extraction. Foods 2021, 10, 236. [Google Scholar] [CrossRef]
- Xi, J. Ultrahigh pressure extraction of bioactive compounds from plants-A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1097–1106. [Google Scholar] [CrossRef]
- Nunes, A.N.; do Carmo, C.S.; Duarte, C.M.M. Production of a natural red pigment derived from Opuntia spp. using a novel high pressure CO2 assisted-process. RSC Adv. 2015, 5, 83106–83114. [Google Scholar] [CrossRef]
- Ferrari, P.F.; Pettinato, M.; Casazza, A.A.; Atanasio, G.D.; Palombo, D.; Perego, P. Polyphenols from Nerone Gold 26/6, a new pigmented rice, via non-conventional extractions: Antioxidant properties and biological validation. J. Chem. Technol. Biotechnol. 2021, 96, 1691–1699. [Google Scholar] [CrossRef]
- Shahram, H.; Dinani, S.T. Optimization of ultrasonic-assisted enzymatic extraction of beta-carotene from orange processing waste. J. Food Process. Eng. 2019, 42, 16. [Google Scholar] [CrossRef]
- Fu, X.Q.; Ma, N.; Sun, W.P.; Dang, Y.Y. Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower. Ind. Crop. Prod. 2018, 123, 296–302. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Josson Akkara, P.; Sabina, E.P. A biochemical approach to the anti-inflammatory, antioxidant and antiapoptotic potential of beta-carotene as a protective agent against bromobenzene-induced hepatotoxicity in female Wistar albino rats. J. Appl. Biomed. 2020, 18, 87–95. [Google Scholar] [CrossRef]
- Wang, B.; Cui, S.; Mao, B.; Zhang, Q.; Tian, F.; Zhao, J.; Tang, X.; Chen, W. Cyanidin Alleviated CCl(4)-Induced Acute Liver Injury by Regulating the Nrf2 and NF-kappaB Signaling Pathways. Antioxidants 2022, 11, 2383. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, S.D.; Zhao, X.L.; Ni, H.Y.; Song, X.R.; Wang, W.; Yao, L.P.; Zhao, X.H.; Fu, Y.J. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. J. Funct. Foods 2020, 73, 12. [Google Scholar] [CrossRef]
- Brotosudarmo, T.H.P.; Limantara, L.; Setiyono, E.; Heriyanto. Structures of Astaxanthin and Their Consequences for Thera-peutic Application. Int. J. Food Sci. 2020, 2020, 2156582. [Google Scholar] [CrossRef]
- Alfaro, S.; Acuna, V.; Ceriani, R.; Cavieres, M.F.; Weinstein-Oppenheimer, C.R.; Campos-Estrada, C. Involvement of In-flammation and Its Resolution in Disease and Therapeutics. Int. J. Mol. Sci. 2022, 23, 10719. [Google Scholar] [CrossRef]
- Takahashi, N.; Kake, T.; Hasegawa, S.; Imai, M. Effects of Post-administration of beta-Carotene on Diet-induced Atopic Dermatitis in Hairless Mice. J. Oleo. Sci. 2019, 68, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Blas-Valdivia, V.; Moran-Dorantes, D.N.; Rojas-Franco, P.; Franco-Colin, M.; Mirhosseini, N.; Davarnejad, R.; Halajisani, A.; Tavakoli, O.; Cano-Europa, E. C-Phycocyanin prevents acute myocardial infarction-induced oxidative stress, inflammation and cardiac damage. Pharm. Biol. 2022, 60, 755–763. [Google Scholar] [CrossRef]
- Li, G.; Duan, L.; Yang, F.; Yang, L.; Deng, Y.; Yu, Y.; Xu, Y.; Zhang, Y. Curcumin suppress inflammatory response in traumatic brain injury via p38/MAPK signaling pathway. Phytother. Res. 2022, 36, 1326–1337. [Google Scholar] [CrossRef]
- Manochkumar, J.; Doss, C.G.P.; Efferth, T.; Ramamoorthy, S. Tumor preventive properties of selected marine pigments against colon and breast cancer. Algal Res. 2022, 61, 102594. [Google Scholar] [CrossRef]
- Cui, L.; Xu, F.; Wang, M.; Li, L.; Qiao, T.; Cui, H.; Li, Z.; Sun, C. Dietary natural astaxanthin at an early stage inhibits N-nitrosomethylbenzylamine-induced esophageal cancer oxidative stress and inflammation via downregulation of NFkappaB and COX2 in F344 rats. Onco. Targets Ther. 2019, 12, 5087–5096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, Y.C.; Liu, T.J.; Lai, H.C. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression. Evid. Based Complement Altern. Med. 2015, 2015, 620383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.; Song, G. Inhibitory effects of delphinidin on the proliferation of ovarian cancer cells via PI3K/AKT and ERK 1/2 MAPK signal transduction. Oncol. Lett. 2017, 14, 810–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jonsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Wu, N.; Lin, L. Curcumin Suppresses Apoptosis and Inflammation in Hypoxia/Reperfusion-Exposed Neurons via Wnt Signaling Pathway. Med. Sci. Monit. 2020, 26, e920445. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, W.; Sun, Y.J.; Hu, M.; Li, F.; Zhu, D.Y. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur. J. Pharmacol. 2007, 561, 54–62. [Google Scholar] [CrossRef]
- Gazzin, S.; Dal Ben, M.; Montrone, M.; Jayanti, S.; Lorenzon, A.; Bramante, A.; Bottin, C.; Moretti, R.; Tiribelli, C. Curcumin Prevents Cerebellar Hypoplasia and Restores the Behavior in Hyperbilirubinemic Gunn Rat by a Pleiotropic Effect on the Molecular Effectors of Brain Damage. Int. J. Mol. Sci. 2020, 22, 299. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Gan, L.; Wang, T.; Yuan, X.; Zhang, B.; Chen, H.; Zheng, Q. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur. J. Pharmacol. 2010, 643, 211–217. [Google Scholar] [CrossRef]
- Cervantes-Llanos, M.; Lagumersindez-Denis, N.; Marin-Prida, J.; Pavon-Fuentes, N.; Falcon-Cama, V.; Piniella-Matamoros, B.; Camacho-Rodriguez, H.; Fernandez-Masso, J.R.; Valenzuela-Silva, C.; Raices-Cruz, I.; et al. Beneficial effects of oral admin-istration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci. 2018, 194, 130–138. [Google Scholar] [CrossRef]
- Matamoros, B.P.; Prida, J.M.; Rol, G.P. Nutraceutical and therapeutic potential of Phycocyanobilin for treating Alzheimer’s disease. J. Biosci. 2021, 46, 42. [Google Scholar] [CrossRef]
- Gu, S.; Li, X. Regulation of Autophagy in Cardiovascular Diseases by Natural Products. Adv. Exp. Med. Biol. 2020, 1207, 731–736. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, X.; Feng, W.; Li, M.; Yu, B.; Fu, C.; Ou, C. LncRNA H19 abrogates the protective effects of curcumin on rat carotid balloon injury via activating Wnt/beta-catenin signaling pathway. Eur. J. Pharmacol. 2021, 910, 174485. [Google Scholar] [CrossRef]
- Qian, P.; Yan, L.J.; Li, Y.Q.; Yang, H.T.; Duan, H.Y.; Wu, J.T.; Fan, X.W.; Wang, S.L. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp. Ther. Med. 2018, 15, 1959–1965. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K.; Grantham, R.N.; Mannion, J.D.; Trachte, A.L. Carotenoids enhance phosphorylation of Akt and suppress tissue factor activity in human endothelial cells. J. Nutr. Biochem. 2006, 17, 780–786. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Aparicio, R.; Carron, R.; Sevilla, M.A.; Monroy-Ruiz, J.; Montero, M.J. Lycopene-supplemented diet ame-liorates cardiovascular remodeling and oxidative stress in rats with hypertension induced by Angiotensin II. J. Funct. Foods 2018, 47, 279–287. [Google Scholar] [CrossRef]
- Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of admin-istration. Pharm. Dev. Technol. 2022, 27, 525–544. [Google Scholar] [CrossRef]
- Jain, A.; Singh, S.K.; Arya, S.K.; Kundu, S.C.; Kapoor, S. Protein Nanoparticles: Promising Platforms for Drug Delivery Ap-plications. ACS Biomater. Sci. Eng. 2018, 4, 3939–3961. [Google Scholar] [CrossRef]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2017, 16, 101–112. [Google Scholar] [CrossRef]
- Shabatina, T.; Vernaya, O.; Shumilkin, A.; Semenov, A.; Melnikov, M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. Materials 2022, 15, 3602. [Google Scholar] [CrossRef]
- Sakellari, G.I.; Zafeiri, I.; Batchelor, H.; Spyropoulos, F. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hy-Drocoll. Health 2021, 1, 100024. [Google Scholar] [CrossRef]
- Osanlou, R.; Emtyazjoo, M.; Banaei, A.; Hesarinejad, M.A.; Ashrafi, F. Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 641, 9. [Google Scholar] [CrossRef]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze-thawing. J. Food Sci. Technol. 2017, 54, 3132–3141. [Google Scholar] [CrossRef] [PubMed]
- Pelissari, J.R.; Souza, V.B.; Pigoso, A.A.; Tulini, F.L.; Thomazini, M.; Rodrigues, C.E.C.; Urbano, A.; Favaro-Trindade, C.S. Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and ly-copene stability. Food Bioprod. Process. 2016, 98, 86–94. [Google Scholar] [CrossRef]
- Bondi, M.L.; Emma, M.R.; Botto, C.; Augello, G.; Azzolina, A.; Di Gaudio, F.; Craparo, E.F.; Cavallaro, G.; Bachvarov, D.; Cervello, M. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment. J. Agric. Food Chem. 2017, 65, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein Based Nanostructures for Drug Delivery. J. Pharm. 2018, 2018, 9285854. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, Y.; Zhang, J.B.; Xiong, Y.; Peng, S.F.; McClements, D.J.; Zou, L.Q.; Liang, R.H.; Liu, W. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin. Food Hydrocoll. 2022, 124, 10. [Google Scholar] [CrossRef]
- Radomirovic, M.; Minic, S.; Stanic-Vucinic, D.; Nikolic, M.; Van Haute, S.; Rajkovic, A.; Velickovic, T.C. Phycocyanobil-in-modified beta-lactoglobulin exhibits increased antioxidant properties and stability to digestion and heating. Food Hydrocol-Loids 2022, 123, 10. [Google Scholar] [CrossRef]
- Gulsu, A.; Aslanpay, M.C.; Alper, M.; Gunes, H. Doxorubicin Release from Bovine Serum Albumin Microparticles. Pharm. Chem. J. 2022, 55, 1157–1162. [Google Scholar] [CrossRef]
- Yan, X.T.; Song, G.L.; Wang, X.; Zhao, Y.; Chen, Y. The Preparation and Medical Applications of Chitosan Mterospheres. Curr. Org. Chem. 2018, 22, 720–733. [Google Scholar] [CrossRef]
- Tanabtabzadeh, M.S.; Javanbakht, V.; Golshirazi, A.H. Extraction of Betacyanin and Betaxanthin Pigments from Red Beetroots by Chitosan Extracted from Shrimp Wastes. Waste Biomass Valorization 2019, 10, 641–653. [Google Scholar] [CrossRef]
- Xue, Z.X.; Yang, G.P.; Wang, G.C.; Niu, J.F.; Cao, X.Y. Preparation of porous chitosan/agarose microsphere and its R-phycoerythrin release properties. J. Appl. Polym. Sci. 2007, 103, 2759–2766. [Google Scholar] [CrossRef]
- Gandia-Herrero, F.; Cabanes, J.; Escribano, J.; Garcia-Carmona, F.; Jimenez-Atienzar, M. Encapsulation of the most potent antioxidant betalains in edible matrixes as powders of different colors. J. Agric. Food Chem. 2013, 61, 4294–4302. [Google Scholar] [CrossRef]
- Vodyanoy, V. The Role of Endogenous Metal Nanoparticles in Biological Systems. Biomolecules 2021, 11, 1574. [Google Scholar] [CrossRef]
- Venil, C.K.; Malathi, M.; Velmurugan, P.; Renuka Devi, P. Green synthesis of silver nanoparticles using canthaxanthin from Dietzia maris AURCCBT01 and their cytotoxic properties against human keratinocyte cell line. J. Appl. Microbiol. 2021, 130, 1730–1744. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives. Food Chem. 2017, 221, 1088–1095. [Google Scholar] [CrossRef]
- Davaeifar, S.; Modarresi, M.H.; Mohammadi, M.; Hashemi, E.; Shafiei, M.; Maleki, H.; Vali, H.; Zahiri, H.S.; Noghabi, K.A. Synthesizing, characterizing, and toxicity evaluating of Phycocyanin-ZnO nanorod composites: A back to nature approaches. Colloids Surf. B Biointerfaces 2019, 175, 221–230. [Google Scholar] [CrossRef]
- Morocho-Jacome, A.L.; Ruscinc, N.; Martinez, R.M.; de Carvalho, J.C.M.; Santos de Almeida, T.; Rosado, C.; Costa, J.G.; Ve-lasco, M.V.R.; Baby, A.R. (Bio)Technological aspects of microalgae pigments for cosmetics. Appl. Microbiol. Biotechnol. 2020, 104, 9513–9522. [Google Scholar] [CrossRef]
Classification | Natural Plant Pigment | Chemical Constitution | Bioactivity | Reference | |
---|---|---|---|---|---|
Carotenoids | β-carotene | Anti-inflammation | [9] | ||
Anti-oxidation | [10] | ||||
Anti-cancer | [11] | ||||
Lycopene | Anti-oxidation | [12] | |||
Anti-inflammation | [13] | ||||
Anti-tumor | [14] | ||||
Anti-atherosclerosis | [15] | ||||
Astaxanthin | Anti-inflammation | [16] | |||
Neuro protection | [17] | ||||
Anti-fibrosis | [18] | ||||
Anti-cancer | [19] | ||||
Anti-oxidation | [20] | ||||
Lutein | Cardiovascular protection | [21] | |||
Anti-oxidation | [22] | ||||
Neuro protection | [23] | ||||
Anti-cancer | [24] | ||||
Zeaxanthin | Anti-inflammation | [25] | |||
Anti-oxidation | [26] | ||||
Anti-cancer | [27] | ||||
Neuro protection | [28] | ||||
Polyphenols | Anthocyanins | Pelargonidin | Anti-obesity | [29] | |
Anti-cancer | [30] | ||||
Anti-oxidation | [31] | ||||
Anti-inflammation | [32] | ||||
Cyanidin | Anti-oxidation | [33] | |||
Bone protection | [34] | ||||
Anti-inflammation | [35] | ||||
Anti-cancer | [36] | ||||
Delphindin | Anti-cancer | [37] | |||
Anti-inflammation | [38] | ||||
Anti-oxidation | [39] | ||||
Neuro protection | [40] | ||||
Peonidin | Bone protection | [41] | |||
Anti-inflammation | [42] | ||||
Petunidin | Anti-inflammation | [43] | |||
Bone protection | [44] | ||||
Cardiovascular protection | [45] | ||||
Malvidin | Anti-cancer | [46] | |||
Anti-inflammation | [47] | ||||
Cardiovascular protection | [48] | ||||
Anti-oxidation | [49] | ||||
Curcumin | Anti-inflammation | [50] | |||
Anti-cancer | [51] | ||||
Neuro protection | [52] | ||||
Anti-bacterial | [53] | ||||
Quinone | Emodin | Anti-cancer | [54] | ||
Anti-fibrosis | [55] | ||||
Anti-inflammation | [56] | ||||
Neuro protection | [57] | ||||
Alizarin | Anti-coagulation | [58] | |||
Anti-bacterial | [59] | ||||
Anti-cancer | [60] | ||||
Pyrrole | Chlorophyll A | Antigen toxicity | [61] | ||
Anti-inflammation | [62] | ||||
Anti-oxidation | [63] | ||||
Chlorophyll B | Antigen toxicity | [61] | |||
Anti-oxidation | [63] | ||||
Phycocyanobilin | Anti-inflammation | [64] | |||
Anti-oxidation | [65] | ||||
Neuro protection | [66] | ||||
Phycoerythrobilin | Anti-oxidation | [67] | |||
Pyridines | Betacyanin | Anti-hypersensitivity | [68] | ||
Anti-inflammation | [69] | ||||
Anti-thrombotic | [70] | ||||
Anti-oxidation | [71] | ||||
Betaxanthin | Anti-tumor | [72] | |||
Anti-oxidation | [73] |
Modification Method | Type/Material | Merit | Reference |
---|---|---|---|
Lipid carrier | Solid lipid nanoparticles | High biocompatibility; enhanced membrane permeability; enhanced solubility; biodegradability; increased intestinal drug dilution | [137] |
Nanostructured lipid carriers | |||
Protein nanoparticle | Soy isolate protein | Rich sources, biocompatibility, biodegradability; the synthesis process is simple | [138] |
Albumin | |||
Chitosan nanoparticles | Deacetylated chitin | Biodegradability, biocompatibility, bioactivity, non-toxicity, polycation | [139] |
Metal | Au | High biocompatibility, high biodegradability, high anti-bacterial activity, targeted delivery, controlled release | [140] |
Ag | |||
ZnO | |||
Cu and oxides |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Li, W.; Wang, Q.; Wang, J.; Qin, S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023, 28, 5364. https://doi.org/10.3390/molecules28145364
Lu X, Li W, Wang Q, Wang J, Qin S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules. 2023; 28(14):5364. https://doi.org/10.3390/molecules28145364
Chicago/Turabian StyleLu, Xianwen, Wenjun Li, Qi Wang, Jing Wang, and Song Qin. 2023. "Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments" Molecules 28, no. 14: 5364. https://doi.org/10.3390/molecules28145364
APA StyleLu, X., Li, W., Wang, Q., Wang, J., & Qin, S. (2023). Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules, 28(14), 5364. https://doi.org/10.3390/molecules28145364