Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America
Abstract
:1. Introduction
2. Results and Discussion
2.1. Alkaloid Identification and Quantification
2.2. Cholinesterase Inhibitory Activity
3. Materials and Methods
3.1. Plant Material
3.2. Alkaloid Extraction
3.3. GC-MS Analysis
3.4. Alkaloid Identification
3.5. Alkaloid Quantification
3.6. AChE and BuChE Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Esquerre-Ibañez, B.; Meerow, A.W. A new species of Clinanthus (Amaryllidaceae: Amaryllidoideae: Clinantheae) from Cordillera de los Tarros, Northwest Peru, and notes on related species. Phytotaxa 2020, 438, 2. [Google Scholar] [CrossRef]
- León, B.; Sagástegui, A.; Sánchez, I.; Zapata, M.; Meerow, A.; Cano, A. Amaryllidaceae endémicas del Perú. Rev. Peru. Biol. 2006, 13, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Meerow, A.W.; Guy, C.L.; Li, Q.B.; Yang, S.L. Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences. Syst. Bot. 2000, 25, 708–726. [Google Scholar] [CrossRef]
- Meerow, A.W. Convergence or reticulation? Mosaic evolution in the canalized American Amaryllidaceae. In Diversity, Phylogeny and Evolution in the Monocotyledons; Seberg, O., Petersen, G., Barfod, A.S., Davis, J.I., Eds.; Aarhus University Press: Aarhus, Denmark, 2010; pp. 145–168. [Google Scholar]
- Meerow, A.W.; Nakamura, K. Two new species of Peruvian Amaryllidaceae, an expanded concept of the genus Paramongaia, and taxonomic notes in Stenomesson. Phytotaxa 2019, 416, 184–196. [Google Scholar] [CrossRef]
- Meerow, A.W.; Gardner, E.M.; Nakamura, K. Phylogenomics of the Andean tetraploid clade of the American Amaryllidaceae (subfamily Amaryllidoideae): Unlocking a polyploid generic radiation abetted by continental geodynamics. Front. Plant Sci. 2020, 11, 582422. [Google Scholar] [CrossRef]
- Ravenna, P. Stenomesson subgen. Fulgituba Ravenna. Plant Life 1974, 30, 77. [Google Scholar]
- Meerow, A.W. A review of Stenomesson. Plant Life 1987, 43, 42–49. [Google Scholar]
- Meerow, A.W.; Cano, A. Taxonomic novelties in Amaryllidaceae from the Department of Ancash, Peru, and a new combination in Clinanthus. PhytoKeys 2019, 131, 115–126. [Google Scholar] [CrossRef]
- Gonzáles, P.; Meerow, A.W. Two new species of Clinanthus (Asparagales: Amaryllidaceae: Clinantheae) from northern Peru. Phytotaxa 2020, 472, 18. [Google Scholar] [CrossRef]
- Meerow, A.W. 202, Amaryllidaceae. In Flora of Ecuador 41; Harling, G., Ed.; University of Göteborg: Göteborg, Sweden, 1990. [Google Scholar]
- Ruiz, H.; Pavon, J. Flora Peruviana et Chilensis; Typis Gabrielis de Sancha: Madrid, Spain, 1802; Volume 3, p. 226. [Google Scholar]
- Likhitwitayawuid, K.; Angerhofer, C.K.; Chai, H.; Pezzuto, J.M.; Cordell, G.A.; Ruangrungsi, N. Cytotoxic and antimalarial alkaloids from the bulbs of Crinum amabile. J. Nat. Prod. 1993, 56, 1331–1338. [Google Scholar] [CrossRef]
- Weniger, B.; Italiano, L.; Beck, J.P.; Bastida, J.; Bergoñón, S.; Codina, C.; Lobstein, A.; Anton, R. Cytotoxic activity of Amaryllidaceae alkaloids. Planta Med. 1995, 61, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Meerow, A.W.; Snijman, D.A. Amaryllidaceae. In Flowering Plants: Monocotyledons; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 3, pp. 83–110. [Google Scholar] [CrossRef]
- Yui, S.; Mikami, M.; Mimaki, Y.; Sashida, Y.; Yamazaki, M. Inhibition effect of Amaryllidaceae alkaloids, lycorine and lycoricidinol on macrophage TNF-α production. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2001, 121, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastida, J.; Lavilla, R.; Viladomat, F. Chemical and Biological Aspects of Narcissus Alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Elsevier: San Diego, CA, USA, 2006; Volume 63, pp. 87–179. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Tang, L.J.; Zhang, G.P.; Hu, W.X. Treatment of lycorine on SCID mice model with human APL cells. Biomed. Pharmacother. 2007, 61, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Bremer, B.; Bremer, K.; Chase, M.W.; Fay, M.F.; Reveal, J.L.; Bailey, L.H.; Soltis, D.E.; Soltis, P.S.; Stevens, P.F.; Anderberg, A.A.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.W.; Reveal, J.L.; Fay, M.F. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot. J. Linn. Soc. 2009, 161, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Leiva, S.; Meerow, A.W. A new species of Clinanthus from northern Peru (Asparagales, Amaryllidaceae, Amarylloideae, Clinantheae). PhytoKeys 2016, 63, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Beltran, H. Catalogue of vascular flora of the district of Laraos (Yauyos, Lima). Arnaldoa 2018, 25, 565–596. [Google Scholar] [CrossRef]
- Adessi, T.G.; Borioni, J.L.; Pigni, N.B.; Bastida, J.; Cavallaro, V.; Murray, A.P.; Puiatti, M.; Oberti, J.C.; Leiva, S.; Nicotra, V.E.; et al. Clinanthus microstephium, an Amaryllidaceae species with cholinesterase inhibitor alkaloids: Structure−activity analysis of haemanthamine skeleton derivatives. Chem. Biodivers. 2019, 16, e1800662. [Google Scholar] [CrossRef]
- Soto-Vásquez, M.R.; Pinedo, M.V.H.; Tallini, L.R.; Bastida, J. Chemical composition and in vitro antiplasmodial activity of the total alkaloids of the bulbs of two Amaryllidaceae species from Northern Peru. Pharmacogn. J. 2021, 13, 1046–1052. [Google Scholar] [CrossRef]
- Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. N-Alkylated galanthamine derivatives: Potent acetylcholinesterase inhibitors from Leucojum aestivum. Bioorg. Med. Chem. Lett. 2008, 18, 2263–2266. [Google Scholar] [CrossRef]
- Ghosal, S.; Saini, S.S.; Razdan, S. Crinum alkaloids: Their chemistry and biology. Phytochemistry 1985, 24, 2141–2156. [Google Scholar] [CrossRef]
- Berkov, S.; Viladomat, F.; Codina, C.; Suárez, S.; Ravelo, A.; Bastida, J. GC-MS of amaryllidaceous galanthamine-type alkaloids. J. Mass Spectrom. 2012, 47, 1065–1073. [Google Scholar] [CrossRef]
- Berkov, S.; Torras-Claveria, L.; Viladomat, F.; Suárez, S.; Bastida, J. GC-MS of some lycorine-type Amaryllidaceae alkaloids. J. Mass Spectrom. 2021, 56, e4704. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Denev, R.; Sidjimova, B.; Zarev, Y.; Shkondrov, A.; Torras-Claveria, L.; Viladomat, F.; Bastida, J. Gas chromatography-mass spectrometry of some homolycorine-type Amaryllidaceae alkaloids. Rapid Commun. Mass Spectrom. 2023, 37, e9506. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Qi, W.B.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Zhang, C.H.; Liao, M. Amaryllidaceae alkaloids exhibit anti-influenza activity in MDCK cells, an investigation of Amaryllidaceae alkaloids and mdck cells insight. J. Anim. Vet. Adv. 2012, 11, 2485–2492. [Google Scholar] [CrossRef]
- He, J.; Qi, W.B.; Wang, L.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Ye, W.C.; Liao, M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir. Viruses 2013, 7, 922–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Li, L.F.; Wang, Q.Y.; Shang, L.Q.; Shi, P.Y.; Yin, Z. Anti-dengue virus activity and structure-activity relationship studies of lycorine derivatives. ChemMedChem 2014, 9, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cai, J.; Cheng, J.; Jing, C.; Yin, J.; Jiang, J.; Peng, Z.; Hao, X. Design, synthesis and structure- activity relationship optimization of lycorine derivatives for HCV inhibition. Sci. Rep. 2015, 5, 14972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Yu, D.; Fu, S.; Zhang, G.; Pan, Y.; Bao, M.; Tu, J.; Shang, B.; Guo, P.; Yang, P.; et al. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol. Lett. 2013, 218, 174–185. [Google Scholar] [CrossRef]
- Doskočil, I.; Hošťálková, A.; Šafratová, M.; Benešová, N.; Havlík, J.; Havelek, R.; Kuneš, J.; Královec, K.; Chlebek, J.; Cahlíková, L. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochemistry 2015, 13, 394–398. [Google Scholar] [CrossRef]
- Hu, M.; Peng, S.; He, Y.; Qin, M.; Cong, X.; Xing, Y.; Liu, M.; Yi, Z. Lycorine is a novel inhibitor of the growth and metastasis of hormone-refractory prostate cancer. Oncotarget 2015, 6, 15348–15361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, S.; Liu, X.M.; Huang, X.J.; Zhang, D.M.; Zhang, W.; Wang, L.; Ye, W.C. Four new Amaryllidaceae alkaloids from Lycoris radiata and their cytotoxicity. Planta Med. 2015, 81, 1712–1718. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, S.; Zhang, Y.; Zhang, G.; Liu, S. Lycorine induces apoptosis in human pancreatic cancer cell line PANC-1 via ROS-mediated inactivation of the PI3K/Akt/mTOR signaling pathway. Int. J. Clin. Exp. Med. 2016, 9, 21048–21056. [Google Scholar]
- Hao, B.; Shen, S.F.; Zhao, Q.J. Cytotoxic and antimalarial amaryllidaceae alkaloids from the bulbs of Lycoris radiata. Molecules 2013, 18, 2458–2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.M.; Huang, X.Y.; Cui, M.R.; Zhang, X.D.; Chen, Z.; Yang, B.S.; Zhao, X.K. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata with cytotoxic and anti-inflammatory activities. Fitoterapia 2015, 101, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Van Goietsenoven, G.; Mathieu, V.; Lefranc, F.; Kornienko, A.; Evidente, A.; Kiss, R. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers. Med. Res. Rev. 2013, 33, 439–455. [Google Scholar] [CrossRef]
- Cedrón, J.; Ravelo, Á.; León, L.; Padrón, J. Relationships of antiproliferative and structural activity of Amaryllidaceae alkaloids. Molecules 2015, 20, 13854–13863. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018, 107, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Osorio, E.J.; Berkov, S.; Brun, R.; Codina, C.; Viladomat, F.; Cabezas, F.; Bastida, J. In vitro antiprotozoal activity of alkaloids from Phaedranassa dubia (Amaryllidaceae). Phytochem. Lett. 2010, 3, 161–163. [Google Scholar] [CrossRef]
- Rojas-Vera, J.; Buitrago-Díaz, A.A.; Possamai, L.M.; Timmers, L.F.S.M.; Tallini, L.R.; Bastida, J. Alkaloid profile and cholinesterase inhibition activity of five species of Amaryllidaceae family collected from Mérida state-Venezuela. S. Afr. J. Bot. 2021, 136, 126–136. [Google Scholar] [CrossRef]
- Konrath, E.L.; Passos, C.D.S.; Klein-Júnior, L.C.; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2013, 65, 1701–1725. [Google Scholar] [CrossRef]
- Cedrón, J.C.; Gutiérrez, D.; Flores, N.; Ravelo, Á.G.; Estévez-Braun, A. Synthesis and antiplasmodial activity of lycorine derivatives. Bioorg. Med. Chem. 2010, 18, 4694–4701. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.J.; van Staden, J. Antiplasmodial constituents in the minor alkaloid groups of the Amaryllidaceae. S. Afr. J. Bot. 2019, 126, 362–370. [Google Scholar] [CrossRef]
- Martinez-Peinado, N.; Ortiz, J.E.; Cortes-Serra, N.; Pinazo, M.J.; Gascon, J.; Tapia, A.; Roitman, G.; Bastida, J.; Ferensin, G.E.; Alonso-Padilla, J. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. Phytomedicine 2022, 101, 154126. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Peinado, N.; Cortes-Serra, N.; Torras-Claveria, L.; Pinazo, M.J.; Gascon, J.; Bastida, J.; Alonso-Padilla, J. Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasites Vectors 2020, 13, 299. [Google Scholar] [CrossRef]
- Bores, G.M.; Huger, F.P.; Petko, W.; Mutlib, A.E.; Camacho, F.; Rush, D.K.; Selk, D.E.; Wolf, V.; Kosley, R.W.; Davis, L.; et al. Pharmacological evaluation of novel Alzheimer’s disease therapeutics: Acetylcholinesterase inhibitors related to galanthamine. J. Pharmacol. Exp. Ther. 1996, 277, 728–738. [Google Scholar]
- Torras-Claveria, L.; Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by GC-MS combined with k-means cluster analysis. Ind. Crop. Prod. 2014, 56, 211–222. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2022, 71, 2521–2529. [Google Scholar] [CrossRef]
Alkaloid | RI | MS | A | B | C | D |
---|---|---|---|---|---|---|
Lycorine-type (total) | 71.9 | 39.5 | 29.5 | 40.3 | ||
Lycorene (1) | 2245.2 | 255 (60), 254(100), 227 (17), 226 (19), 211 (13), 183 (11) | - | - | 16.4 | 12.2 |
Anhydrolycorine (2) | 2519.6 | 251 (46), 250 (100), 192 (12), 191 (11), 124 (7), 95 (7) | 39.6 | - | - | 7.7 |
11,12-Dehydroanhydrolycorine (3) | 2613.9 | 249 (61), 248 (100), 191 (10), 190 (25), 189 (7), 95 (15) | 26.1 | 20.7 | 6.0 | 7.1 |
Lycorine (4) | 2735.2 | 287 (27), 286 (18), 268 (22), 250 (19), 227 (67), 226 (100) | 6.2 | 18.8 | 7.1 | 13.3 |
Haemanthamine/crinine-type (total) | - | - | 67.7 | 110.8 | ||
Vittatine/crinine (5a/5b) | 2467.2 | 271 (100), 200 (24), 199 (72), 187 (64), 128 (25), 115 (26) | - | - | 7.0 | 10.5 |
8-O-Demethylmaritidine (6) | 2501.3 | 273 (100), 230 (28), 202 (25), 201 (82), 189 (55), 175 (23) | - | - | 24.8 | 44.8 |
Papyramine/epi-papyramine (7a/7b) | 2545.5 | 317 (100), 286 (50), 259 (46), 230 (83), 187 (36), 186 (43) | - | - | 4.7 | 6.6 |
Haemanthamine (8) | 2628.9 | 301 (17), 273 (23), 272 (100), 242 (18), 240 (20), 181 (28) | - | - | 26.3 | 35.8 |
Hamayne (9) | 2698.8 | 287 (5), 259 (20), 258 (100), 214 (8), 211 (16), 186 (11) | - | - | 4.9 | 13.1 |
Galanthamine-type (total) | - | - | 14.2 | 26.5 | ||
Sanguinine (10) | 2429.9 | 273 (100), 272 (81), 256 (20), 202 (37), 160 (44), 115 (19) | - | - | 9.9 | 19.4 |
3-O-Acetylsanguinine (11) | 2515.0 | 315 (52), 256 (100), 255 (60), 254 (40), 212 (27), 96 (60) | - | - | 4.3 | 7.1 |
Narciclassine-type (total) | 3.6 | - | 4.6 | 5.2 | ||
Trisphaeridine (12) | 2304.1 | 223 (100), 222 (36), 164 (15), 138 (22), 137 (10), 111 (13) | 3.6 | - | 4.6 | 5.2 |
Homolycorine-type (total) | - | - | 19.9 | 29.1 | ||
Hippeastrine (13) | 2881.2 | 315 (<1), 162 (5), 126 (14), 125 (100), 124 (15), 96 (51) | - | - | 19.9 | 29.1 |
Unidentified Alkaloid (total) | 8.9 | 90.1 | 6.0 | 12.1 | ||
UI (14) Haemanthamine/crinine-type * | 2599.5 | 315 (100), 286 (9), 272 (27), 256 (89), 254 (57), 218 (58) | - | - | - | 6.8 |
UI (15) Haemanthamine/crinine-type * | 2670.1 | 297 (98), 296 (36), 278 (53), 252 (36), 251 (22), 132 (100) | - | - | 6.0 | 5.3 |
UI (16) Lycorine-type * | 2690.8 | 373 (60), 342 (59), 250 (31), 225 (53), 212 (100) 131 (51) | - | 11.2 | - | - |
UI (17) Ismine-type * | 2732.4 | 299 (32), 250 (20), 225 (65), 224 (100), 212 (8), 166 (9) | - | 14.8 | - | - |
UI (18) Lycorine-type * | 2851.8 | 279 (79), 278 (100), 280 (14), 263 (9), 235 (16), 178 (12) | 8.9 | 30.5 | - | - |
UI (19) Lycorine-type * | 2854.9 | 359 (2), 358 (4), 299 (43), 268 (100), 250 (51), 212 (26) | - | 33.6 | - | |
Total Alkaloids | 84.4 | 129.6 | 141.9 | 224.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Escobar, M.L.; Tallini, L.R.; Lisa-Molina, J.; Berkov, S.; Viladomat, F.; Meerow, A.; Bastida, J.; Torras-Claveria, L. Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America. Molecules 2023, 28, 5408. https://doi.org/10.3390/molecules28145408
Rodríguez-Escobar ML, Tallini LR, Lisa-Molina J, Berkov S, Viladomat F, Meerow A, Bastida J, Torras-Claveria L. Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America. Molecules. 2023; 28(14):5408. https://doi.org/10.3390/molecules28145408
Chicago/Turabian StyleRodríguez-Escobar, María Lenny, Luciana R. Tallini, Julia Lisa-Molina, Strahil Berkov, Francesc Viladomat, Alan Meerow, Jaume Bastida, and Laura Torras-Claveria. 2023. "Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America" Molecules 28, no. 14: 5408. https://doi.org/10.3390/molecules28145408
APA StyleRodríguez-Escobar, M. L., Tallini, L. R., Lisa-Molina, J., Berkov, S., Viladomat, F., Meerow, A., Bastida, J., & Torras-Claveria, L. (2023). Chemical and Biological Aspects of Different Species of the Genus Clinanthus Herb. (Amaryllidaceae) from South America. Molecules, 28(14), 5408. https://doi.org/10.3390/molecules28145408