Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract
Abstract
:1. Introduction
2. Results
2.1. Plant Material, Phytochemical Profiling and Quantification of the Components
2.2. Fractionation and Phytochemical Characterization of the Fractions
2.3. Antioxidant Assay
2.4. Antioxidant Assay Using Human Cell Fibroblasts
2.4.1. Cell Viability Assay
2.4.2. Protective Effect of Extract on H2O2-Induced Cytotoxicity
2.4.3. Antioxidant Activity of the Extract in H2O2-Induced Oxidative Stress
3. Discussion
4. Materials and Methods
4.1. Reagents and Standards
4.2. Plant Material
4.3. Extraction and Fractionation
4.4. Chromatographic Analysis (UHPLC–HR/QTOF/MS–CAD–PDA)
4.5. Antioxidant Activity
4.5.1. DPPH Radical Scavenging Assay
4.5.2. Ferric Ion Reducing Antioxidant Power (FRAP Assay)
4.6. Cell Culture and Experimental Design
4.7. Cell Viability Assay
4.7.1. MTT Assay
4.7.2. Neutral Red Uptake Assay
4.8. Analysis of Intracellular Reactive Oxygen Species
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and Ethnobotanical Dermatology Practices in Romania and Other Eastern European Countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar] [CrossRef]
- Menković, N.; Šavikin, K.; Tasić, S.; Zdunić, G.; Stešević, D.; Milosavljević, S.; Vincek, D. Ethnobotanical Study on Traditional Uses of Wild Medicinal Plants in Prokletije Mountains (Montenegro). J. Ethnopharmacol. 2011, 133, 97–107. [Google Scholar] [CrossRef]
- Sen, D.B.; Kumar Sen, A.; Patel, K.P.; Balaraman, R.; Shah, U.; Maheshwari, R.A. Anti-Ulcer Activities of Herbal Remedies as Alternative Therapy. JNR 2022, 22, 318–329. [Google Scholar] [CrossRef]
- Dénes, A.; Papp, N.; Babai, D.; Czúcz, B.; Molnár, Z. Wild Plants Used for Food by Hungarian Ethnic Groups Living in the Carpathian Basin. Acta Soc. Bot. Pol. 2012, 81, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Bonet, M.À.; Parada, M.; Selga, A.; Vallès, J. Studies on Pharmaceutical Ethnobotany in the Regions of L’Alt Empordà and Les Guilleries (Catalonia, Iberian Peninsula). J. Ethnopharmacol. 1999, 68, 145–168. [Google Scholar] [CrossRef]
- De Natale, A.; Pezzatti, G.B.; Pollio, A. Extending the Temporal Context of Ethnobotanical Databases: The Case Study of the Campania Region (Southern Italy). J. Ethnobiol. Ethnomedicine 2009, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Pieroni, A.; Nedelcheva, A.; Hajdari, A.; Mustafa, B.; Scaltriti, B.; Cianfaglione, K.; Quave, C.L. Local Knowledge on Plants and Domestic Remedies in the Mountain Villages of Peshkopia (Eastern Albania). J. Mt. Sci. 2014, 11, 180–193. [Google Scholar] [CrossRef]
- Kozlowska, W.; Wagner, C.; Moore, E.M.; Matkowski, A.; Komarnytsky, S. Botanical Provenance of Traditional Medicines from Carpathian Mountains at the Ukrainian-Polish Border. Front. Pharmacol. 2018, 9, 295. [Google Scholar] [CrossRef]
- Rexhepi, B.; Mustafa, B.; Hajdari, A.; Rushidi-Rexhepi, J.; Quave, C.L.; Pieroni, A. Traditional Medicinal Plant Knowledge among Albanians, Macedonians and Gorani in the Sharr Mountains (Republic of Macedonia). Genet. Resour. Crop Evol. 2013, 60, 2055–2080. [Google Scholar] [CrossRef]
- Guarrera, P.M. Food Medicine and Minor Nourishment in the Folk Traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia 2003, 74, 515–544. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Załuski, D.; Verpoorte, R. Historical and Traditional Medical Applications of Carlina Acaulis L.—A Critical Ethnopharmacological Review. J. Ethnopharmacol. 2019, 239, 111842. [Google Scholar] [CrossRef]
- Strzemski, M.; Wojnicki, K.; Sowa, I.; Wojas-Krawczyk, K.; Krawczyk, P.; Kocjan, R.; Such, J.; Latalski, M.; Wnorowski, A.; Wójciak-Kosior, M. In Vitro Antiproliferative Activity of Extracts of Carlina Acaulis Subsp. Caulescens and Carlina Acanthifolia Subsp. Utzka. Front. Pharmacol. 2017, 8, 371. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Cappellacci, L.; Caselli, A.; Perinelli, D.R.; Bonacucina, G.; Maggi, F.; Strzemski, M.; Petrelli, R.; Pavela, R.; et al. Carlina Acaulis L. (Asteraceae): Biology, Phytochemistry, and Application as a Promising Source of Effective Green Insecticides and Acaricides. Ind. Crops Prod. 2023, 192, 116076. [Google Scholar] [CrossRef]
- Wnorowska, S.; Targowska-Duda, K.; Kurzepa, J.; Wnorowski, A.; Strzemski, M. Carlina Oxide Inhibits the Interaction of SARS-CoV-2 S Glycoprotein with Angiotensin-Converting Enzyme 2. Ind. Crops Prod. 2022, 187, 115338. [Google Scholar] [CrossRef]
- Wnorowski, A.; Wnorowska, S.; Wojas-Krawczyk, K.; Grenda, A.; Staniak, M.; Michalak, A.; Woźniak, S.; Matosiuk, D.; Biała, G.; Wójciak, M.; et al. Toxicity of Carlina Oxide—A Natural Polyacetylene from the Carlina Acaulis Roots—In Vitro and in Vivo Study. Toxins 2020, 12, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosato, A.; Barbarossa, A.; Mustafa, A.M.; Bonacucina, G.; Perinelli, D.R.; Petrelli, R.; Maggi, F.; Spinozzi, E. Comprehensive Evaluation of the Antibacterial and Antifungal Activities of Carlina Acaulis L. Essential Oil and Its Nanoemulsion. Antibiotics 2021, 10, 1451. [Google Scholar] [CrossRef]
- Konechna, R.; Khropot, O.; Petrina, R.; Kurka, M.; Gubriy, Z.; Novikov, V. Research of Antioxidant Properties Of Extracts Of The Plants And The Callus Biomass. Asian J. Pharm. Clin. Res. 2017, 10, 182. [Google Scholar] [CrossRef]
- Link, P.; Roth, K.; Sporer, F.; Wink, M. Carlina Acaulis Exhibits Antioxidant Activity and Counteracts Aβ Toxicity in Caenorhabditis Elegans. Molecules 2016, 21, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanović-Radić, Z.; Čomić, L.; Radulović, N.; Blagojević, P.; Mihajilov-Krstev, T.; Rajković, J. Commercial Carlinae Radix Herbal Drug: Botanical Identity, Chemical Composition and Antimicrobial Properties. Pharm. Biol. 2012, 50, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Lunz, K.; Stappen, I. Back to the Roots—An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils. Molecules 2021, 26, 3155. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Benelli, G. Carlina Acaulis Essential Oil: A Candidate Product for Agrochemical Industry Due to Its Pesticidal Capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
- Dresler, S.; Hawrylak-Nowak, B.; Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Hanaka, A.; Gołoś, I.; Skalska-Kamińska, A.; Cieślak, M.; Kováčik, J. Metabolic Changes Induced by Silver Ions in Carlina Acaulis. Plants 2019, 8, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Rutkowska, E.; Szwerc, W.; Kocjan, R.; Latalski, M. Carlina Species as a New Source of Bioactive Pentacyclic Triterpenes. Ind. Crops Prod. 2016, 94, 498–504. [Google Scholar] [CrossRef]
- Strzemski, M.; Płachno, B.J.; Mazurek, B.; Kozłowska, W.; Sowa, I.; Lustofin, K.; Załuski, D.; Rydzik, Ł.; Szczepanek, D.; Sawicki, J.; et al. Morphological, Anatomical, and Phytochemical Studies of Carlina Acaulis L. Cypsela. IJMS 2020, 21, 9230. [Google Scholar] [CrossRef] [PubMed]
- Dresler, S.; Strzemski, M.; Kováčik, J.; Sawicki, J.; Staniak, M.; Wójciak, M.; Sowa, I.; Hawrylak-Nowak, B. Tolerance of Facultative Metallophyte Carlina Acaulis to Cadmium Relies on Chelating and Antioxidative Metabolites. IJMS 2020, 21, 2828. [Google Scholar] [CrossRef] [Green Version]
- Becker, U.; Colling, G.; Dostal, P.; Jakobsson, A.; Matthies, D. Local Adaptation in the Monocarpic Perennial Carlina Vulgaris at Different Spatial Scales across Europe. Oecologia 2006, 150, 506–518. [Google Scholar] [CrossRef]
- Meusel, H.; Kästner, A.; Merxmüller, H.; Rechinger, K.H. Lebensgeschichte der Gold- und Silberdisteln. 2: Artenvielfalt und Stammesgeschichte der Gattung: Zum Gedächtnis an Hermann Merxmüller und für Karl-Heinz Rechinger; Denkschriften/Österreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse; Springer: Wien, Austria, 1994. [Google Scholar]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Załuski, D.; Szwerc, W.; Sawicki, J.; Kocjan, R.; Feldo, M.; Dresler, S. Carlina Vulgaris L. as a Source of Phytochemicals with Antioxidant Activity. Oxidative Med. Cell. Longev. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Belabbes, R.; Mami, I.R.; Dib, M.E.A.; Mejdoub, K.; Tabti, B.; Costa, J.; Muselli, A. Chemical Composition and Biological Activities of Essential Oils of Echinops Spinosus and Carlina Vulgaris Rich in Polyacetylene Compounds. CNF 2020, 16, 563–570. [Google Scholar] [CrossRef]
- Herrmann, F.; Hamoud, R.; Sporer, F.; Tahrani, A.; Wink, M. Carlina Oxide—A Natural Polyacetylene from Carlina Acaulis (Asteraceae) with Potent Antitrypanosomal and Antimicrobial Properties. Planta Med. 2011, 77, 1905–1911. [Google Scholar] [CrossRef]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-Glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S29–S45. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Courts, F.L.; Williamson, G. The Occurrence, Fate and Biological Activities of C -Glycosyl Flavonoids in the Human Diet. Crit. Rev. Food Sci. Nutr. 2015, 55, 1352–1367. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Zhao, Y.; Jiang, Y.; Yu, L.; Zeng, X.; Yang, J.; Tian, M.; Liu, H.; Yang, B. Identification of a Flavonoid C -Glycoside as Potent Antioxidant. Free. Radic. Biol. Med. 2017, 110, 92–101. [Google Scholar] [CrossRef]
- Choi, J.S.; Islam, M.N.; Ali, M.Y.; Kim, Y.M.; Park, H.J.; Sohn, H.S.; Jung, H.A. The Effects of C-Glycosylation of Luteolin on Its Antioxidant, Anti-Alzheimer’s Disease, Anti-Diabetic, and Anti-Inflammatory Activities. Arch. Pharm. Res. 2014, 37, 1354–1363. [Google Scholar] [CrossRef]
- Gomes, A.C.C.; Sampaio, L.D.S.; Silva, P.A.D.; Lamas, M.E.; Sakuragui, C.M.; Barreto Junior, C.B.; Simas, N.K.; Kuster, R.M. In Vitro effect of isoschaftoside isolated from Syngonium Podophyllum on pig kidney Na+, K+-ATPASE. Química Nova 2014, 37, 1606–1609. [Google Scholar] [CrossRef]
- Guan, S.; Sun, L.; Wang, X.; Huang, X.; Luo, T. Isoschaftoside Inhibits Lipopolysaccharide-Induced Inflammation in Microglia through Regulation of HIF-1α-Mediated Metabolic Reprogramming. Evid.-Based Complement. Altern. Med. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Chen, C.-Y.; Lai, K.-H.; Chang, Y.-C.; Hwang, T.-L. Anti-Inflammatory and Antiviral Activities of Flavone C-Glycosides of Lophatherum Gracile for COVID-19. J. Funct. Foods 2023, 101, 105407. [Google Scholar] [CrossRef]
- Raynaud, J.; Rasolojaona, L. Flavonoïdes Des Feuilles de Carlina Acaulis. Planta Med. 1979, 37, 168–171. [Google Scholar] [CrossRef]
- Dordević, S.; Tadić, V.; Petrović, S.; Kukić-Marković, J.; Dobrić, S.; Milenković, M.; Hadžifejzović, N. Bioactivity Assays on Carlina Acaulis and C. Acanthifolia Root and Herb Extracts. Dig. J. Nanomater. Biostructures 2012, 7, 1213–1222. [Google Scholar]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, N.; Kitts, D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-H.; Do, H.-K.; Kim, D.-Y.; Kim, W. Impact of Chlorogenic Acid on Modulation of Significant Genes in Dermal Fibroblasts and Epidermal Keratinocytes. Biochem. Biophys. Res. Commun. 2021, 583, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Zada, S.; Pham, T.M.; Hwang, J.S.; Ahmed, M.; Lai, T.H.; Elashkar, O.; Kim, J.-H.; Kim, D.H.; Kim, D.R. Chlorogenic Acid Protects Human Chondrocyte C28/I2 Cells from Oxidative Stress-Induced Cell Death through Activation of Autophagy. Life Sci. 2021, 285, 119968. [Google Scholar] [CrossRef] [PubMed]
- Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; Nassiri-Asl, M. Review of the Effects of Vitexin in Oxidative Stress-related Diseases. Food Sci. Nutr. 2020, 8, 2569–2580. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Yang, G.; Tian, J.; Wang, S. Antioxidant Effects of the Orientin and Vitexin in Trollius Chinensis Bunge in D-Galactose-Aged Mice. Neural Regen. Res. 2012, 7, 2565–2575. [Google Scholar] [CrossRef]
- Attiq, A.; Jalil, J.; Husain, K.; Mohamad, H.F.; Ahmad, A. Luteolin and Apigenin Derived Glycosides from Alphonsea Elliptica Abrogate LPS-Induced Inflammatory Responses in Human Plasma. J. Ethnopharmacol. 2021, 275, 114120. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.; Shin, D.W. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022, 27, 4351. [Google Scholar] [CrossRef]
- Khalid, K.A.; Nawi, A.F.M.; Zulkifli, N.; Barkat, M.A.; Hadi, H. Aging and Wound Healing of the Skin: A Review of Clinical and Pathophysiological Hallmarks. Life 2022, 12, 2142. [Google Scholar] [CrossRef]
- Shin, J.-W.; Kwon, S.-H.; Choi, J.-Y.; Na, J.-I.; Huh, C.-H.; Choi, H.-R.; Park, K.-C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. IJMS 2019, 20, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strzemski, M.; Dzida, K.; Dresler, S.; Sowa, I.; Kurzepa, J.; Szymczak, G.; Wójciak, M. Nitrogen Fertilisation Decreases the Yield of Bioactive Compounds in Carlina Acaulis L. Grown in the Field. Ind. Crops Prod. 2021, 170, 113698. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T.; Zagórska-Dziok, M.; Wójciak, M.; Sowa, I. Effect of Fermentation Time on the Content of Bioactive Compounds with Cosmetic and Dermatological Properties in Kombucha Yerba Mate Extracts. Sci. Rep. 2021, 11, 18792. [Google Scholar] [CrossRef]
- Sowa, I.; Paduch, R.; Strzemski, M.; Zielińska, S.; Rydzik-Strzemska, E.; Sawicki, J.; Kocjan, R.; Polkowski, J.; Matkowski, A.; Latalski, M.; et al. Proliferative and Antioxidant Activity of Symphytum Officinale Root Extract. Nat. Prod. Res. 2018, 32, 605–609. [Google Scholar] [CrossRef]
- Wójciak, M.; Feldo, M.; Borowski, G.; Kubrak, T.; Płachno, B.J.; Sowa, I. Antioxidant Potential of Diosmin and Diosmetin against Oxidative Stress in Endothelial Cells. Molecules 2022, 27, 8232. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Kielar, P.; Mołoń, M.; Szczepanek, D.; Sowa, I.; Wójciak, M. In Vitro Evaluation of Antioxidant and Protective Potential of Kombucha-Fermented Black Berry Extracts against H2O2-Induced Oxidative Stress in Human Skin Cells and Yeast Model. IJMS 2023, 24, 4388. [Google Scholar] [CrossRef]
nr | RT (min) | M/Z | MS2 | Ion Formula [M/Z-H] | Δppm | Identified | Amount (mg/g d.w) |
---|---|---|---|---|---|---|---|
1 | 0.8 | 191.055878 | 191, 135 | C7H11O6 | 1.2 | quinic acid | 0.23 ± 0.01 |
2 | 1.3 | 153.019395 | 153, 109 | C7H5O4 | −0.4 | di-hydroxybenzoic acid | 0.09 ± 0.01 |
34 | 2.0 | 203.082571 | 203, 116 | C11H11N2O2 | 0.2 | L-tryptophan | |
4 | 2.5 | 353.087769 | 353, 351, 191, 133 | C16H17O9 | 0.1 | neochorogenic acid | 1.02 ± 0.01 |
5 | 2.6 | 353.087764 | 353, 191 | C16H17O9 | 0.1 | chlorogenic acid | 6.90 ± 0.01 |
35 | 2.9 | 215.082690 | 215, 171, 142, 116 | C12H11N2O2 | −0.4 | methyltryptophan | |
36 | 4.0 | 579.136415 | 579, 489, 399, 369 | C26H27O15 | −1.5 | carlinoside | 3.10 ± 0.01 |
11 | 4.4 | 563.141367 | 563, 473, 443, 383, 353 | C26H27O14 | −1.3 | schaftoside | 1.59 ± 0.01 |
12 | 4.6 | 447.094105 | 447, 429, 357, 327, 297 | C21H19O11 | −1.8 | orientin | 1.86 ± 0.02 |
13 | 4.7 | 563.141444 | 563, 503, 473, 443, 383, 353 | C26H27O14 | −1.4 | isoschaftoside | 3.88 ± 0.01 |
37 | 5.1 | 303.051651 | 303, 285, 217, 125 | C15H11O7 | −2.1 | taxifolin | 0.06 ± 0.01 |
14 | 5.2 | 563.141926 | 563, 503, 473, 443, 383, 353 | C26H27O14 | −2.3 | isoorientin | 1.28 ± 0.01 |
38 | 5.4 | 609.147050 | 609, 300 | C27H29O16 | −1.5 | rutin | 1.30 ± 0.01 |
39 | 5.6 | 431.099416 | 431, 341, 311, 283 | C21H19O10 | −2.4 | vitexin | 4.02 ± 0.01 |
40 | 5.9 | 533.131166 | 533, 515, 473, 443, 383, 353 | C25H25O13 | −2.1 | apigenin di-C arabinoside | 0.05 ± 0.01 |
41 | 6.3 | 385.115218 | 385, 207, 177, 129 | C17H21O10 | −3.1 | densifloside | 4.98 ± 0.01 |
42 | 6.4 | 593.152523 | 593, 285 | C27H29O15 | −2.2 | nicotiflorin | 0.99 ± 0.01 |
43 | 7.2 | 187.098392 | 187, 169, 125 | C9H15O4 | −4.3 | azelaic acid | |
44 | 7.7 | 243.124940 | 243, 225, 199, 181, 163 | C12H19O5 | −4.7 | 4-oxododecaneoic acid | |
45 | 7.8 | 340.095398 | 340, 296, 257, 241, 210 | C17H14N3O5 | −4.4 | unknown | |
46 | 8.2 | 551.215501 | 551, 341, 329, 205 | C28H31N4O8 | −1.4 | unknown | |
47 | 10.4 | 609.293709 | 609, 565, 463, 301, 113 | C31H45O12 | −3.4 | unknown | |
26 | 12.7 | 227.128985 | 227, 183, 165 | C12H19O4 | −0.5 | traumatic acid | 3.19 ± 0.01 |
27 | 13.0 | 327.217951 | 327, 211, 171 | C18H31O5 | −0.8 | 9,10-dihydroxy-8-oxooctadec-12-enoic acid | 0.07 ± 0.01 |
28 | 14.2 | 329.233675 | 329, 229, 211, 171 | C18H33O5 | −1.0 | pinellic acid | 0.06 ± 0.01 |
48 | 15.9 | 307.191932 | 307, 235, 211, 185, 121 | C18H27O4 | −1.5 | linoleic acid derivat. | |
29 | 16.6 | 311.187090 | 311, 293, 267 | C17H27O5 | −2.2 | octadecdienoic acid derivat. | |
49 | 18.3 | 311.223767 | 311, 293, 211 | C18H31O4 | −3.2 | 9(S)-HPODE | |
50 | 20.0 | 313.239690 | 313, 295, 201 | C18H33O4 | −4.0 | 9,10-DHOME | |
51 | 21.1 | 293.213413 | 293, 275, 235, 183 | C18H29O3 | −4.1 | linoleic acid derivat. | |
52 | 21.3 | 293.213318 | 293, 275, 223, 195 | C18H29O3 | −3.7 | linoleic acid derivat. | |
53 | 22.5 | 295.228378 | 295, 277, 195 | C18H31O3 | −1.7 | linoleic acid derivat. | |
54 | 22.7 | 295.228280 | 295, 277, 171 | C18H31O3 | −1.4 | linoleic acid derivat. |
Nr | Compounds | HCV | EACV | BCV | H2OCV |
---|---|---|---|---|---|
1 | quinic acid | ND | ND | ND | 17.63 ± 0.11 |
2 | dihydroxybenzoic acid | ND | ND | 5.8 ± 0.12 | 1.1 ± 0.02 |
34 | L-typtophan | ND | ND | ND | + |
4 | neochorogenic acid | ND | 23.20 ± 0.12 | 0.09 ± 0.01 | 0.06 ± 0.01 |
5 | chlorogenic acid | ND | 157.69 ± 0.12 | 1.32 ± 0.18 | 0.12 ± 0.01 |
35 | methyltryptophan | ND | ND | ND | + |
36 | carlinoside | ND | 57.71 ± 0.23 | 1.92 ± 0.12 | ND |
11 | schaftoside | ND | 29.07 ± 0.02 | 1.01 ± 0.10 | ND |
12 | orientin | ND | ND | 35.03 ± 0.03 | ND |
13 | isoschaftoside | ND | 71.46 ± 0.02 | 1.90 ± 0.12 | ND |
37 | taxifolin | ND | 1.17 ± 0.11 | 0.42 ± 0.06 | ND |
14 | isoorientin | ND | ND | 22.45 ± 0.12 | ND |
38 | rutin | ND | 23.88 ± 0.11 | 1.65 ± 0.10 | ND |
39 | vitexin | ND | 74.18 ± 0.13 | 2.98 ± 0.12 | ND |
40 | apigenin di-C arabinoside | ND | 0.93 ± 0.02 | 0.02 ± 0.01 | ND |
41 | densifloside | ND | 113.73 ± 0.26 | 7.89 ± 0.12 | ND |
42 | nicotiflorin | ND | 18.17 ± 0.02 | 2.90 ± 0.13 | ND |
43 | azelaic acid | ND | + | + | ND |
44 | 4-oxododecaneoic acid | ND | + | + | ND |
45 | NZ | ND | + | + | ND |
46 | NZ | ND | ND | + | ND |
47 | NZ | ND | + | + | ND |
26 | traumatic acid | ND | 43.04 ± 0.05 | ND | ND |
27 | 9,10-dihydroxy-8-oxooctadec-12-enoic acid | ND | 29.60 ± 0.08 | ND | ND |
28 | pinellic acid | ND | 36.57 ± 0.12 | ND | ND |
48 | linoleic acid derivat. | ND | + | ND | ND |
29 | octadecdienoic acid derivat. | ND | + | ND | ND |
49 | 9(S)-HPODE | ND | + | ND | ND |
50 | 9,10-DHOME | ND | + | ND | ND |
51 | linoleic acid derivat. | + | ND | ND | ND |
52 | linoleic acid derivat. | + | ND | ND | ND |
53 | linoleic acid derivat. | + | ND | ND | ND |
54 | linoleic acid derivat. | + | ND | ND | ND |
Fractions | Concentration (µg/mL) | Equivalent of Trolox Concentration (DPPH) | Equivalent of Ascorbic Acid Concentration (FRAP) |
---|---|---|---|
H2OCV | 25 | 5.062 ± 0.698 | 4.581 ± 0.223 |
100 | 14.221 ± 0.451 | 17.207 ± 0.632 | |
200 | 22.322 ± 0.516 | 34.860 ± 0.258 | |
BCV | 25 | 3.330 ± 0.799 | 2.793 ± 0.428 |
100 | 10.429 ± 0.296 | 11.397 ± 0.011 | |
200 | 20.458 ± 0.309 | 21.676 ± 0.223 | |
EaCV | 25 | 10.988 ± 0.420 | 10.056 ± 0.365 |
100 | 29.581 ± 0.390 | 39.33 ± 0.447 | |
200 | 42.992 ± 0.160 | 74.413 ± 1.210 | |
HCV | 25 | 0.081 ± 0.011 | 0.894 ± 0.447 |
100 | 0.773 ± 0.535 | 3.017 ± 0.223 | |
200 | 1.133 ± 0.579 | 4.804 ± 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowa, I.; Mołdoch, J.; Dresler, S.; Kubrak, T.; Soluch, A.; Szczepanek, D.; Strzemski, M.; Paduch, R.; Wójciak, M. Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract. Molecules 2023, 28, 5422. https://doi.org/10.3390/molecules28145422
Sowa I, Mołdoch J, Dresler S, Kubrak T, Soluch A, Szczepanek D, Strzemski M, Paduch R, Wójciak M. Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract. Molecules. 2023; 28(14):5422. https://doi.org/10.3390/molecules28145422
Chicago/Turabian StyleSowa, Ireneusz, Jarosław Mołdoch, Sławomir Dresler, Tomasz Kubrak, Agata Soluch, Dariusz Szczepanek, Maciej Strzemski, Roman Paduch, and Magdalena Wójciak. 2023. "Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract" Molecules 28, no. 14: 5422. https://doi.org/10.3390/molecules28145422
APA StyleSowa, I., Mołdoch, J., Dresler, S., Kubrak, T., Soluch, A., Szczepanek, D., Strzemski, M., Paduch, R., & Wójciak, M. (2023). Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract. Molecules, 28(14), 5422. https://doi.org/10.3390/molecules28145422