Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. UHPLC-DAD-MS Analysis
2.2. Plant Material and Fractionation
2.2.1. Chromatographic Analysis
2.2.2. Antioxidant Activity
2.2.3. Cytotoxic Activity
2.3. Bioactivity-Guided Subfractionation
2.3.1. Chromatographic Analysis
2.3.2. Antioxidant Activity
2.3.3. Cytotoxic Activity
3. Discussion
4. Materials and Methods
4.1. Reagents and Standards
4.2. Plant Material
4.3. Extraction and Fractionation
4.4. Chromatographic Analysis (UHPLC—HR/QTOF/MS—CAD–PDA)
4.5. Cell Cultures
4.6. Cell Viability Assay
4.6.1. MTT Assay
4.6.2. Neutral Red Uptake Assay
4.7. Antioxidant Activity
4.7.1. DPPH• Free Radical Scavenging Test
4.7.2. Ferric-Reducing Antioxidant Power Assay (FRAP)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spinozzi, E.; Ferrati, M.; Cappellacci, L.; Caselli, A.; Perinelli, D.R.; Bonacucina, G.; Maggi, F.; Strzemski, M.; Petrelli, R.; Pavela, R.; et al. Carlina acaulis L. (Asteraceae): Biology, Phytochemistry, and Application as a Promising Source of Effective Green Insecticides and Acaricides. Ind. Crops Prod. 2023, 192, 116076. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Załuski, D.; Verpoorte, R. Historical and Traditional Medical Applications of Carlina acaulis L.—A Critical Ethnopharmacological Review. J. Ethnopharmacol. 2019, 239, 111842. [Google Scholar] [CrossRef] [PubMed]
- Rexhepi, B.; Mustafa, B.; Hajdari, A.; Rushidi-Rexhepi, J.; Quave, C.L.; Pieroni, A. Traditional Medicinal Plant Knowledge among Albanians, Macedonians and Gorani in the Sharr Mountains (Republic of Macedonia). Genet. Resour. Crop Evol. 2013, 60, 2055–2080. [Google Scholar] [CrossRef]
- Guarrera, P.M. Food Medicine and Minor Nourishment in the Folk Traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia 2003, 74, 515–544. [Google Scholar] [CrossRef]
- Jarić, S.; Popović, Z.; Mačukanović-Jocić, M.; Djurdjević, L.; Mijatović, M.; Karadžić, B.; Mitrović, M.; Pavlović, P. An Ethnobotanical Study on the Usage of Wild Medicinal Herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 2007, 111, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Šarić-Kundalić, B.; Dobeš, C.; Klatte-Asselmeyer, V.; Saukel, J. Ethnobotanical Study on Medicinal Use of Wild and Cultivated Plants in Middle, South and West Bosnia and Herzegovina. J. Ethnopharmacol. 2010, 131, 33–55. [Google Scholar] [CrossRef]
- Wnorowska, S.; Targowska-Duda, K.; Kurzepa, J.; Wnorowski, A.; Strzemski, M. Carlina Oxide Inhibits the Interaction of SARS-CoV-2 S Glycoprotein with Angiotensin-Converting Enzyme 2. Ind. Crops Prod. 2022, 187, 115338. [Google Scholar] [CrossRef] [PubMed]
- Wnorowski, A.; Wnorowska, S.; Wojas-Krawczyk, K.; Grenda, A.; Staniak, M.; Michalak, A.; Woźniak, S.; Matosiuk, D.; Biała, G.; Wójciak, M.; et al. Toxicity of Carlina Oxide—A Natural Polyacetylene from the Carlina acaulis Roots—In Vitro and in Vivo Study. Toxins 2020, 12, 239. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Benelli, G. Carlina acaulis Essential Oil: A Candidate Product for Agrochemical Industry Due to Its Pesticidal Capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
- Herrmann, F.; Hamoud, R.; Sporer, F.; Tahrani, A.; Wink, M. Carlina Oxide—A Natural Polyacetylene from Carlina acaulis (Asteraceae) with Potent Antitrypanosomal and Antimicrobial Properties. Planta Med. 2011, 77, 1905–1911. [Google Scholar] [CrossRef]
- Benelli, G.; Pavoni, L.; Zeni, V.; Ricciardi, R.; Cosci, F.; Cacopardo, G.; Gendusa, S.; Spinozzi, E.; Petrelli, R.; Cappellacci, L.; et al. Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia Botrana. Nanomaterials 2020, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Petrelli, R.; Nzekoue, F.K.; Cappellacci, L.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Sut, S.; Dall’Acqua, S.; et al. Carlina Oxide from Carlina acaulis Root Essential Oil Acts as a Potent Mosquito Larvicide. Ind. Crops Prod. 2019, 137, 356–366. [Google Scholar] [CrossRef]
- Dordević, S.; Tadić, V.; Petrović, S.; Kukić-Marković, J.; Dobrić, S.; Milenković, M.; Hadžifejzović, N. Bioactivity Assays on Carlina acaulis and C. Acanthifolia Root and Herb Extracts. Dig. J. Nanomater. Biostruct. 2012, 7, 1213–1222. [Google Scholar]
- Strzemski, M.; Wojnicki, K.; Sowa, I.; Wojas-Krawczyk, K.; Krawczyk, P.; Kocjan, R.; Such, J.; Latalski, M.; Wnorowski, A.; Wójciak-Kosior, M. In Vitro Antiproliferative Activity of Extracts of Carlina acaulis Subsp. Caulescens and Carlina Acanthifolia Subsp. Utzka. Front. Pharmacol. 2017, 8, 371. [Google Scholar] [CrossRef]
- Stojanović-Radić, Z.; Čomić, L.; Radulović, N.; Blagojević, P.; Mihajilov-Krstev, T.; Rajković, J. Commercial Carlinae radix Herbal Drug: Botanical Identity, Chemical Composition and Antimicrobial Properties. Pharm. Biol. 2012, 50, 933–940. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Boukouvala, M.C.; Ntalaka, C.T.; Maggi, F.; Spinozzi, E.; Petrelli, R.; Perinelli, D.R.; Benelli, G.; et al. Carlina acaulis Essential Oil Nanoemulsion as a New Grain Protectant against Different Developmental Stages of Three Stored-product Beetles. Pest Manag. Sci. 2022, 78, 2434–2442. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Rutkowska, E.; Szwerc, W.; Kocjan, R.; Latalski, M. Carlina Species as a New Source of Bioactive Pentacyclic Triterpenes. Ind. Crops Prod. 2016, 94, 498–504. [Google Scholar] [CrossRef]
- Jaiswal, R.; Deshpande, S.; Kuhnert, N. Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leaves by LC-MSn. Phytochem. Anal. 2011, 22, 432–441. [Google Scholar] [CrossRef]
- Raynaud, J.; Rasolojaona, L. Flavonoïdes Des Feuilles de Carlina acaulis. Planta Med. 1979, 37, 168–171. [Google Scholar] [CrossRef]
- Sowa, I.; Mołdoch, J.; Dresler, S.; Kubrak, T.; Soluch, A.; Szczepanek, D.; Strzemski, M.; Paduch, R.; Wójciak, M. Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina Vulgaris Extract. Molecules 2023, 28, 5422. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-Glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. 1), S29–S45. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Zhang, M.; Xue, H.; Yu, R.; Bao, Y.-O.; Kuang, Y.; Chai, Y.; Ma, W.; Wang, J.; Shi, X.; et al. Schaftoside Inhibits 3CLpro and PLpro of SARS-CoV-2 Virus and Regulates Immune Response and Inflammation of Host Cells for the Treatment of COVID-19. Acta Pharm. Sin. B 2022, 12, 4154–4164. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Dong, Y.; Shen, X.; Zhang, Z. Vicenin-2 Inhibits the Helicobacterium pylori Infection Associated Gastric Carcinogenic Events through Modulation of PI3K/AKT and Nrf2 Signaling in GES-1 Cells. J. Biochem. Mol. Toxicol. 2021, 35. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Yan, X.-J.; Jiang, X.-H.; Lu, F.-L.; Yang, X.-R.; Li, D.-P. Vicenin 3 Ameliorates ECM Degradation by Regulating the MAPK Pathway in SW1353 Chondrocytes. Exp. Ther. Med. 2021, 22, 1461. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.Y.; Ling, A.P.K.; Koh, R.Y.; Wong, Y.P.; Say, Y.H. A Review on Medicinal Properties of Orientin. Adv. Pharmacol. Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Jiang, Y.; Kusama, K.; Satoh, K.; Takayama, F.; Watanabe, S.; Sakagami, H. Induction of Cytotoxicity by Chlorogenic Acid in Human Oral Tumor Cell Lines. Phytomedicine 2000, 7, 483–491. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.-L.; Xue, N.-N.; Li, C.; Guo, H.-H.; Ren, T.-K.; Zhan, Y.; Li, W.-B.; Zhang, J.; Chen, X.-G.; et al. Chlorogenic Acid Effectively Treats Cancers through Induction of Cancer Cell Differentiation. Theranostics 2019, 9, 6745–6763. [Google Scholar] [CrossRef]
- Tremmel, M.; Kiermaier, J.; Heilmann, J. In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. IJMS 2021, 22, 6566. [Google Scholar] [CrossRef]
- Tian, F.; Tong, M.; Li, Z.; Huang, W.; Jin, Y.; Cao, Q.; Zhou, X.; Tong, G. The Effects of Orientin on Proliferation and Apoptosis of T24 Human Bladder Carcinoma Cells Occurs Through the Inhibition of Nuclear Factor-KappaB and the Hedgehog Signaling Pathway. Med. Sci. Monit. 2019, 25, 9547–9554. [Google Scholar] [CrossRef]
- Kim, S.-J.; Pham, T.-H.; Bak, Y.; Ryu, H.-W.; Oh, S.-R.; Yoon, D.-Y. Orientin Inhibits Invasion by Suppressing MMP-9 and IL-8 Expression via the PKCα/ERK/AP-1/STAT3-Mediated Signaling Pathways in TPA-Treated MCF-7 Breast Cancer Cells. Phytomedicine 2018, 50, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, K.; Balasubramanian, B.; Park, S.; Natesan, K.; Liu, W.; Manju, V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules 2019, 9, 418. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Ponte, L.G.S.; Pavan, I.C.B.; Mancini, M.C.S.; Da Silva, L.G.S.; Morelli, A.P.; Severino, M.B.; Bezerra, R.M.N.; Simabuco, F.M. The Hallmarks of Flavonoids in Cancer. Molecules 2021, 26, 2029. [Google Scholar] [CrossRef]
- Forni, C.; Rossi, M.; Borromeo, I.; Feriotto, G.; Platamone, G.; Tabolacci, C.; Mischiati, C.; Beninati, S. Flavonoids: A Myth or a Reality for Cancer Therapy? Molecules 2021, 26, 3583. [Google Scholar] [CrossRef]
- Salzillo, A.; Ragone, A.; Spina, A.; Naviglio, S.; Sapio, L. Chlorogenic Acid Enhances Doxorubicin-Mediated Cytotoxic Effect in Osteosarcoma Cells. IJMS 2021, 22, 8586. [Google Scholar] [CrossRef]
- Pietryczuk, A.; Biziewska, I.; Imierska, M.; Czerpak, R. Influence of Traumatic Acid on Growth and Metabolism of Chlorella Vulgaris under Conditions of Salt Stress. Plant Growth Regul. 2014, 73, 103–110. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Wołejko, E.; Butarewicz, A. Toxicological Effects of Traumatic Acid and Selected Herbicides on Human Breast Cancer Cells: In Vitro Cytotoxicity Assessment of Analyzed Compounds. Molecules 2019, 24, 1710. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Pankiewicz, W.; Czerpak, R. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts. Lipids 2016, 51, 1021–1035. [Google Scholar] [CrossRef]
- Dias, I.H.K.; Milic, I.; Heiss, C.; Ademowo, O.S.; Polidori, M.C.; Devitt, A.; Griffiths, H.R. Inflammation, Lipid (Per)Oxidation, and Redox Regulation. Antioxid. Redox Signal. 2020, 33, 166–190. [Google Scholar] [CrossRef]
- Van Der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A. Effect of Lipid Peroxidation on Membrane Permeability of Cancer and Normal Cells Subjected to Oxidative Stress. Chem. Sci. 2016, 7, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Clemente, S.M.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020, 25, 5144. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Trypuć, A.; Krętowski, R.; Wołejko, E.; Wydro, U.; Butarewicz, A. Traumatic Acid Toxicity Mechanisms in Human Breast Cancer MCF-7 Cells. Regul. Toxicol. Pharmacol. 2019, 106, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Samra, R.M.; Soliman, A.F.; Zaki, A.A.; Ashour, A.; Al-Karmalawy, A.A.; Hassan, M.A.; Zaghloul, A.M. Bioassay-Guided Isolation of a New Cytotoxic Ceramide from Cyperus rotundus L. S. Afr. J. Bot. 2021, 139, 210–216. [Google Scholar] [CrossRef]
- Siegel, I.; Liu, T.L.; Yaghoubzadeh, E.; Keskey, T.S.; Gleicher, N. Cytotoxic Effects of Free Fatty Acids on Ascites Tumor Cells. J. Natl. Cancer Inst. 1987, 78, 271–277. [Google Scholar]
- Strzemski, M.; Dzida, K.; Dresler, S.; Sowa, I.; Kurzepa, J.; Szymczak, G.; Wójciak, M. Nitrogen Fertilisation Decreases the Yield of Bioactive Compounds in Carlina acaulis L. Grown in the Field. Ind. Crops Prod. 2021, 170, 113698. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. IJMS 2021, 22, 12827. [Google Scholar] [CrossRef]
- Kheirandish Zarandi, P.; Zare Mirakabadi, A.; Sotoodehnejadnematalahi, F. Cytotoxic and Anticancer Effects of ICD-85 (Venom Derived Peptides) in Human Breast Adenocarcinoma and Normal Human Dermal Fibroblasts. Iran. J. Pharm. Res. 2019, 18, 232–240. [Google Scholar]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
Nr | RT (min) | M/Z | MS2 | Ion Formula [M/Z-H] | Δppm | Identified | Amount (mg/g DW) |
---|---|---|---|---|---|---|---|
1 | 0.8 | 191.055878 | 191, 135 | C7H11O6 | 1.2 | quinic acid | 0.99 ± 0.01 |
2 | 1.7 | 153.019025 | 153, 109 | C7H5O4 | 2.0 | dihydroxybenzoic acid | 2.14 ± 0.01 |
3 | 2.3 | 343.102756 | 343, 135 | C15H19O9 | 2.0 | unknown | |
4 | 2.5 | 353.087070 | 353, 351, 191, 133 | C16H17O9 | 2.1 | 3-caffeoylquinic acid | 3.49 ± 0.03 |
5 | 2.6 | 353.087049 | 353, 191 | C16H17O9 | 2.1 | 5-caffeoylquinic acid | 9.21 ± 0.01 |
6 | 3.0 | 373.113574 | 373, 165, 150 | C16H21O10 | 1.2 | unknown | |
7 | 3.3 | 609.145133 | 609, 489, 399, 369 | C27H29O16 | 1.6 | luteolin di-C-glucoside | 0.69 ± 0.01 |
8 | 3.5 | 337.092161 | 337, 191 | C16H17O8 | 2.2 | 5-p-coumaroylquinic acid | 0.57 ± 0.06 |
9 | 3.9 | 593.150084 | 593, 473, 383, 353 | C27H29O15 | 1.9 | vicenin II | 1.92 ± 0.01 |
10 | 4.3 | 609.145243 | 609, 489, 429, 357 | C27H29O16 | 1.4 | 2”-isoorientin O-glucopyranoside | 0.41 ± 0.01 |
11 | 4.4 | 563.139696 | 563, 473, 443, 383, 353 | C26H27O14 | 1.7 | shaftoside | 3.12 ± 0.01 |
12 | 4.6 | 447.092277 | 447, 429, 357, 327, 297 | C21H19O11 | 2.3 | orientin | 1.05 ± 0.01 |
13 | 4.8 | 563.139620 | 563, 503, 473, 443, 383, 353 | C26H27O14 | 1.8 | isoshaftoside (I) | 1.06 ± 0.01 |
14 | 4.9 | 579.134349 | 579, 459, 429, 357, 327, 309 | C26H27O15 | 2.1 | isoorientin | 1.84 ± 0.01 |
15 | 5.2 | 563.139889 | 563, 473, 443, 383, 353 | C26H27O14 | 1.3 | isoshaftoside (II) | 1.22 ± 0.01 |
16 | 5.3 | 593.150261 | 593, 473, 383, 293 | C27H29O15 | 1.6 | isovicenin | 1.00 ± 0.01 |
17 | 5.5 | 417.081764 | 417, 357, 327, 297 | C20H17O10 | 2.3 | 6-C-xylosyl luteolin | 0.97 ± 0.01 |
18 | 5.6 | 577.155385 | 577, 457, 413, 341, 311, 293 | C27H29O14 | 1.5 | vitexin-2-O-rhamnoside | 1.96 ± 0.01 |
19 | 5.8 | 525.233345 | 525, 481, 319, 301, 119 | C25H34O12 | 1.5 | lucidumoside A | |
20 | 6.3 | 577.155674 | 577, 457, 445, 427, 324 | C27H29O14 | 1.0 | isovitexin 2″-O-rhamnoside | 1.74 ± 0.01 |
21 | 6.4 | 435.412847 | 435, 273, 167 | C21H24O10 | 1.7 | phlorizin | |
22 | 6.5 | 413.413442 | 413, 269, 161 | C19H25O10 | 2.1 | unknown | |
23 | 9.2 | 771.343701 | 771,609, 489, 447, 343, 301 | C37H55O17 | 1.0 | hesperitin 7-O diglucosorhamnoside | 0.20 ± 0.01 |
24 | 9.7 | 741.168209 | 741, 285 | C32H38O20 | 1.3 | kaempferol dihexosodipentose | 3.14 ± 0.01 |
25 | 11.2 | 643.354506 | 643, 625, 481, 319, 113 | C27H33O18 | 0.2 | gossypetin dihexose | 0.57 ± 0.06 |
26 | 12.7 | 227.128536 | 227, 183, 165 | C12H19O4 | 1.5 | traumatic acid | 2.39 ± 0.01 |
27 | 13.0 | 327.217412 | 327, 211, 171 | C18H31O5 | 0.9 | 9,10-dihydroxy-8-oxooctadec-12-enoic acid | 1.64 ± 0.02 |
28 | 14.2 | 329.232438 | 329, 229, 211, 171 | C18H33O5 | 2.8 | pinellic acid | 2.06 ± 0.02 |
29 | 16.6 | 311.185991 | 311, 293, 267 | C18H32O2 | 1.3 | octadecadienoic acid derivative | |
30 | 21.8 | 562.313912 | 562, 502, 277, 224 | C27H49NO9P | 2.0 | phospholipids | |
31 | 22.2 | 505.255694 | 505, 277, 152 | C21H34N10O3P | 0.3 | phospholipids | |
32 | 22.6 | 595.288490 | 595, 279, 241, 152 | C24H40N10O6P | −1.6 | phospholipids | |
33 | 23.1 | 564.329193 | 564, 504, 279, 224 | C30H42N7O4 | 2.1 | phospholipids |
No. | Compounds | HCA | EACA | BCA | H2OCA |
---|---|---|---|---|---|
1 | quinic acid | ND | ND | ND | 1.01 ± 0.01 |
2 | dihydroxybenzoic acid | ND | ND | 25.05 ± 0.07 | 0.01 ± 0.00 |
3 | ND | ND | ND | ND | + |
4 | 3-caffeoylquinic acid | ND | 65.41 ± 0.08 | 17.37 ± 0.38 | 0.02 ± 0.00 |
5 | 5-caffeoylquinic acid | ND | 172.85 ± 0.11 | 25.87 ± 0.07 | 0.06 ± 0.01 |
6 | ND | ND | ND | + | ND |
7 | luteolin di-C-glucoside | ND | 12.30 ± 0.14 | 0.91 ± 0.06 | ND |
8 | 5-p-coumaroylquinic acid | ND | 10.63 ± 1.08 | 3.00 ± 0.07 | 0.02 ± 0.00 |
9 | vicenin II | ND | 34.17 ± 0.08 | 1.42 ± 0.01 | ND |
10 | 2”-isoorientin O-glucopyranoside | ND | ND | 2.85 ± 0.08 | ND |
11 | shaftoside | ND | 55.56 ± 0.08 | 2.32 ± 0.01 | ND |
12 | orientin | ND | ND | 7.75 ± 0,10 | ND |
13 | isoshaftoside (I) | ND | 18.90 ± 0.14 | 0.79 ± 0.01 | ND |
14 | isoorientin | ND | ND | 15.06 ± 0,12 | ND |
15 | isoshaftoside (II) | ND | 21.69 ± 0.08 | 0.90 ± 0.01 | ND |
16 | isovicenin | ND | 17.89 ± 0.17 | 0.75 ± 0.01 | ND |
17 | 6-C-xylosyl luteolin | ND | 17.35 ± 0.08 | 0.72 ± 0.02 | ND |
18 | vitexin-2-O-rhamnoside | ND | 35.00 ± 0.08 | 1.46 ± 0.02 | ND |
19 | lucymidozyd A | ND | + | + | ND |
20 | isovitexin 2″-O-rhamnoside | ND | 31.08 ± 0.08 | 1.30 ± 0.03 | ND |
21 | phlorizin | ND | ND | + | ND |
22 | ND | ND | + | + | ND |
23 | hesperitin 7-O diglucosorhamnoside | ND | 2.92 ± 0.08 | ND | ND |
24 | kaempferol dihexosodipentose | ND | 45.19 ± 0.08 | ND | ND |
25 | gossypetin dihexose | ND | 8.15 ± 0.83 | ND | ND |
26 | traumatic acid | ND | 33.7 ± 0.01 | ND | ND |
27 | 9,10-dihydroxy-8-oxooctadec-12-enoic acid | ND | 10.81 ± 0.03 | ND | ND |
28 | pinellic acid | ND | 11.31 ± 0.01 | ND | ND |
29 | octadecadienoic acid derivative | ND | + | ND | ND |
30 | phospholipids | + | ND | ND | ND |
31 | phospholipids | + | ND | ND | ND |
32 | phospholipids | + | ND | ND | ND |
33 | phospholipids | + | ND | ND | ND |
Fractions | Concentration (µg/mL) | Equivalent of Trolox Concentration | Equivalent of Ascorbic Acid Concentration |
---|---|---|---|
H2OCA | 25 | 6.419 ± 0.211 | 4.997 ± 0.347 |
100 | 18.147 ± 0.166 | 26.362 ± 0.638 | |
200 | 31.915 ± 0.338 | 51.978 ± 0.549 | |
BCA | 25 | 8.151 ± 0.463 | 4.253 ± 0.213 |
100 | 16.809 ± 0.291 | 22.110 ± 0.204 | |
200 | 30.077 ± 0.191 | 46.451 ± 0.814 | |
EaCA | 25 | 10.456 ± 0.264 | 8.399 ± 0.347 |
100 | 22.344 ± 0.337 | 38.585 ± 1.994 | |
200 | 38.480 ± 0.544 | 70.685 ±1.125 | |
HCA | 25 | 3.572 ± 1.255 | 0.214 ± 0.213 |
100 | 5.814 ± 0.203 | 4.678 ± 0.233 | |
200 | 8.856 ± 0.771 | 11.587 ± 0.245 |
No. | Compound | Amount (mg/g d.w. of Fraction) | |||
---|---|---|---|---|---|
EaCA_1 | EaCA_2 | EaCA_3 | EaCA_4 | ||
1 | 3-caffeoquinic acid | 113.77 ± 1.05 | ND | ND | ND |
2 | 5-caffeoquinic acid | 300.627 ± 0.19 | ND | ND | ND |
3 | 5-p-coumarylquinic acid | 18.49 ± 1.88 | ND | ND | ND |
4 | luteolin di-C-glucoside | ND | 26.10 ± 0.38 | ND | ND |
5 | vicenin | ND | 72.50 ± 0.22 | ND | ND |
6 | 2”-isoorientin O-glucopyranoside | ND | 15.38 ± 0.22 | ND | ND |
7 | schaftoside | ND | 117.89 ± 0.23 | ND | ND |
8 | isoschaftoside I | ND | 40.10 ± 0.38 | ND | ND |
9 | isoschaftoside II | ND | 46.02 ± 0.22 | ND | ND |
10 | isovicenin | ND | 37.95 ± 0.44 | ND | ND |
11 | 6-C-xylosyl luteolin | ND | 36.82 ± 0.21 | ND | ND |
12 | vitexin 2″-O-rhamnoside | ND | 74.27 ± 0.24 | ND | ND |
13 | isovitexin 2″-O-rhamnoside | ND | 65.94 ± 0.23 | ND | ND |
14 | hesperitin 7-O diglucosorhamnoside | ND | 7.69 ± 0.22 | ND | ND |
15 | dihexosodipentose kaempferol | ND | 118.90 ± 0.14 | ND | ND |
16 | dihexose gossypetin | ND | 21.44 ± 2.18 | ND | ND |
17 | traumatic acid | ND | ND | 143.08 ± 0.11 | ND |
18 | 9,10-dihydroxy-8-oxsooctadec-12-enic acid | ND | ND | 129.56 ± 0.04 | ND |
19 | pinellic acid | ND | ND | 136.85 ± 0.24 | ND |
Fractions | Concentration (µg/mL) | Equivalent of Trolox Concentration | Equivalent of Ascorbic Acid Concentration |
---|---|---|---|
EaCA_4 | 25 | 0.891 ± 0.200 | 0 |
100 | 1.003 ± 0.587 | 0 | |
200 | 1.079 ± 0.226 | 1.778 ± 0.789 | |
EaCA_3 | 25 | 1.851 ± 0.202 | 0 |
100 | 4.145 ± 0.264 | 4.509 ± 0.263 | |
200 | 6.493 ± 0.249 | 11.679 ± 0.436 | |
EaCA_2 | 25 | 12.156 ± 1.499 | 14.670 ± 0.407 |
100 | 28.983 ± 0.166 | 53.785 ± 1.063 | |
200 | 41.742 ± 0.041 | 99.490± 2.629 | |
EaCA_1 | 25 | 12.081 ± 0.274 | 19.134 ± 0.213 |
100 | 32.882 ± 0.249 | 79.295 ± 0.943 | |
200 | 42.953 ± 0.106 | 152.955 ± 4.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowa, I.; Mołdoch, J.; Paduch, R.; Strzemski, M.; Szkutnik, J.; Tyszczuk-Rotko, K.; Dresler, S.; Szczepanek, D.; Wójciak, M. Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells. Molecules 2023, 28, 6148. https://doi.org/10.3390/molecules28166148
Sowa I, Mołdoch J, Paduch R, Strzemski M, Szkutnik J, Tyszczuk-Rotko K, Dresler S, Szczepanek D, Wójciak M. Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells. Molecules. 2023; 28(16):6148. https://doi.org/10.3390/molecules28166148
Chicago/Turabian StyleSowa, Ireneusz, Jarosław Mołdoch, Roman Paduch, Maciej Strzemski, Jacek Szkutnik, Katarzyna Tyszczuk-Rotko, Sławomir Dresler, Dariusz Szczepanek, and Magdalena Wójciak. 2023. "Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells" Molecules 28, no. 16: 6148. https://doi.org/10.3390/molecules28166148
APA StyleSowa, I., Mołdoch, J., Paduch, R., Strzemski, M., Szkutnik, J., Tyszczuk-Rotko, K., Dresler, S., Szczepanek, D., & Wójciak, M. (2023). Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells. Molecules, 28(16), 6148. https://doi.org/10.3390/molecules28166148