Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives
Abstract
:1. Introduction
2. Biomedical Applications of ZrO2 NPs
2.1. Antioxidant Activity
2.2. Antidiabetic Activity
2.3. Antimicrobial Activity
2.4. Anticancer Activity
2.5. Bone Tissue Engineering
2.6. Dentistry
2.7. Biosensing
3. Challenges
4. Future Perspectives
- ➢
- The extensive use of ZrO2 NPs suggests the dire need to evaluate their adverse effects on the biological systems because limited literature is reported on the evaluation of toxic behaviors of ZrO2-based nanomaterials (NMs) with respect to cytotoxicity, bioactivity, and antioxidant activity [50]. Environmental issues should be considered before using ZrO2 NMs for any biomedical applications, which can cause environmental hazards and can also affect livings things.
- ➢
- It is highly suggested to carry out theoretical simulations along with performing experimental work because DFT calculations help to predict in advance the desired goal and suggested mechanism and support the experimental results.
- ➢
- It is suggested to evaluate different biological activities and applications of ZrO2 NMs, which will lead to their multifunctional behaviors that will increase their medical value.
- ➢
- In biosensing applications, the selectivity of ZrO2-based biosensors is very important for their accurate and precise sensing.
- ➢
- Manipulation of the size, shape, and morphology of the ZrO2 NPs could lead to achieving optimized activities in various biological applications because these parameters greatly affect their activity. Controlling these parameters can achieve the desired goals in biological applications.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaushal, S.; Kumari, V.; Singh, P.P. Sunlight-Driven Photocatalytic Degradation of Ciprofloxacin and Organic Dyes by Biosynthesized RGO–ZrO2 Nanocomposites. Environ. Sci. Pollut. Res. 2023, 30, 65602–65617. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Ferrand, E.; Schreck, E.; Dumat, C. Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Springer: New York, NY, USA, 2013; Volume 221. [Google Scholar]
- Arshad, H.M.; Shahzad, A.; Shahid, S.; Ali, S.; Rauf, A.; Sharif, S.; Ullah, M.E.; Ullah, M.I.; Ali, M.; Ahmad, H.I. Synthesis and Biomedical Applications of Zirconium Nanoparticles: Advanced Leaps and Bounds in the Recent Past. BioMed Res. Int. 2022, 2022, 4910777. [Google Scholar] [CrossRef]
- Malode, S.J.; Shetti, N.P. ZrO2 in Biomedical Applications. In Metal Oxides for Biomedical and Biosensor Applications; Mondal, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 471–501. [Google Scholar]
- Sikdar, S.; Banu, A.; Ali, S.; Barman, S.; Kalar, P.L.; Das, R. Micro-Structural Analysis and Photocatalytic Properties of Green Synthesized t-ZrO2 Nanoparticles. ChemistrySelect 2022, 7, e202103953. [Google Scholar] [CrossRef]
- Gurushantha, K.; Anantharaju, K.S.; Nagabhushana, H.; Sharma, S.C.; Vidya, Y.S.; Shivakumara, C.; Nagaswarupa, H.P.; Prashantha, S.C.; Anilkumar, M.R. Facile Green Fabrication of Iron-Doped Cubic ZrO2 Nanoparticles by Phyllanthus Acidus: Structural, Photocatalytic and Photoluminescent Properties. J. Mol. Catal. A Chem. 2015, 397, 36–47. [Google Scholar] [CrossRef]
- Keiteb, A.S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis. J. Nanomater. 2016, 2016, 1913609. [Google Scholar] [CrossRef] [Green Version]
- Cotes, C.; Arata, A.; Melo, R.M.; Bottino, M.A.; Machado, J.P.B.; Souza, R.O.A. Effects of Aging Procedures on the Topographic Surface, Structural Stability, and Mechanical Strength of a ZrO2-Based Dental Ceramic. Dent. Mater. 2014, 30, e396–e404. [Google Scholar] [CrossRef]
- Lamas, D.G.; Rosso, A.M.; Anzorena, M.S.; Fernández, A.; Bellino, M.G.; Cabezas, M.D.; Walsöe de Reca, N.E.; Craievich, A.F. Crystal Structure of Pure ZrO2 Nanopowders. Scr. Mater. 2006, 55, 553–556. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, E.; Verma, J.; Dalal, J.; Kumar, A. Structural and Photoluminescence Properties of Dy-Doped Nanocrystalline ZrO2 for Optoelectronics Application. Ceram. Int. 2023, 49, 20185–20192. [Google Scholar] [CrossRef]
- Keerthana, L.; Sakthivel, C.; Prabha, I. MgO-ZrO2 Mixed Nanocomposites: Fabrication Methods and Applications. Mater. Today Sustain. 2019, 3, 100007. [Google Scholar] [CrossRef]
- Kumari, N.; Sareen, S.; Verma, M.; Sharma, S.; Sharma, A.; Sohal, H.S.; Mehta, S.K.; Park, J.; Mutreja, V. Zirconia-Based Nanomaterials: Recent Developments in Synthesis and Applications. Nanoscale Adv. 2022, 4, 4210–4236. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Nakanishi, Y.; Alao, A.R.; Song, X.F.; Abduo, J.; Zhang, Y. A Review of Engineered Zirconia Surfaces in Biomedical Applications. Procedia CIRP 2017, 65, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Moussi, J.; Drury, J.L.; Wataha, J.C. Zirconia in Biomedical Applications. Expert. Rev. Med. Devices 2016, 13, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Rebuttini, V.; Pucci, A.; Arosio, P.; Bai, X.; Locatelli, E.; Pinna, N.; Lascialfari, A.; Franchini, M.C. Zirconia-Doped Nanoparticles: Organic Coating, Polymeric Entrapment and Application as Dual-Imaging Agents. J. Mater. Chem. B 2013, 1, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Iqbal, J. Co Doped ZrO2 Nanoparticles: An Efficient Visible Light Triggered Photocatalyst with Enhanced Structural, Optical and Dielectric Characteristics. Ceram. Int. 2020, 46, 25833–25844. [Google Scholar] [CrossRef]
- Qi, B.; Liang, S.; Li, Y.; Zhou, C.; Yu, H.; Li, J. ZrO2 Matrix Toughened Ceramic Material-Strength and Toughness. Adv. Eng. Mater. 2022, 24, 2101278. [Google Scholar] [CrossRef]
- Alagarsamy, A.; Chandrasekaran, S.; Manikandan, A. Green Synthesis and Characterization Studies of Biogenic Zirconium Oxide (ZrO2) Nanoparticles for Adsorptive Removal of Methylene Blue Dye. J. Mol. Struct. 2022, 1247, 131275. [Google Scholar] [CrossRef]
- Han, Z.; Liu, S.; Qiu, K.; Liu, J.; Zou, R.; Wang, Y.; Zhao, J.; Liu, F.; Wang, Y.; Li, L. The Enhanced ZrO2 Produced by DLP via a Reliable Plasticizer and Its Dental Application. J. Mech. Behav. Biomed. Mater. 2023, 141, 105751. [Google Scholar] [CrossRef]
- Gurav, R.P.; Nalawade, R.D.; Sawant, S.D.; Satyanarayan, N.D.; Sankpal, S.A.; Hangirgekar, S.P. Biosynthesis of ZrO2 for ZrO2@Ag-S-CH2COOH as the Retrievable Catalyst for the One-Pot Green Synthesis of Pyrazoline Derivatives and Their Anticancer Evaluation. Appl. Organomet. Chem. 2022, 36, e6666. [Google Scholar] [CrossRef]
- Sathyaseelan, B.; Manikandan, E.; Baskaran, I.; Senthilnathan, K.; Sivakumar, K.; Moodley, M.K.; Ladchumananandasivam, R.; Maaza, M. Studies on Structural and Optical Properties of ZrO2 Nanopowder for Opto-Electronic Applications. J. Alloys Compd. 2017, 694, 556–559. [Google Scholar] [CrossRef]
- Palmero, P. Zirconia-Based Composites for Biomedical Applications. In Bioceramics and Biocomposites: From Research to Clinical Practice; Antoniac, I., Ed.; Wiley-American Ceramic Society: Hoboken, NJ, USA, 2019; pp. 57–85. [Google Scholar]
- Saeed, K.; Sadiq, M.; Khan, I.; Ullah, S.; Ali, N.; Khan, A. Synthesis, Characterization, and Photocatalytic Application of Pd/ZrO2 and Pt/ZrO2. Appl. Water Sci. 2018, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Zada, N.; Khan, I.; Sadiq, M.; Saeed, K. Enhancement of Photocatalytic Potential and Recoverability of Fe3O4 Nanoparticles by Decorating over Monoclinic Zirconia. J. Environ. Health Sci. Eng. 2020, 18, 1473–1489. [Google Scholar] [CrossRef]
- Seynnaeve, B.; Folens, K.; Krishnaraj, C.; Ilic, I.K.; Liedel, C.; Schmidt, J.; Verberckmoes, A.; Du Laing, G.; Leus, K.; Van Der Voort, P. Oxygen-Rich Poly-Bisvanillonitrile Embedded Amorphous Zirconium Oxide Nanoparticles as Reusable and Porous Adsorbent for Removal of Arsenic Species from Water. J. Hazard. Mater. 2021, 413, 125356. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, W.; Yu, Y.; Jiang, S.; Xu, Y.; Zong, E. Magnetic ZrO2/PEI/Fe3O4 Functionalized MWCNTs Composite with Enhanced Phosphate Removal Performance and Easy Separability. Compos. B Eng. 2022, 237, 109861. [Google Scholar] [CrossRef]
- Wu, J.; Ji, G.; Wu, Q. Preparation of Epoxy/ZrO2 Composite Coating on the Q235 Surface by Electrostatic Spraying and Its Corrosion Resistance in 3.5% NaCl Solution. RSC Adv. 2022, 12, 10625–10633. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, V.; Sundriyal, S.; Tiwari, U.K.; Kim, K.H.; Deep, A. Metal-Organic Framework Derived Zirconium Oxide/Carbon Composite as an Improved Supercapacitor Electrode. Energy 2021, 235, 121351. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, G.-Y.; Kim, H.-S.; Kim, S.; Kim, B.; Choi, Y.J.; Kim, J.; Kim, J.; Ryu, W.-H. Highly Conductive ZrO2–x Spheres as Bifunctional Framework Stabilizers and Gas Evolution Relievers in Nickel-Rich Layered Cathodes for Lithium-Ion Batteries. Compos. B Eng. 2022, 238, 109911. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Espro, C.; Iannazzo, D.; Moulaee, K.; Neri, G. A Novel Yttria-Doped ZrO2 Based Conductometric Sensor for Hydrogen Leak Monitoring. Int. J. Hydrogen Energy 2022, 47, 9819–9828. [Google Scholar] [CrossRef]
- Ando, B.; Baglio, S.; Castorina, S.; Graziani, S.; Tondepu, S.V.G.; Petralia, S.; Messina, M.A.; Maugeri, L.; Neri, G.; Ferlazzo, A. A Capacitive Sensor, Exploiting a YSZ Functional Layer, for Ammonia Detection. IEEE Trans. Instrum. Meas. 2022, 71, 9505811. [Google Scholar] [CrossRef]
- Zahra, T.; Ahmad, K.S.; Zequine, C.; Gupta, R.K.; Thomas, A.G.; Malik, M.A.; Jaffri, S.B.; Ali, D. Electro-Catalyst [ZrO2/ZnO/PdO]-NPs Green Functionalization: Fabrication, Characterization and Water Splitting Potential Assessment. Int. J. Hydrogen Energy 2021, 46, 19347–19362. [Google Scholar] [CrossRef]
- Hussein, A.M.; Iefanova, A.V.; Koodali, R.T.; Logue, B.A.; Shende, R.V. Interconnected ZrO2 Doped ZnO/TiO2 Network Photoanode for Dye-Sensitized Solar Cells. Energy Rep. 2018, 4, 56–64. [Google Scholar] [CrossRef]
- Chakraborty, D.; Devi, M.; Das, B.; Dhar, S.S. Core-Shell Assembly of ZrO2 Nanoparticles with Ionic Liquid: A Novel and Highly Efficient Heterogeneous Catalysts for Biginelli and Esterification Reactions. Environ. Sci. Pollut. Res. 2023, 30, 13846–13861. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.; Kim, J.S.; Tu, J.F.; Mun, S.D. Fabrication of Precision Meso-Scale Diameter ZrO2 Ceramic Bars Using New Magnetic Pole Designs in Ultra-Precision Magnetic Abrasive Finishing. Ceram. Int. 2020, 46, 17335–17346. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Suganthy, N.; Shanmugam, S.; Brindhadevi, K.; Sabour, A.; Alshiekheid, M.; Lan Chi, N.T.; Pugazhendhi, A.; Shanmuganathan, R. Biosynthesis of Zirconium Nanoparticles (ZrO2 NPs) by Phyllanthus Niruri Extract: Characterization and Its Photocatalytic Dye Degradation Activity. Food Chem. Toxicol. 2022, 168, 113340. [Google Scholar] [CrossRef]
- Sani, I.K.; Geshlaghi, S.P.; Pirsa, S.; Asdagh, A. Composite Film Based on Potato Starch/Apple Peel Pectin/ZrO2 Nanoparticles/Microencapsulated Zataria Multiflora Essential Oil; Investigation of Physicochemical Properties and Use in Quail Meat Packaging. Food Hydrocoll. 2021, 117, 106719. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Z.; Zhao, L.; Guo, W.; Gao, X. Stability, rheological behaviors, and curing properties of 3Y–ZrO2 and 3Y–ZrO2/GO ceramic suspensions in stereolithography applied for dental implants. Ceram. Int. 2021, 47, 13344–13350. [Google Scholar] [CrossRef]
- Shadianlou, F.; Foorginejad, A.; Yaghoubinezhad, Y. Hydrothermal Synthesis of Zirconia-Based Nanocomposite Powder Reinforced by Graphene and Its Application for Bone Scaffold with 3D Printing. Adv. Powder Technol. 2022, 33, 103406. [Google Scholar] [CrossRef]
- Jayakumar, R.; Ramachandran, R.; Sudheesh Kumar, P.T.; Divyarani, V.V.; Srinivasan, S.; Chennazhi, K.P.; Tamura, H.; Nair, S.V. Fabrication of Chitin–Chitosan/Nano ZrO2 Composite Scaffolds for Tissue Engineering Applications. Int. J. Biol. Macromol. 2011, 49, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Suriyaraj, S.P.; Ramadoss, G.; Chandraraj, K.; Selvakumar, R. One Pot Facile Green Synthesis of Crystalline Bio-ZrO2 Nanoparticles Using Acinetobacter Sp. KCSI1 under Room Temperature. Mater. Sci. Eng. C 2019, 105, 110021. [Google Scholar] [CrossRef]
- Satishkumar, M.; Sneha, K.; Yun, Y.-S. Green fabrication of zirconia nano-chains using novel Curcuma longa tuber extract. Mater. Lett. 2013, 98, 242–245. [Google Scholar] [CrossRef]
- Van Tran, T.; Nguyen, D.T.C.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Green Synthesis of ZrO2 Nanoparticles and Nanocomposites for Biomedical and Environmental Applications: A Review. Environ. Chem. Lett. 2022, 20, 1309–1331. [Google Scholar] [CrossRef]
- Goyal, P.; Bhardwaj, A.; Mehta, B.K.; Mehta, D. Research Article Green Synthesis of Zirconium Oxide Nanoparticles (ZrO2NPs) Using Helianthus Annuus Seed and Their Antimicrobial Effects. J. Indian. Chem. Soc. 2021, 98, 100089. [Google Scholar] [CrossRef]
- Hasan, I.M.A.; Salah El-Din, H.; AbdElRaady, A.A. Peppermint-Mediated Green Synthesis of Nano ZrO2 and Its Adsorptive Removal of Cobalt from Water. Inorganics 2022, 10, 257. [Google Scholar] [CrossRef]
- Gul, T.; Saeed, K.; Ahmad, S.; Almehmadi, M.; Alsaiari, A.A.; Alsharif, A.; Khan, I. Investigation of the Photocatalytic and Biological Applications of Iron Oxide–Indium Oxide Nanocomposite. Chem. Pap. 2023, 1, 4547–4558. [Google Scholar] [CrossRef]
- Gul, T.; Khan, I.; Ahmad, B.; Ahmad, S.; Alsaiari, A.A.; Almehmadi, M.; Abdulaziz, O.; Alsharif, A.; Khan, I.; Saeed, K. Efficient Photodegradation of Methyl Red Dye by Kaolin Clay Supported Zinc Oxide Nanoparticles with Their Antibacterial and Antioxidant Activities. Heliyon 2023, 9, e16738. [Google Scholar] [CrossRef] [PubMed]
- Haq, S.; Afsar, H.; Ali, M.B.; Almalki, M.; Albogami, B.; Hedfi, A. Green Synthesis and Characterization of a ZnO-ZrO2 Heterojunction for Environmental and Biological Applications. Crystals 2021, 11, 1502. [Google Scholar] [CrossRef]
- Narasaiah, B.P.; Koppala, S.; Kar, P.; Lokesh, B.; Mandal, B.K. Photocatalytic and Antioxidant Studies of Bioinspired ZrO2 Nanoparticles Using Agriculture Waste Durva Grass Aqueous Extracts. J. Hazard. Mater. Adv. 2022, 7, 100112. [Google Scholar] [CrossRef]
- Karunakaran, G.; Suriyaprabha, R.; Manivasakan, P.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Screening of In Vitro Cytotoxicity, Antioxidant Potential and Bioactivity of Nano- and Micro-ZrO2 and -TiO2 Particles. Ecotoxicol. Env. Saf. 2013, 93, 191–197. [Google Scholar] [CrossRef]
- Imran, M.; Riaz, S.; Shah, S.M.H.; Batool, T.; Khan, H.N.; Sabri, A.N.; Naseem, S. In-Vitro Hemolytic Activity and Free Radical Scavenging by Sol-Gel Synthesized Fe3O4 Stabilized ZrO2 Nanoparticles. Arab. J. Chem. 2020, 13, 7598–7608. [Google Scholar] [CrossRef]
- Annu, A.; Sivasankari, C.; Krupasankar, U. Synthesis and Characerization of ZrO2 Nanoparticle by Leaf Extract Bioreduction Process for Its Biological Studies. Mater. Today Proc. 2020, 33, 5317–5323. [Google Scholar] [CrossRef]
- Tijani, J.O.; Odeh, E.I.; Mustapha, S.; Egbosiuba, T.C.; Daniel, A.I.; Abdulkareem, A.S.; Muya, F.N. Photocatalytic, Electrochemical, Antibacterial and Antioxidant Behaviour of Carbon-Sulphur Co-Doped Zirconium (IV) Oxide Nanocomposite. Clean. Chem. Eng. 2022, 3, 100034. [Google Scholar] [CrossRef]
- Akram, S.; Bashir, M.; Majid, F.; Ayub, M.; Khan, B.S.; Saeed, A.; Shaik, M.R.; Khan, M.; Shaik, B. Stabilization of Zirconia Nanoparticles by Collagen Protein and Calcium Carbonate Extracted from Eggshell and its Biodegradation, Radical Scavenging and Mineralization Activity. Arab. J. Chem. 2023, 105135. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, D.; Das, S.; Rao, K.V.B. Antioxidant and Antibacterial Activity of Biogenic Zirconium Oxide Nanoparticles from Candida Orthopsilosis DSB1 Isolated from Backwaters of Sunderbans, West Bengal. Int. J. Nanopart. 2021, 13, 174–194. [Google Scholar] [CrossRef]
- Batool, T.; Bukhari, B.S.; Riaz, S.; Batoo, K.M.; Raslan, E.H.; Hadi, M.; Naseem, S. Microwave Assisted Sol-Gel Synthesis of Bioactive Zirconia Nanoparticles—Correlation of Strength and Structure. J. Mech. Behav. Biomed. Mater. 2020, 112, 104012. [Google Scholar] [CrossRef] [PubMed]
- Sanaullah, I.; Imran, M.; Riaz, S.; Amin, T.; Khan, I.U.; Zahoor, R.; Shahid, A.; Naseem, S. Microwave Assisted Synthesis of Fe3O4 Stabilized ZrO2 Nanoparticles—Free Radical Scavenging, Radiolabeling and Biodistribution in Rabbits. Life Sci. 2021, 271, 119070. [Google Scholar] [CrossRef]
- Prabha, N.; Kiruthika, N.; Jayapriya, G.; Maheswari, T.; Maruthupandy, M.; Vennila, M. Zirconium Oxide Supported Silver Nanocomposites: Synthesis, Characterization and In Vitro Evaluation of Anticancer, Antioxidant, Antibacterial Applications. SSRN 2022. [Google Scholar] [CrossRef]
- Kalirajan, C.; Behera, H.; Selvaraj, V.; Palanisamy, T. In Vitro Probing of Oxidized Inulin Cross-Linked Collagen-ZrO2 Hybrid Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2022, 289, 119458. [Google Scholar] [CrossRef]
- Shailaja, N.R.; Arulmozhi, M.; Balraj, B.; Siva, C. Corallocarpus Epigaeus Mediated Synthesis of ZnO/CuO Integrated ZrO2 Nanoparticles for Enhanced In-Vitro Antibacterial, Antifungal and Antidiabetic Activities. J. Indian Chem. Soc. 2023, 100, 100991. [Google Scholar] [CrossRef]
- Shailaja, N.R.; Arulmozhi, M.; Balraj, B. Two Step Green Plasmonic Synthesis of Gd3+/Nd3+ Ions Influenced ZrO2 Nanoparticles for Enhanced In-Vitro Antibacterial, Antifungal and Antidiabetic Activities. J. Mol. Struct. 2023, 1274, 134524. [Google Scholar] [CrossRef]
- Salih, R.; Al-Jadiri, F.; Rahma, N.M.; Mershed, K.; Odeh, A.O.; Osifo, P.O.; Neomagus, H.J.P.W.; Ishihara, A.; Tominaka, S.; Nagai, T.; et al. Antimicrobial Activity of Zirconium Oxide Nanoparticles Prepared by the Sol-Gel Method. J. Phys. Conf. Ser. 2021, 2114, 012058. [Google Scholar] [CrossRef]
- Kadhim, K.J.; Agool, I.R.; Hashim, A. Effect of Zirconium Oxide Nanoparticles on Dielectric Properties of (PVA-PEG-PVP) Blend for Medical Application. J. Adv. Phys. 2017, 6, 187–190. [Google Scholar] [CrossRef]
- Chau, T.P.; Veeraragavan, G.R.; Narayanan, M.; Chinnathambi, A.; Alharbi, S.A.; Subramani, B.; Brindhadevi, K.; Pimpimon, T.; Pikulkaew, S. Green Synthesis of Zirconium Nanoparticles Using Punica Granatum (Pomegranate) Peel Extract and Their Antimicrobial and Antioxidant Potency. Environ. Res. 2022, 209, 112771. [Google Scholar] [CrossRef]
- Wang, R.; He, X.; Gao, Y.; Zhang, X.; Yao, X.; Tang, B. Antimicrobial Property, Cytocompatibility and Corrosion Resistance of Zn-Doped ZrO2/TiO2 Coatings on Ti6Al4V Implants. Mater. Sci. Eng. C 2017, 75, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kaliaraj, G.S.; Vishwakarma, V.; Alagarsamy, K.; Kamalan Kirubaharan, A.M. Biological and Corrosion Behavior of M-ZrO2 and t-ZrO2 Coated 316L SS for Potential Biomedical Applications. Ceram. Int. 2018, 44, 14940–14946. [Google Scholar] [CrossRef]
- Chelliah, P.; Wabaidur, S.M.; Sharma, H.P.; Majdi, H.S.; Smait, D.A.; Najm, M.A.; Iqbal, A.; Lai, W.-C. Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities. Separations 2023, 10, 156. [Google Scholar] [CrossRef]
- Korde, S.A.; Thombre, P.B.; Dipake, S.S.; Sangshetti, J.N.; Rajbhoj, A.S.; Gaikwad, S.T. Neem Gum (Azadirachta Indicia) Facilitated Green Synthesis of TiO2 and ZrO2 Nanoparticles as Antimicrobial Agents. Inorg. Chem. Commun. 2023, 153, 110777. [Google Scholar] [CrossRef]
- Tabassum, N.; Kumar, D.; Verma, D.; Bohara, R.A.; Singh, M.P. Zirconium Oxide (ZrO2) Nanoparticles from Antibacterial Activity to Cytotoxicity: A next-Generation of Multifunctional Nanoparticles. Mater. Today Commun. 2021, 26, 102156. [Google Scholar] [CrossRef]
- Sultana, S.; Rafiuddin; Khan, M.Z.; Shahadat, M. Development of ZnO and ZrO2 Nanoparticles: Their Photocatalytic and Bactericidal Activity. J. Environ. Chem. Eng. 2015, 3, 886–891. [Google Scholar] [CrossRef]
- Chau, T.P.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Brindhadevi, K. Synthesis of Zirconia Nanoparticles Using Laurus Nobilis for Use as an Antimicrobial Agent. Appl. Nanosci. 2023, 13, 1337–1344. [Google Scholar] [CrossRef]
- Nova, C.V.; Reis, K.A.; Pinheiro, A.L.; Dalmaschio, C.J.; Chiquito, A.J.; Teodoro, M.D.; Rodrigues, A.D.; Longo, E.; Pontes, F.M. Synthesis, Characterization, Photocatalytic, and Antimicrobial Activity of ZrO2 Nanoparticles and Ag@ZrO2 Nanocomposite Prepared by the Advanced Oxidative Process/Hydrothermal Route. J. Solgel Sci. Technol. 2021, 98, 113–126. [Google Scholar] [CrossRef]
- Amanulla, A.M.; Sundaram, R.; Kaviyarasu, K. An Investigation of Structural, Magnetical, Optical, Antibacterial and Humidity Sensing of Zr(MoO4)2-ZrO2 Nanocomposites. Surf. Interfaces 2019, 16, 132–140. [Google Scholar] [CrossRef]
- Zhang, X.; Saravanakumar, K.; Sathiyaseelan, A.; Park, S.; Wang, M.H. Synthesis, Characterization, and Comparative Analysis of Antibiotics (Ampicillin and Erythromycin) Loaded ZrO2 Nanoparticles for Enhanced Antibacterial Activity. J. Drug Deliv. Sci. Technol. 2023, 82, 104293. [Google Scholar] [CrossRef]
- Anandhi, S.; Edward, M.L.; Jaisankar, V. Synthesis, Characterization and Antimicrobial Activity of Polyindole/ZrO2 Nanocomposites. Mater. Today Proc. 2021, 40, S93–S101. [Google Scholar] [CrossRef]
- Lee, M.; Han, S.I.; Kim, C.; Velumani, S.; Han, A.; Kassiba, A.H.; Castaneda, H. ZrO2/ZnO/TiO2Nanocomposite Coatings on Stainless Steel for Improved Corrosion Resistance, Biocompatibility, and Antimicrobial Activity. ACS Appl. Mater. Interfaces 2022, 14, 13801–13811. [Google Scholar] [CrossRef] [PubMed]
- Pandiyan, N.; Murugesan, B.; Sonamuthu, J.; Samayanan, S.; Mahalingam, S. Facile Biological Synthetic Strategy to Morphologically Aligned CeO2/ZrO2 Core Nanoparticles Using Justicia Adhatoda Extract and Ionic Liquid: Enhancement of Its Bio-Medical Properties. J. Photochem. Photobiol. B 2018, 178, 481–488. [Google Scholar] [CrossRef]
- Sumathi, P.; Renuka, N.; Subramanian, R.; Periyasami, G.; Rahaman, M.; Karthikeyan, P. Prospective in vitro A431 cell line anticancer efficacy of zirconia nanoflakes derived from Enicostemma littorale aqueous extract. Cell Biochem. Funct. 2023. [Google Scholar] [CrossRef]
- Ahamed, M.; Lateef, R.; Khan, M.A.M.; Rajanahalli, P.; Akhtar, M.J. Biosynthesis, Characterization, and Augmented Anticancer Activity of ZrO2 Doped ZnO/RGO Nanocomposite. J. Funct. Biomater. 2023, 14, 38. [Google Scholar] [CrossRef]
- Kanth Kadiyala, N.; Mandal, B.K.; Kumar Reddy, L.V.; Barnes, C.H.W.; De Los Santos Valladares, L.; Sen, D. Efficient One-Pot Solvothermal Synthesis and Characterization of Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposites: Evaluation of Their Enhanced Anticancer Activity toward Human Cancer Cell Lines. ACS Omega 2022, 8, 2406–2420. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Mandal, B.K.; Ranjan, S.; Dasgupta, N.; Chidambaram, R. Nano-Zirconia—Evaluation of Its Antioxidant and Anticancer Activity. J. Photochem. Photobiol. B 2017, 170, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Wu, W.; Hou, M.; Liu, T.; Wang, T.; Yang, H. Review of Zirconia-Based Biomimetic Scaffolds for Bone Tissue Engineering. J. Mater. Sci. 2021, 56, 8309–8333. [Google Scholar] [CrossRef]
- Almalki, A.H.; Belal, A.; Farghali, A.A.; Mahmoud, R.; Mustafa, F.M.; Abd El-Mageed, H.R. Electronic, Mechanical, and Thermal Properties of Zirconium Dioxide Nanotube Interacting with Poly Lactic-Co-Glycolic Acid and Chitosan as Potential Agents in Bone Tissue Engineering: Insights from Computational Approaches. J. Biomol. Struct. Dyn. 2023. [Google Scholar] [CrossRef]
- Jin, M.; Sun, N.; Weng, W.; Sang, Z.; Liu, T.; Xia, W.; Wang, S.; Sun, X.; Wang, T.; Li, H.; et al. The Effect of GelMA/Alginate Interpenetrating Polymeric Network Hydrogel on the Performance of Porous Zirconia Matrix for Bone Regeneration Applications. Int. J. Biol. Macromol. 2023, 242, 124820. [Google Scholar] [CrossRef] [PubMed]
- Sakthiabirami, K.; Kang, J.H.; Jang, J.G.; Soundharrajan, V.; Lim, H.P.; Yun, K.D.; Park, C.; Lee, B.N.; Yang, Y.P.; Park, S.W. Hybrid Porous Zirconia Scaffolds Fabricated Using Additive Manufacturing for Bone Tissue Engineering Applications. Mater. Sci. Eng. C 2021, 123, 111950. [Google Scholar] [CrossRef]
- Sa, M.W.; Nguyen, B.N.B.; Moriarty, R.A.; Kamalitdinov, T.; Fisher, J.P.; Kim, J.Y. Fabrication and Evaluation of 3D Printed BCP Scaffolds Reinforced with ZrO2 for Bone Tissue Applications. Biotechnol. Bioeng. 2018, 115, 989–999. [Google Scholar] [CrossRef]
- Alizadeh, A.; Moztarzadeh, F.; Ostad, S.N.; Azami, M.; Geramizadeh, B.; Hatam, G.; Bizari, D.; Tavangar, S.M.; Vasei, M.; Ai, J. Synthesis of Calcium Phosphate-Zirconia Scaffold and Human Endometrial Adult Stem Cells for Bone Tissue Engineering. Artif. Cells Nanomed. Biotechnol. 2016, 44, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Jasemi, A.; Kamyab Moghadas, B.; Khandan, A.; Saber-Samandari, S. A Porous Calcium-Zirconia Scaffolds Composed of Magnetic Nanoparticles for Bone Cancer Treatment: Fabrication, Characterization and FEM Analysis. Ceram. Int. 2022, 48, 1314–1325. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.Y.; Chang, C.H.; Liu, F.H.; Huang, Y.T.; Liao, Y.S. Enhanced Biomedical Applicability of ZrO2–SiO2 Ceramic Composites in 3D Printed Bone Scaffolds. Sci. Rep. 2022, 12, 6845. [Google Scholar] [CrossRef] [PubMed]
- Mahtabian, S.; Yahay, Z.; Mirhadi, S.M.; Tavangarian, F. Synthesis and Characterization of Hierarchical Mesoporous-Macroporous TiO2-ZrO2nanocomposite Scaffolds for Cancellous Bone Tissue Engineering Applications. J. Nanomater. 2020, 2020, 8305871. [Google Scholar] [CrossRef]
- Ferreira, C.R.D.; Santiago, A.A.G.; Vasconcelos, R.C.; Paiva, D.F.F.; Pirih, F.Q.; Araújo, A.A.; Motta, F.V.; Bomio, M.R.D. Study of Microstructural, Mechanical, and Biomedical Properties of Zirconia/Hydroxyapatite Ceramic Composites. Ceram. Int. 2022, 48, 12376–12386. [Google Scholar] [CrossRef]
- Kashan, J.S.; Al-Allaq, A.A.; Fouad, H.; Yahia, M.E. Effect of Multi-Walled Carbon Nanotube on the Microstructure, Physical and Mechanical Properties of ZrO2–CaO/Poly(methyl methacrylate) Biocomposite for Bone Reconstruction Application. Sci. Adv. Mater. 2023, 15, 405–411. [Google Scholar] [CrossRef]
- Bhowmick, A.; Pramanik, N.; Mitra, T.; Gnanamani, A.; Das, M.; Kundu, P.P. Mechanical and Biological Investigations of Chitosan–Polyvinyl Alcohol Based ZrO2 Doped Porous Hybrid Composites for Bone Tissue Engineering Applications. New J. Chem. 2017, 41, 7524–7530. [Google Scholar] [CrossRef]
- Gautam, A.; Gautam, C.; Mishra, M.; Sahu, S.; Nanda, R.; Kisan, B.; Gautam, R.K.; Prakash, R.; Sharma, K.; Singh, D.; et al. Synthesis, Structural, Mechanical, and Biological Properties of HAp-ZrO2-HBN Biocomposites for Bone Regeneration Applications. Ceram. Int. 2021, 47, 30203–30220. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, D.; Liu, S.; Dong, X.; Li, Y.; Zhang, H.; Yang, Z.; Su, Q.; Huang, W.; Zheng, W.; et al. Zirconia Toughened Hydroxyapatite Biocomposite Formed by a DLP 3D Printing Process for Potential Bone Tissue Engineering. Mater. Sci. Eng. C 2019, 105, 110054. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S.; Ibrahim, A.F.; Reda, M.M. Effects of ZrO2 Nanoparticle Content on Microstructure and Wear Behavior of Titanium Matrix Composite. J. Mater. Res. Technol. 2020, 9, 8528–8534. [Google Scholar] [CrossRef]
- Seo, J.Y.; Oh, D.; Kim, D.J.; Kim, K.M.; Kwon, J.S. Enhanced Mechanical Properties of ZrO2-Al2O3 Dental Ceramic Composites by Altering Al2O3 Form. Dent. Mater. 2020, 36, e117–e125. [Google Scholar] [CrossRef]
- Teimouri, A.; Ebrahimi, R.; Emadi, R.; Beni, B.H.; Chermahini, A.N. Nano-Composite of Silk Fibroin–Chitosan/Nano ZrO2 for Tissue Engineering Applications: Fabrication and Morphology. Int. J. Biol. Macromol. 2015, 76, 292–302. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.; Verma, A. Artificial Intelligence in Use of ZrO2 Material in Biomedical Science. J. Electrochem. Sci. Eng. 2023, 13, 83–97. [Google Scholar] [CrossRef]
- Nevarez-Rascon, A.; Aguilar-Elguezabal, A.; Orrantia, E.; Bocanegra-Bernal, M.H. Al2O3(w)–Al2O3(n)–ZrO2 (TZ-3Y)n Multi-Scale Nanocomposite: An Alternative for Different Dental Applications? Acta Biomater. 2010, 6, 563–570. [Google Scholar] [CrossRef]
- Aati, S.; Shrestha, B.; Fawzy, A. Cytotoxicity and Antimicrobial Efficiency of ZrO2 Nanoparticles Reinforced 3D Printed Resins. Dent. Mater. 2022, 38, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Shahmohammadi, M.; Sun, Y.; Yuan, J.C.C.; Mathew, M.T.; Sukotjo, C.; Takoudis, C.G. In Vitro Corrosion Behavior of Coated Ti6Al4V with TiO2, ZrO2, and TiO2/ZrO2 Mixed Nanofilms Using Atomic Layer Deposition for Dental Implants. Surf. Coat. Technol. 2022, 444, 128686. [Google Scholar] [CrossRef]
- Alshamrani, A.; Alhotan, A.; Kelly, E.; Ellakwa, A.; Mechanical, B.; Alshamrani, A.; Alhotan, A.; Kelly, E.; Ellakwa, A. Mechanical and Biocompatibility Properties of 3D-Printed Dental Resin Reinforced with Glass Silica and Zirconia Nanoparticles: In Vitro Study. Polymers 2023, 15, 2523. [Google Scholar] [CrossRef]
- Fathima, J.B.; Pugazhendhi, A.; Venis, R. Synthesis and Characterization of ZrO2 Nanoparticles-Antimicrobial Activity and Their Prospective Role in Dental Care. Microb. Pathog. 2017, 110, 245–251. [Google Scholar] [CrossRef]
- Kumari, S.; Hussain, A.; Rao, J.; Singh, K.; Avinashi, S.K.; Gautam, C. Structural, mechanical and biological properties of PMMA-ZrO2 nanocomposites for denture applications. Mater. Chem. Phys. 2023, 295, 127089. [Google Scholar] [CrossRef]
- Aati, S.; Akram, Z.; Ngo, H.; Fawzy, A.S. Development of 3D Printed Resin Reinforced with Modified ZrO2 Nanoparticles for Long-Term Provisional Dental Restorations. Dent. Mater. 2021, 37, e360–e374. [Google Scholar] [CrossRef]
- Tong, Z.; Yuan, R.; Chai, Y.; Xie, Y.; Chen, S. A Novel and Simple Biomolecules Immobilization Method: Electro-Deposition ZrO2 Doped with HRP for Fabrication of Hydrogen Peroxide Biosensor. J. Biotechnol. 2007, 128, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Meng, L.; Du, C.; Zhang, Q.; Yu, Q.; Zhang, X.; Chen, J. A Label-Free Photoelectrochemical Biosensor with near-Zero-Background Noise for Protein Kinase A Activity Assay Based on Porous ZrO2/CdS Octahedra. Sens. Actuators B Chem. 2021, 328, 129096. [Google Scholar] [CrossRef]
- Mogha, N.K.; Sahu, V.; Sharma, M.; Sharma, R.K.; Masram, D.T. Biocompatible ZrO2- Reduced Graphene Oxide Immobilized AChE Biosensor for Chlorpyrifos Detection. Mater. Des. 2016, 111, 312–320. [Google Scholar] [CrossRef]
- Peng, H.P.; Liang, R.P.; Zhang, L.; Qiu, J.D. Sonochemical Synthesis of Magnetic Core–Shell Fe3O4@ZrO2 Nanoparticles and Their Application to the Highly Effective Immobilization of Myoglobin for Direct Electrochemistry. Electrochim. Acta 2011, 56, 4231–4236. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; Sun, X.; Deng, Y.; Liu, J.; Lei, B.; Sun, Z. Simultaneous Electrochemical Determination of Guanosine and Adenosine with Graphene–ZrO2 Nanocomposite Modified Carbon Ionic Liquid Electrode. Biosens. Bioelectron. 2013, 44, 146–151. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Espro, C.; Iannazzo, D.; Bonavita, A.; Neri, G. Yttria-Zirconia Electrochemical Sensor for the Detection of Tyrosine. Mater. Today Commun. 2023, 35, 106036. [Google Scholar] [CrossRef]
- Gupta, P.K.; Chauhan, D.; Khan, Z.H.; Solanki, P.R. ZrO2 Nanoflowers Decorated with Graphene Quantum Dots for Electrochemical Immunosensing. ACS Appl. Nano Mater. 2020, 3, 2506–2516. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, X.Y.; Zhao, Y.; Sun, W.Y. Stable Zr(Iv) Coordination Polymers with Electroactive Metal-Terpyridine Units for Enhanced Electrochemical Sensing Dopamine. J. Mater. Chem. A Mater. 2022, 11, 268–275. [Google Scholar] [CrossRef]
- Fatema, K.N.; Liu, Y.; Cho, K.Y.; Oh, W.C. Comparative Study of Electrochemical Biosensors Based on Highly Efficient Mesoporous ZrO2-Ag-G-SiO2and In 2O3-G-SiO2 for Rapid Recognition of E. coli O157:H7. ACS Omega 2020, 5, 22719–22730. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, F.; Zhang, X.; Zhang, B.; Li, S.; Hu, Z.; Gao, F. Electrochemical Characterization and DNA Sensing Application of a Sphere-like CeO2–ZrO2 and Chitosan Nanocomposite Formed on a Gold Electrode by One-Step Electrodeposition. Electrochim. Acta 2012, 62, 250–255. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, H.; Yang, M.; Liu, Y.; Shen, G.; Yu, R. Amperometric Glucose Biosensor Based on a Surface Treated Nanoporous ZrO2/Chitosan Composite Film as Immobilization Matrix. Anal. Chim. Acta 2004, 525, 213–220. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, M.; Yang, M.; Wang, Z.; Shen, G.; Yu, R. Determination of Pesticides in Vegetable Samples Using an Acetylcholinesterase Biosensor Based on Nanoparticles ZrO2/Chitosan Composite Film. Int. J. Environ. Anal. Chem. 2005, 85, 163–175. [Google Scholar] [CrossRef]
- Kumar, Y.; Nirbhaya, V.; Chauhan, D.; Shankar, S.; Chandra, R.; Kumar, S. Nanostructured Zirconia Embedded Porous Carbon Based Ultrasensitive Electrochemical Biosensor for SAA Biomarker Detection. Mater. Chem. Phys. 2023, 294, 126983. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Z.; Wang, Q.; Hu, Z.; Gu, G. Preparation, Characterization of CeO2-ZrO2 Composite Hollow Microspheres and Their Application as Electrocatalysis Materials for Hemoglobin in Biosensor. J. Dispers. Sci. Technol. 2009, 30, 178–184. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Huang, Z.; Jia, Q. Spatially Confining Copper Nanoclusters in Porous ZrO2 for Fluorescence/Colorimetry/Smartphone Triple-Mode Detection of Metoprolol Tartrate. Biosens. Bioelectron. 2023, 231, 115290. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Chen, S.M.; Ali, M.A.; Al-Hemaid, F.M.A. Direct Electrochemistry of Glucose Oxidase Immobilized on ZrO2 Nanoparticles-Decorated Reduced Graphene Oxide Sheets for a Glucose Biosensor. RSC Adv. 2014, 4, 30358–30367. [Google Scholar] [CrossRef]
- Srivastava, S.; Ali, M.A.; Solanki, P.R.; Chavhan, P.M.; Pandey, M.K.; Mulchandani, A.; Srivastava, A.; Malhotra, B.D. Mediator-Free Microfluidics Biosensor Based on Titania—Zirconia Nanocomposite for Urea Detection. RSC Adv. 2012, 3, 228–235. [Google Scholar] [CrossRef]
- Trinadh, T.; Khuntia, H.; Anusha, T.; Bhavani, K.S.; Kumar, J.V.S.; Brahman, P.K. Synthesis and Characterization of Nanocomposite Material Based on Graphene Quantum Dots and Lanthanum Doped Zirconia Nanoparticles: An Electrochemical Sensing Application towards Flutamide in Urine Samples. Diam. Relat. Mater. 2020, 110, 108143. [Google Scholar] [CrossRef]
- Ouiram, T.; Moonla, C.; Preechaworapun, A.; Muangpil, S.; Maneeprakorn, W.; Tangkuaram, T. Choline Oxidase Based Composite ZrO2@AuNPs with Cu2O@MnO2 Platform for Signal Enhancing the Choline Biosensors. Electroanalysis 2021, 33, 455–463. [Google Scholar] [CrossRef]
- Tapak, N.S.; Nawawi, M.A.; Tjih, E.T.T.; Mohd, Y.; Rashid, A.H.A.; Abdullah, J.; Yusof, N.A.; Ahmad, N.M. The Synthesis of Zirconium Oxide (ZrO2) Nanoparticles (NPs) in 1-Butyl-3-Methylimidazolium Trifluoroacetate (BMIMCF3COO) for an Amperometry Phenol Biosensor. Mater. Today Commun. 2022, 33, 104142. [Google Scholar] [CrossRef]
- Asoka, S.A.; Slewa, L.H.; Abbas, T.A. Multi-Ion (Na+/ K+/Ca2+/Mg2+) EGFET Sensor Based on Heterostructure of ZrO2-NPs/MacroPSi. Chem. Pap. 2023, 77, 1351–1360. [Google Scholar] [CrossRef]
- Valsalakumar, V.C.; Joseph, A.S.; Piyus, J.; Vasudevan, S. Polyaniline-Graphene Oxide Composites Decorated with ZrO2 Nanoparticles for Use in Screen-Printed Electrodes for Real-Time l-Tyrosine Sensing. ACS Appl. Nano Mater. 2023, 6, 8395. [Google Scholar] [CrossRef]
- Gionea, A.; Andronescu, E.; Voicu, G.; Bleotu, C.; Surdu, V.A. Influence of Hot Isostatic Pressing on ZrO2–CaO Dental Ceramics Properties. Int. J. Pharm. 2016, 510, 439–448. [Google Scholar] [CrossRef]
- Zahra, T.; Ahmad, K.S.; Zequine, C.; Gupta, R.; Thomas, A.; Malik, M.A.; Iram, S.; Ali, D. Biomimmetic ZrO2@PdO Nanocomposites: Fabrication, Characterization, and Water Splitting Potential Exploration. Int. J. Energy Res. 2022, 46, 8516–8526. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Wang, Z.; Ye, N.; Fang, H.; Wang, D. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae. Nanomaterials 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Sengul, A.B.; Asmatulu, E. Toxicity of Metal and Metal Oxide Nanoparticles: A Review. Environ. Chem. Lett. 2020, 18, 1659–1683. [Google Scholar] [CrossRef]
Materials | Assay | Antioxidant Activity | Ref. No |
---|---|---|---|
ZrO2 NPs | DPPH | 63.8% | [55] |
ZrO2 (6 months’ RT aged) | DPPH | ~86% | [56] |
Fe3O4-stabilized ZrO2 NPs | DPPH | ~83% | [57] |
ZrO2/Ag nanocomposite | DPPH | 83.6% | [58] |
oxidized inulin cross-linked collagen-ZrO2 hybrid scaffolds | DPPH | 92% | [59] |
ZrO2 NP-Based NanoMaterials and Their Preparation Method | Bacterial Strain | Antibacterial Activity | Ref. |
---|---|---|---|
ZrO2. Sol–gel approach | S. aureus, B. substilis, E. coli, and P. aeruginosa | 10 mm, 11 mm, 9 mm, and 7 mm | [70] |
ZrO2 NPs Green synthesis | B. subtilis, S. aureus, K. pneumonia, and E. coli | 14 mm, 13 mm, 15 mm, and 14 mm | [71] |
ZrO2 NPs and Ag@ZrO2 NCs. Advanced oxidation processes/hydrothermal treatment. | E. coli and S. Aureus | E. coli = ~77% inhibition by Ag@ZrO2 NCs and 9% by ZrO2 NPs. S. aureus MRSA = 76% and 70% inhibition by ZrO2 NPs and Ag@ZrO2 NCs. S. aureus MSSA = 93% inhibition by both ZrO2 NPs and Ag@ZrO2 NCs. | [72] |
Zr(MoO4)2-ZrO2 nanocomposites. Coprecipitation method | Staphylococcus aureus, Escherichia coli, and Pseudomonuas aeruginosa | 15 mm, 17 mm, and 14 mm by 50 mg/mL | [73] |
ZrO2-Amp NPs | E. coli and B. cereus | 18 for E. coli and 17 mm for B. cereus using 30 μg. | [74] |
Polyindole/ZrO2 nanocomposite. Solution mixing method | Staphylococcus aureus, Bacillus subtili, E. coli, Salmonella typh, Pseudomonas aeruginosa | 20 mm, 10 mm, 15 mm, 13 mm and 15 mm by 1000 μg. | [75] |
ZrO2/ZnO/TiO2 nanocomposite-coated SS. Radio frequency sputtering method | Escherichia coli and Staphylococcus aureus | 81.2% and 72.4% | [76] |
CeO2/ZrO2 core metal oxide NPs. Green method | S. aureus and E. coli | 34 mm and 29 mm | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bannunah, A.M. Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules 2023, 28, 5428. https://doi.org/10.3390/molecules28145428
Bannunah AM. Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules. 2023; 28(14):5428. https://doi.org/10.3390/molecules28145428
Chicago/Turabian StyleBannunah, Azzah M. 2023. "Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives" Molecules 28, no. 14: 5428. https://doi.org/10.3390/molecules28145428
APA StyleBannunah, A. M. (2023). Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules, 28(14), 5428. https://doi.org/10.3390/molecules28145428