Exploring Exogenous Indole-3-acetic Acid’s Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis
Abstract
:1. Introduction
2. Results and Discussion
2.1. External IAA Increased IAA Levels in Synechocystis and Chlorella Strains
2.2. IAA Exposure Improved Growth and Pigments of Synechocystis and Chlorella
2.3. IAA Enhanced Primary Metabolism
2.3.1. Improved Carbohydrates Levels
2.3.2. Organic Acids
2.3.3. Amino Acids Content
2.3.4. Fatty Acids Content
3. Materials and Methods
3.1. Strains and Cultural Conditions
3.2. Growth Parameters
3.3. Synechocystis and Chlorella Biochemical Profile Estimation
3.3.1. Estimation of IAA
3.3.2. Estimation of Pigment Content
3.3.3. Estimation of Carbohydrates Content
3.3.4. Estimation of Organic Acids Content
3.3.5. Estimation of Amino Acids Content
3.3.6. Estimation of Fatty Acids
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fathy, W.A.; Essawy, E.; Tawfik, E.; Omar, R.; Abdelhameed, M.S.; Hammouda, O.; Abdel-Raouf, N.; Elsayed, K.N. Overexpressing key enzymes in lipogenesis to boost microalgae cellular oil content for biofuel production, A mini-review. Int. Aquat. Res. 2022, 14, 81–94. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; Acien-Fernandez, F.G.; Molina-Grima, E. Microalgae research worldwide. Algal Res. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.-J.; Chang, J.-S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Kombe, G.G. An Overview of Algae for Biodiesel Production Using Bibliometric Indicators. Int. J. Energy Res. 2023, 2023, 9596398. [Google Scholar] [CrossRef]
- Tanwer, N.; Arora, V.; Bumbra, P.; Grewal, K.; Laura, J.S.; Khosla, B. Microalgae Biofuels: Challenges and Potential. In Biomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability; IGI Global: Hershey, PA, USA, 2023; pp. 217–232. [Google Scholar]
- Fathy, W.A.; Techen, N.; Elsayed, K.; Essawy, E.; Tawfik, E.; Abdelhameed, M.S.; Hammouda, O.; Ross, S.A. Insights into random mutagenesis techniques to enhance biomolecule production in microalgae: Implications for economically viable bioprocesses. Int. Aquat. Res. 2023, 15, 85–102. [Google Scholar] [CrossRef]
- Yang, H.E.; Yu, B.S.; Sim, S.J. Enhanced astaxanthin production of Haematococcus pluvialis strains induced salt and high light resistance with gamma irradiation. Bioresour. Technol. 2023, 372, 128651. [Google Scholar] [CrossRef]
- Villaró, S.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, G.; Lafarga, T. Microalgae derived astaxanthin: Research and consumer trends and industrial use as food. Foods 2021, 10, 2303. [Google Scholar] [CrossRef]
- Castiglia, D.; Landi, S.; Esposito, S. Advanced applications for protein and compounds from microalgae. Plants 2021, 10, 1686. [Google Scholar] [CrossRef]
- Toghueo, R.M.K. Microalgal Bioreactors for Pharmaceuticals Production. In Plants as Bioreactors for Industrial Molecules; John Wiley and Sons: Hoboken, NJ, USA, 2023; pp. 127–160. [Google Scholar]
- Rahman, K.M. Food and high value products from microalgae: Market opportunities and challenges. In Microalgae Biotechnology for Food, Health and High Value Products; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–27. [Google Scholar]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Bishop, W.M.; Zubeck, H.M. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J. Nutr. Food Sci. 2012, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Abd El Baky, H.H.; El-Baroty, G. Healthy benefit of microalgal bioactive substances. J. Aquat. Sci. 2013, 1, 11–23. [Google Scholar]
- Wu, J.; Gu, X.; Yang, D.; Xu, S.; Wang, S.; Chen, X.; Wang, Z. Bioactive substances and potentiality of marine microalgae. Food Sci. Nutr. 2021, 9, 5279–5292. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Kumari, R.; Upasani, V.N. Applications of algae in cosmetics: An overview. Int. J. Innov. Res. Sci. Eng. Technol. 2018, 7, 1269. [Google Scholar]
- Siddiki, S.Y.A.; Mofijur, M.; Kumar, P.S.; Ahmed, S.F.; Inayat, A.; Kusumo, F.; Badruddin, I.A.; Khan, T.Y.; Nghiem, L.; Ong, H.C. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel 2022, 307, 121782. [Google Scholar] [CrossRef]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 2011, 102, 26–34. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Vonshak, A. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.; Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Fathy, W.A.; AbdElgawad, H.; Essawy, E.A.; Tawfik, E.; Abdelhameed, M.S.; Hammouda, O.; Korany, S.M.; Elsayed, K.N.M. Glycine differentially improved the growth and biochemical composition of Synechocystis sp. PAK13 and Chlorella variabilis DT025. Front. Bioeng. Biotechnol. 2023, 11, 1161911. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Bio/Technol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Fathy, W.; Elsayed, K.; Essawy, E.; Tawfik, E.; Zaki, A.; Abdelhameed, M.; Hammouda, O. Biosynthesis of silver nanoparticles from Synechocystis sp. to be used as a flocculant agent with different microalgae strains. Curr. Nanomater. 2020, 5, 175–187. [Google Scholar] [CrossRef]
- Yan, N.; Wang, X.-Q.; Xu, X.-F.; Guo, D.-P.; Wang, Z.-D.; Zhang, J.-Z.; Hyde, K.D.; Liu, H.-L. Plant growth and photosynthetic performance of Zizania latifolia are altered by endophytic Ustilago esculenta infection. Physiol. Mol. Plant Pathol. 2013, 83, 75–83. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.-C. Effect of auxin on Chlorella vulgaris and Studies on the Movement of Leaves. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1937. [Google Scholar]
- Vance, B.D. Phytohormone effects on cell division in Chlorella pyrenoidosa Chick (TX-7-11-05) (Chlorellaceae). J. Plant Growth Regul. 1987, 5, 169–173. [Google Scholar] [CrossRef]
- Czerpak, R.; Bajguz, A. Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc. Bot. Pol. 1997, 66, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Soil microalgae and cyanobacteria: The biotechnological potential in the maintenance of soil fertility and health. Crit. Rev. Biotechnol. 2019, 39, 981–998. [Google Scholar] [CrossRef]
- Tan, C.-Y.; Dodd, I.C.; Chen, J.E.; Phang, S.-M.; Chin, C.F.; Yow, Y.-Y.; Ratnayeke, S. Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: An overview. J. Appl. Phycol. 2021, 33, 2995–3023. [Google Scholar] [CrossRef]
- Gauthier, M.; Senhorinho, G.; Scott, J. Microalgae under environmental stress as a source of antioxidants. Algal Res. 2020, 52, 102104. [Google Scholar] [CrossRef]
- Ahmad, N.; Yasin, D.; Bano, F.; Fatma, T. Ameliorative effects of endogenous and exogenous indole-3-acetic acid on atrazine stressed paddy field cyanobacterial biofertilizer Cylindrospermum stagnale. Sci. Rep. 2022, 12, 11175. [Google Scholar] [CrossRef]
- Hashtroudi, M.S.; Ghassempour, A.; Riahi, H.; Shariatmadari, Z.; Khanjir, M. Endogenous auxins in plant growth-promoting Cyanobacteria—Anabaena vaginicola and Nostoc calcicola. J. Appl. Phycol. 2013, 25, 379–386. [Google Scholar] [CrossRef]
- Park, W.K.; Yoo, G.; Moon, M.; Kim, C.W.; Choi, Y.E.; Yang, J.W. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 2013, 171, 1128–1142. [Google Scholar] [CrossRef] [PubMed]
- Leganés, F.; Sánchez-Maeso, E.; Fernández-Valiente, E. Effect of Indoleacetic Acid on Growth and Dinitrogen Fixation in Cyanobacteria. Plant Cell Physiol. 1987, 28, 529–533. [Google Scholar] [CrossRef]
- Ermavitalini, D.; Rahayu, A.E.; Kurniawan, H.B.; Prasetyo, E.N. Effect of Indole 3-Acetic Acid (IAA) and 6-Benzyl Amino Purine (BAP) on Nannochloropsis sp. culture growth. IOP Conf. Ser. Earth Environ. Sci. 2021, 649, 012003. [Google Scholar] [CrossRef]
- Hunt, R.W.; Chinnasamy, S.; Bhatnagar, A.; Das, K. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 2010, 162, 2400–2414. [Google Scholar] [CrossRef]
- Lebrazi, S.; Fadil, M.; Chraibi, M.; Fikri-Benbrahim, K. Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. J. Genet. Eng. Biotechnol. 2020, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Bunsangiam, S.; Thongpae, N.; Limtong, S.; Srisuk, N. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci. Rep. 2021, 11, 13094. [Google Scholar] [CrossRef]
- Meza, B.; de-Bashan, L.E.; Hernandez, J.-P.; Bashan, Y. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Res. Microbiol. 2015, 166, 399–407. [Google Scholar] [CrossRef]
- González-Garcinuño, Á.; Sánchez-Álvarez, J.M.; Galán, M.A.; Martin del Valle, E.M. Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnol. Prog. 2016, 32, 1203–1211. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Beardall, J.; Raven, J.A. The Physiology of Microalgae; Springer: Berlin/Heidelberg, Germany, 2016; Volume 6. [Google Scholar]
- Guldhe, A.; Renuka, N.; Singh, P.; Bux, F. Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production. Algal Res. 2019, 40, 101518. [Google Scholar] [CrossRef]
- Salama, E.-S.; Jeon, B.-H.; Chang, S.W.; Lee, S.-H.; Roh, H.-S.; Yang, I.-S.; Kurade, M.B.; El-Dalatony, M.M.; Kim, D.-H.; Kim, K.-H. Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J. Clean. Prod. 2017, 168, 1017–1024. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A.; Zambrzycka, E.; Godlewska-Żyłkiewicz, B. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 2012, 52, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.B.; Mercadante, A.Z.; Mariutti, L.R.B. Marigold carotenoids: Much more than lutein esters. Food Res. Int. 2019, 119, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Camacho, F.G.; Gómez, A.C.; Fernández, F.A.; Sevilla, J.F.; Grima, E.M. Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures. Enzym. Microb. Technol. 1999, 24, 164–172. [Google Scholar] [CrossRef]
- Defez, R.; Andreozzi, A.; Romano, S.; Pocsfalvi, G.; Fiume, I.; Esposito, R.; Angelini, C.; Bianco, C. Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms 2019, 7, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Sola, M.; Rodríguez-Concepción, M. Carotenoid biosynthesis in Arabidopsis: A colorful pathway. Arab. Book 2012, 10, e0158. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H.; Gomaa, E. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 2012, 50, 263–272. [Google Scholar] [CrossRef]
- Casanova-Sáez, R.; Mateo-Bonmatí, E.; Ljung, K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021, 13, a039867. [Google Scholar] [CrossRef]
- Li, X.; Liao, M.; Huang, J.; Xu, Z.; Lin, Z.; Ye, N.; Zhang, Z.; Peng, X. Glycolate oxidase-dependent H2O2 production regulates IAA biosynthesis in rice. BMC Plant Biol. 2021, 21, 326. [Google Scholar] [CrossRef]
- Kumudini, B.S.; Patil, S.V. Role of plant hormones in improving photosynthesis. Photosynth. Product. Environ. Stress 2019, 215–240. [Google Scholar] [CrossRef]
- Lin, H.; Li, Y.; Hill, R.T. Microalgal and bacterial auxin biosynthesis: Implications for algal biotechnology. Curr. Opin. Biotechnol. 2022, 73, 300–307. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul. 2014, 73, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Duca, D.R.; Glick, B.R. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 8607–8619. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.; Young, M.; Taegtmeyer, H. Anaplerosis of the citric acid cycle: Role in energy metabolism of heart and skeletal muscle. Acta Physiol. Scand. 2000, 168, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Araújo, W.L.; Nunes-Nesi, A.; Nikoloski, Z.; Sweetlove, L.J.; Fernie, A.R. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 2012, 35, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-X.; Wu, X.-Q.; Ye, J.-R.; Yang, H.-C. Characteristics of Organic Acid Secretion Associated with the Interaction between Burkholderia multivorans WS-FJ9 and Poplar Root System. BioMed Res. Int. 2018, 2018, 9619724. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Chauhan, A.K.; Singh, R.B.; Khan, S.; Halabi, G. Chapter 22—Organic acids: Microbial sources, production, and applications. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 325–337. [Google Scholar] [CrossRef]
- Kim, J.; Harter, K.; Theologis, A. Protein–protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 1997, 94, 11786–11791. [Google Scholar] [CrossRef]
- Song, X.; Liu, B.-F.; Kong, F.; Ren, N.-Q.; Ren, H.-Y. Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resour. Conserv. Recycl. 2022, 183, 106355. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Yu, K.L.; Mahlia, T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019, 107, 59–74. [Google Scholar] [CrossRef]
- Elsayed, K.N.M.; Kolesnikova, T.A.; Noke, A.; Klöck, G. Imaging the accumulated intracellular microalgal lipids as a response to temperature stress. 3 Biotech 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhila, N.O.; Kalacheva, G.S.; Volova, T.G. Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J. Appl. Phycol. 2011, 23, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Onay, M. The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel 2020, 273, 117795. [Google Scholar] [CrossRef]
- Dao, G.-H.; Wu, G.-X.; Wang, X.-X.; Zhuang, L.-L.; Zhang, T.-Y.; Hu, H.-Y. Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresour. Technol. 2018, 247, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Winckelmann, D.; Bleeke, F.; Bergmann, P.; Klöck, G. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature. 3 Biotech 2015, 5, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Chen, J.; Su, Y.; Sun, W.; Zhang, A. Utilization of indole-3-acetic acid–secreting bacteria in algal environment to increase biomass accumulation of Ochromonas and Chlorella. Bioenerg. Res. 2022, 15, 242–252. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Antoun, H.; Bashan, Y. Involvement of Indole-3-Acetic Acid Produced by the Growth-Promoting Bacterium Azospirillum spp. In promoting growth of Chlorella vulgaris. J. Phycol. 2008, 44, 938–947. [Google Scholar] [CrossRef]
- Moran, R.; Porath, D. Chlorophyll determination in intact tissues using N,N-Dimethylformamide. Plant Physiol. 1980, 65, 478. [Google Scholar] [CrossRef] [Green Version]
- Metzner, H.; Rau, H.; Senger, H. Untersuchungen zur synchronisierbarkeit einzelner pigmentmangel-mutanten von Chlorella. Planta 1965, 65, 186–194. [Google Scholar] [CrossRef]
- Pflanz, M.; Zude, M. Spectrophotometric analyses of chlorophyll and single carotenoids during fruit development of tomato (Solanum lycopersicum L.) by means of iterative multiple linear regression analysis. Appl. Opt. 2008, 47, 5961–5970. [Google Scholar] [CrossRef]
- Al Jaouni, S.; Saleh, A.M.; Wadaan, M.A.; Hozzein, W.N.; Selim, S.; AbdElgawad, H. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. J. Plant Physiol. 2018, 224, 121–131. [Google Scholar] [CrossRef]
- Sinha, A.K.; Giblen, T.; AbdElgawad, H.; De Rop, M.; Asard, H.; Blust, R.; De Boeck, G. Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat. Toxicol. 2013, 130–131, 86–96. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Abuelsoud, W.; Madany, M.M.Y.; Selim, S.; Zinta, G.; Mousa, A.S.M.; Hozzein, W.N. Actinomycetes Enrich Soil Rhizosphere and Improve Seed Quality as well as Productivity of Legumes by Boosting Nitrogen Availability and Metabolism. Biomolecules 2020, 10, 1675. [Google Scholar] [CrossRef] [PubMed]
Strain | IAA Dose (µM) | IAA Mean ± SE (mg/g) |
---|---|---|
Synechocystis sp. | 0 | 0.103 ± 0.002 |
0.36 | 0.120 ± 0.004 a | |
0.71 | 0.107 ± 0.003 a | |
1.42 | 0.133 ± 0.007 b | |
2.84 | 0.139 ± 0.004 b | |
5.69 | 0.236 ± 0.012 b | |
Chlorella variabilis | 0 | 1.724 ± 0.116 |
0.36 | 2.253 ± 0.055 b | |
0.71 | 3.327 ± 0.127 b | |
1.42 | 4.441 ± 0.131 a | |
2.84 | 4.706 ± 0.053 a | |
5.69 | 5.807 ± 0.136 b |
Strain | IAA Dose (µM) | Total S Sugars (mg/g) | Glycogen Content (mg/g) |
---|---|---|---|
Mean ± SE | Mean ± SE | ||
Synechocystis sp. | 0 | 3.03 ± 0.02 | 48.44 ± 0.36 |
0.36 | 3.66 ± 0.12 a | 59.54 ± 0.71 a | |
0.71 | 3.54 ± 0.51 a | 62.19 ± 5.23 a | |
1.42 | 4.63 ± 0.27 b | 71.25 ± 3.38 a | |
2.84 | 4.45 ± 0.29 a | 72.78 ± 4.04 b | |
5.69 | 2.03 ± 0.15 b | 36.49 ± 2.14 a | |
Chlorella variabilis | 0 | 3.48 ± 0.18 | 3.54 ± 0.16 |
0.36 | 3.58 ± 0.04 a | 3.90 ± 0.21 a | |
0.71 | 3.40 ± 0.35 a | 3.50 ± 0.29 b | |
1.42 | 4.07 ± 0.25 b | 4.17 ± 0.21 a | |
2.84 | 2.85 ± 0.30 b | 3.10 ± 0.21 a | |
5.69 | 2.62 ± 0.34 a | 2.94 ± 0.24 a |
Strain | IAA Dose (µM) | Myristic (C14:0) | Palmitic (C16:0) | Heptadecanoic (C17:0) | Stearic (C18:0) | Arachidic (C20:0) | Docosanoic (C22:0) | Tricosanoic (C23:0) | Pentacosanoic (C25:0) | Sum of Saturated FA ± SE |
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | |||
Synechocystis sp. | 0 | 0.332 ± 0.005 | 15.193 ± 0.333 | 0.025 ± 0.001 | 1.393 ± 0.092 | 1.136 ± 0.013 | 0.609 ± 0.020 | 0.020 ± 0.002 | 0.002 ± 0.0002 | 18.71 |
0.36 | 0.658 ± 0.006 b | 17.458 ± 0.643 b | 0.061 ± 0.002 b | 1.994 ± 0.104 b | 1.228 ± 0.175 a | 0.518 ± 0.054 a | 0.043 ± 0.004 a | 0.004 ± 0.0004 a | 21.96 | |
0.71 | 0.449 ± 0.002 a | 15.801 ± 0.525 b | 0.028 ± 0.001 b | 1.674 ± 0.090 b | 1.282 ± 0.019 b | 0.563 ± 0.026 a | 0.023 ± 0.003 b | 0.002 ± 0.0003 a | 19.82 | |
1.42 | 0.533 ± 0.002 a | 19.611 ± 0.991 a | 0.031 ± 0.001 a | 2.021 ± 0.110 b | 0.878 ± 0.014 a | 0.411 ± 0.033 a | 0.026 ± 0.003 a | 0.003 ± 0.0003 a | 23.51 | |
2.84 | 0.765 ± 0.004 b | 25.423 ± 1.551 a | 0.038 ± 0.001 a | 1.511 ± 0.093 a | 0.812 ± 0.015 b | 0.565 ± 0.024 b | 0.035 ± 0.001 a | 0.003 ± 0.0003 b | 29.15 | |
5.69 | 1.065 ± 0.003 b | 34.647 ± 1.755 b | 0.154 ± 0.005 a | 4.736 ± 0.253 b | 0.786 ± 0.017 a | 0.796 ± 0.039 a | 0.107 ± 0.013 a | 0.008 ± 0.0009 a | 42.30 | |
Chlorella sp. | 0 | 0.313 ± 0.003 | 16.254 ± 0.597 | 0.061 ± 0.003 | 1.262 ± 0.054 | 1.225 ± 0.043 | 0.462 ± 0.077 | 0.040 ± 0.005 | 0.004 ± 0.0005 | 19.62 |
0.36 | 0.630 ± 0.007 a | 16.606 ± 0.464 b | 0.026 ± 0.001 b | 1.227 ± 0.073 a | 0.957 ± 0.031 a | 0.385 ± 0.020 a | 0.020 ± 0.002 a | 0.002 ± 0.0002 a | 19.85 | |
0.71 | 0.751 ± 0.050 a | 22.011 ± 2.131 b | 0.070 ± 0.007 a | 1.718 ± 0.167 b | 1.068 ± 0.111 a | 0.672 ± 0.043 b | 0.035 ± 0.006 a | 0.005 ± 0.0009 a | 26.33 | |
1.42 | 0.478 ± 0.020 b | 30.749 ± 0.382 a | 0.083 ± 0.006 a | 2.371 ± 0.235 a | 1.290 ± 0.096 b | 0.823 ± 0.049 a | 0.055 ± 0.008 a | 0.014 ± 0.0010 b | 35.86 | |
2.84 | 0.383 ± 0.002 b | 23.151 ± 0.809 a | 0.080 ± 0.003 a | 2.242 ± 0.118 b | 1.014 ± 0.016 a | 0.427 ± 0.020 a | 0.055 ± 0.006 a | 0.006 ± 0.0006 a | 27.36 | |
5.69 | 0.262 ± 0.006 b | 31.679 ± 3.694 a | 0.051 ± 0.001 b | 3.254 ± 0.398 b | 1.375 ± 0.036 b | 0.645 ± 0.090 a | 0.060 ± 0.007 a | 0.017 ± 0.0035 a | 37.34 |
Strain | IAA Dose (µM) | Palmitoleic (C16:1) | Heptadecenoic (C17:1) | Oleic (C18:1) | Linolenic (C18:3) | Linoleic (C18:2) | Eicosenoic (C20:1) | Sum of Unsaturated FA ± SE | Total FA |
---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | ||||
Synechocystis sp. | 0 | 0.06 ± 0.008 | 0.138 ± 0.013 | 27.631 ± 1.424 | 4.719 ± 0.156 | 17.780 ± 0.879 | 0.876 ± 0.038 | 51.208 | 69.92 |
0.36 | 0.087 ± 0.009 a | 0.165 ± 0.012 b | 65.212 ± 1.371 a | 7.041 ± 0.459 a | 23.963 ± 1.644 b | 0.940 ± 0.067 a | 97.408 | 119.37 | |
0.71 | 0.075 ± 0.008 a | 0.099 ± 0.008 a | 35.940 ± 0.942 a | 4.645 ± 0.334 a | 16.334 ± 1.133 b | 0.649 ± 0.044 a | 57.742 | 77.56 | |
1.42 | 0.055 ± 0.008 a | 0.151 ± 0.013 a | 40.946 ± 1.160 a | 6.220 ± 0.229 a | 20.856 ± 0.522 a | 0.813 ± 0.019 a | 69.041 | 92.55 | |
2.84 | 0.085 ± 0.004 b | 0.169 ± 0.016 a | 42.343 ± 0.748 b | 7.107 ± 0.545 b | 23.923 ± 2.148 b | 0.933 ± 0.091 a | 74.560 | 103.71 | |
5.69 | 0.280 ± 0.030 b | 0.143 ± 0.013 a | 50.144 ± 1.826 a | 8.508 ± 0.644 a | 31.824 ± 2.312 b | 1.295 ± 0.093 a | 92.193 | 134.49 | |
Chlorella sp. | 0 | 0.093 ± 0.004 | 0.148 ± 0.015 | 33.155 ± 1.589 | 7.239 ± 0.285 | 25.670 ± 0.615 | 1.023 ± 0.020 | 67.328 | 86.95 |
0.36 | 0.061 ± 0.008 a | 0.152 ± 0.016 b | 30.122 ± 1.463 a | 7.049 ± 0.620 a | 24.703 ± 2.038 b | 0.981 ± 0.079 a | 63.068 | 82.92 | |
0.71 | 0.108 ± 0.003 a | 0.150 ± 0.023 b | 47.689 ± 1.811 a | 6.961 ± 0.58 a | 24.297 ± 1.521 b | 0.962 ± 0.052 a | 80.168 | 106.50 | |
1.42 | 0.138 ± 0.009 a | 0.207 ± 0.026 a | 38.204 ± 3.362 b | 13.143 ± 0.888 b | 49.825 ± 2.767 b | 2.038 ± 0.104 b | 103.556 | 139.42 | |
2.84 | 0.150 ± 0.004 a | 0.215 ± 0.017 a | 45.462 ± 1.999 b | 9.092 ± 0.656 a | 30.776 ± 2.435 b | 1.204 ± 0.100 b | 86.898 | 114.26 | |
5.69 | 0.119 ± 0.017 a | 0.264 ± 0.026 a | 52.388 ± 0.689 a | 19.356 ± 1.383 b | 75.619 ± 5.012 b | 3.126 ± 0.202 b | 150.871 | 188.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathy, W.A.; AbdElgawad, H.; Hashem, A.H.; Essawy, E.; Tawfik, E.; Al-Askar, A.A.; Abdelhameed, M.S.; Hammouda, O.; Elsayed, K.N.M. Exploring Exogenous Indole-3-acetic Acid’s Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules 2023, 28, 5501. https://doi.org/10.3390/molecules28145501
Fathy WA, AbdElgawad H, Hashem AH, Essawy E, Tawfik E, Al-Askar AA, Abdelhameed MS, Hammouda O, Elsayed KNM. Exploring Exogenous Indole-3-acetic Acid’s Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules. 2023; 28(14):5501. https://doi.org/10.3390/molecules28145501
Chicago/Turabian StyleFathy, Wael A., Hamada AbdElgawad, Amr H. Hashem, Ehab Essawy, Eman Tawfik, Abdulaziz A. Al-Askar, Mohamed S. Abdelhameed, Ola Hammouda, and Khaled N. M. Elsayed. 2023. "Exploring Exogenous Indole-3-acetic Acid’s Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis" Molecules 28, no. 14: 5501. https://doi.org/10.3390/molecules28145501
APA StyleFathy, W. A., AbdElgawad, H., Hashem, A. H., Essawy, E., Tawfik, E., Al-Askar, A. A., Abdelhameed, M. S., Hammouda, O., & Elsayed, K. N. M. (2023). Exploring Exogenous Indole-3-acetic Acid’s Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules, 28(14), 5501. https://doi.org/10.3390/molecules28145501