A Multiple Stimuli–Responsive Ag/P/S Complex Showing Solvochromic and Mechanochromic Photoluminescence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Photoluminescent Properties
2.2.1. Solvochromic Photoluminescence
2.2.2. Mechanochromic Photoluminescence
2.3. Photoluminescent Sensing of Alcohols
3. Experimental Section
3.1. Materials, Characterization, and Measurements
3.2. Synthesis
3.2.1. Synthesis of 1·xSol
3.2.2. Synthesis of 1·2MeOH
3.2.3. Synthesis of 1
3.2.4. Synthesis of 1G
3.2.5. Synthesis of 1GR
3.3. Solvochromic Experiments of 1G toward VOCs and H2O
3.4. Preparation of the Test Paper
3.5. Single-Crystal X-ray Diffraction (SCXRD) Determination of 1·xSol
3.6. TD-DFT Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kavet, R.; Nauss, K.M. The toxicity of inhaled methanol vapors. Crit. Rev. Toxicol. 1990, 21, 21–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-L.; Wang, J.-T.; Choong, Y.-M. A rapid and accurate method for determination of methanol in alcoholic beverage by direct injection capillary gas chromatography. J. Food Compos. Anal. 2004, 17, 187–196. [Google Scholar] [CrossRef]
- Yoshinari, N.; Shimizu, T.; Nozaki, K.; Konno, T. Methanol-triggered turn-on-type photoluminescence in l-cysteinato palladium(II) and platinum(II) complexes supported by a bis(diphenylphosphine) ligand. Inorg. Chem. 2016, 55, 2030–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Zhang, M.; Liu, Y.; Zhang, X.; Duan, Y.; Han, T. Fabricating D-A type AIE luminogen into film sensor for turn-on detection of methanol vapour. Sens. Actuators B 2020, 319, 128323. [Google Scholar] [CrossRef]
- Wenger, O.S. Vapochromism in organometallic and coordination complexes: Chemical sensors for volatile organic compounds. Chem. Rev. 2013, 113, 3686–3733. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, X.; Li, K.; Peng, Q.C.; Qin, Y.J.; Hou, H.W.; Zang, S.Q.; Tang, B.Z. Restriction of intramolecular vibration in aggregation-induced emission luminogens: Applications in multifunctional luminescent metal-organic frameworks. Angew. Chem. Int. Ed. 2021, 60, 22417–22423. [Google Scholar] [CrossRef]
- Seki, T.; Ida, K.; Ito, H. A meta-diisocyanide benzene-based aryl gold isocyanide complex exhibiting multiple solid-state molecular arrangements and luminescent mechanochromism. Mater. Chem. Front. 2018, 2, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.Y.; Yam, V.W. Dual emissive gold(I)-sulfido cluster framework capable of benzene-cyclohexane separation in the solid state accompanied by luminescence color changes. J. Am. Chem. Soc. 2021, 143, 2558–2566. [Google Scholar] [CrossRef]
- Yam, V.W.; Au, V.K.; Leung, S.Y. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 2015, 115, 7589–7728. [Google Scholar] [CrossRef]
- Xu, Z.-H.; Zhao, S.-M.; Zhao, Y.; Sun, W.-Y. Synthesis, structure and properties of luminescent Cd(II) coordination polymers based on imidazole-decorated tetraphenylethylene. J. Coord. Chem. 2021, 74, 294–305. [Google Scholar] [CrossRef]
- Chen, M.; Chen, R.; Shi, Y.; Wang, J.; Cheng, Y.; Li, Y.; Gao, X.; Yan, Y.; Sun, J.Z.; Qin, A.; et al. Malonitrile-functionalized tetraphenylpyrazine: Aggregation-induced emission, ratiometric detection of hydrogen sulfide, and mechanochromism. Adv. Funct. Mater. 2017, 28, 1704689. [Google Scholar] [CrossRef]
- Deak, A.; Jobbagy, C.; Marsi, G.; Molnar, M.; Szakacs, Z.; Baranyai, P. Anion-, solvent-, temperature-, and mechano-responsive photoluminescence in gold(I) diphosphine-based dimers. Chem. Eur. J. 2015, 21, 11495–11508. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.H.; Leung, S.Y.; Yam, V.W. Rational design of multi-stimuli-responsive scaffolds: Synthesis of luminescent oligo(ethynylpyridine)-containing alkynylplatinum(II) polypyridine foldamers stabilized by Pt···Pt interactions. J. Am. Chem. Soc. 2019, 141, 12312–12321. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, S.L.; Zhang, F.Q.; Zhang, X.M. Simultaneous luminescent thermochromism, vapochromism, solvatochromism, and mechanochromism in a C3-symmetric cubane [Cu4I4P4] cluster without Cu-Cu interaction. Inorg. Chem. 2016, 55, 7323–7325. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, M.; Liu, C.; Li, S.; Li, Z.; Jiang, F.; Chen, L.; Hong, M. Tunable dual-emission luminescence from Cu(I)-cluster-based MOFs for multi-stimuli responsive materials. J. Mater. Chem. C 2021, 9, 2890–2897. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, Z.; Zhao, Y.; Yu, M.; Jiang, F.; Chen, L.; Hong, M. A copper(I) thiolate coordination polymer with thermochromic and mechanochromic luminescence. Inorg. Chem. Commun. 2022, 140, 109432. [Google Scholar] [CrossRef]
- Xu, Z.H.; Huang, Z.Q.; Liu, X.H.; Zhao, Y.; Lu, Y.; Sun, W.Y. Luminescent silver(I) complexes with pyrazole-tetraphenylethene ligands: Turn-on fluorescence due to the coordination-driven rigidification and solvent-oriented structural transformation. Dalton Trans. 2021, 50, 2183–2191. [Google Scholar] [CrossRef]
- Du, W.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X.; Pei, Y.; Wang, S.; Zhu, M. Ag50(Dppm)6(SR)30 and its homologue AuXAg50-X(Dppm)6(SR)30 alloy nanocluster: Seeded growth, structure determination, and differences in properties. J. Am. Chem. Soc. 2017, 139, 1618–1624. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Li, Q.; Li, H.Y.; Zhang, M.M.; Sun, M.E.; Li, S.; Quan, Z.; Zang, S.Q. Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster. Chem. Commun. 2021, 57, 2372–2375. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Huang, H.-L.; Wang, J.-Y.; Li, H.-Y.; Zang, S.-Q. A flexible fluorescent SCC-MOF for switchable molecule identification and temperature display. Chem. Mater. 2018, 30, 2160–2167. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Zou, X.; He, Y.; Wang, X. Pyridylphosphine supported Ag(I) and Cu(I) complexes for detection of alcohols and nitriles via structural transformations from 1D to 0D. CrystEngComm 2019, 21, 5595–5601. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Rashdan, M.D.; Dharanipathi, S.; Elbjeirami, O.; Ramesh, P.; Dias, H.V. On/off luminescence vapochromic selective sensing of benzene and its methylated derivatives by a trinuclear silver(I) pyrazolate sensor. Chem. Commun. 2011, 47, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Artem’ev, A.V.; Shafikov, M.Z.; Schinabeck, A.; Antonova, O.V.; Berezin, A.S.; Bagryanskaya, I.Y.; Plusnin, P.E.; Yersin, H. Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(I) complexes: Strong solvation-induced emission enhancement. Inorg. Chem. Front. 2019, 6, 3168–3176. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, Z.; Su, H.F.; Feng, S.; Kurmoo, M.; Tung, C.H.; Sun, D.; Zheng, L.S. Anion-templated nanosized silver clusters protected by mixed thiolate and diphosphine. Nanoscale 2017, 9, 3601–3608. [Google Scholar] [CrossRef] [PubMed]
- Rogovoy, M.I.; Berezin, A.S.; Samsonenko, D.G.; Artem’ev, A.V. Silver(I)-organic frameworks showing remarkable thermo-, solvato- and vapochromic phosphorescence as well as reversible solvent-driven 3D-to-0D transformations. Inorg. Chem. 2021, 60, 6680–6687. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Davydova, M.P.; Berezin, A.S.; Samsonenko, D.G. Synthesis and thermochromic luminescence of Ag(I) complexes based on 4,6-bis(diphenylphosphino)-pyrimidine. Inorganics 2020, 8, 46. [Google Scholar] [CrossRef]
- Ma, X.H.; Wang, J.Y.; Guo, J.J.; Wang, Z.Y.; Zang, S.Q. Reversible wide-range tuneable luminescence of a dual-stimuli- responsive silver cluster-assembled material. Chin. J. Chem. 2019, 37, 1120–1124. [Google Scholar] [CrossRef]
- Smith, M.B. The backbone of success of P,N -hybrid ligands: Some recent developments. Molecules 2022, 27, 6293. [Google Scholar] [CrossRef]
- Yu, P.; Peng, D.; He, L.H.; Chen, J.L.; Wang, J.Y.; Liu, S.J.; Wen, H.R. A mechanochromic and vapochromic luminescent cuprous complex based on a switchable intramolecular π···π interaction. Inorg. Chem. 2022, 61, 254–264. [Google Scholar] [CrossRef]
- Ju, P.; Huang, Q.; Zhang, R.; Chen, J.-L.; Zhao, F.; Liu, S.-J.; Wen, H.-R. A tricolor-switchable stimuli-responsive luminescent binuclear Cu(I) complex with switchable NH···O interactions. Inorg. Chem. Front. 2022, 9, 2305–2314. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Shi, L.X.; Wang, J.Y.; Su, H.F.; Chen, Z.N. Elaborate design of Ag8Cu10 cluster [2]catenane phosphors for high-efficiency light-emitting devices. ACS Appl. Mater. Interfaces 2020, 12, 57264–57270. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457. [Google Scholar] [CrossRef]
- Nag, A.; Chakraborty, P.; Bodiuzzaman, M.; Ahuja, T.; Antharjanam, S.; Pradeep, T. Polymorphism of Ag29(BDT)12(TPP)43- cluster: Interactions of secondary ligands and their effect on solid state luminescence. Nanoscale 2018, 10, 9851–9855. [Google Scholar] [CrossRef] [PubMed]
- Chakkaradhari, G.; Eskelinen, T.; Degbe, C.; Belyaev, A.; Melnikov, A.S.; Grachova, E.V.; Tunik, S.P.; Hirva, P.; Koshevoy, I.O. Oligophosphine-thiocyanate copper(I) and silver(I) complexes and their borane derivatives showing delayed fluorescence. Inorg. Chem. 2019, 58, 3646–3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Wu, X.Y.; Wang, H.F.; Young, D.J.; Ren, Z.G.; Lang, J.P. Novel silver-phosphine coordination polymers incorporating a wurster’s blue—Like radical cation with enhanced photoelectric properties. Chem. Commun. 2019, 55, 6599–6602. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, Y.; Hu, S.; Young, D.J.; Lu, C.; Li, H.X.; Ren, Z.G. A photoluminescent Au(I)/Ag(I)/PNN coordination complex for relatively rapid and reversible alcohol sensing. Dalton Trans. 2021, 50, 6773–6777. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.J.; Hu, S.; James Young, D.; Li, H.X.; Ren, Z.G. A photoluminescent Ag10Cu6 cluster stablized by a PNNP ligand and phenylacetylides selectively and reversibly senses ammonia in air and water. Chem. Asian, J. 2021, 16, 2681–2686. [Google Scholar] [CrossRef]
- Xu, W.D.; Yan, J.J.; Feng, M.Y.; Li, H.Y.; Young, D.J.; Ren, Z.G. A photoluminescent thermometer made from a thermoresponsive tetranuclear gold complex and phosphor N630. Dalton Trans. 2021, 50, 16395–16400. [Google Scholar] [CrossRef]
- Feng, M.; Liu, F.; Yang, N.; Yu, J.; Yang, W.; Young, D.J.; Cao, X.Q.; Li, H.X.; Ren, Z.G. One-dimensional heterobimetallic Au/Ag coordination polymer showing a selective, reversible, and visible vapor-chromic photoluminescent response toward methanol. Inorg. Chem. 2023, 62, 6439–6446. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Xu, Z.H.; Liu, X.H.; Zhao, Y.; Wang, P.; Liu, Z.Q.; Sun, W.Y. A novel copper framework with amino tridentate N-donor ligand as heterogeneous catalyst for ring opening of epoxides. Appl. Organomet. Chem. 2021, 35, e6262. [Google Scholar] [CrossRef]
- Qiu, Z.-F.; Huang, Z.-Q.; Sun, X.-Y.; Zhang, X.-Y.; Zhao, S.-M.; Zhao, Y.; Wang, Z.-L.; Sun, W.-Y. Cd(II) frameworks with tetracarboxylate and imidazole-containing ligands: Syntheses, structures, adsorption and sensing properties. J. Solid State Chem. 2022, 312, 123243. [Google Scholar] [CrossRef]
- Li, Z.W.; Peng, L.Y.; Song, X.F.; Chen, W.K.; Gao, Y.J.; Fang, W.H.; Cui, G. Room-temperature phosphorescence and thermally activated delayed fluorescence in the Pd complex: Mechanism and dual upconversion channels. J. Phys. Chem. Lett. 2021, 12, 5944–5950. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Teng, T.; Kang, L.; Chen, X.L.; Wu, X.Y.; Yu, R.; Lu, C.Z. Highly efficient thermally activated delayed fluorescence in dinuclear Ag(I) complexes with a bis-bidentate tetraphosphane bridging ligand. Inorg. Chem. 2016, 55, 9528–9536. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Horiuchi, S.; Sakuda, E.; Ito, A.; Arikawa, Y.; Umakoshi, K. Synthesis and photophysical properties of butterfly-shaped dinuclear Pt(II) complex having NHC-based chelate ligands. Inorg. Chim. Acta 2019, 493, 43–48. [Google Scholar] [CrossRef]
- Holzel, T.; Belyaev, A.; Terzi, M.; Stenzel, L.; Gernert, M.; Marian, C.M.; Steffen, A.; Ganter, C. Linear carbene pyridine copper complexes with sterically demanding N,N′-bis(trityl)imidazolylidene: Syntheses, molecular structures, and photophysical properties. Inorg. Chem. 2021, 60, 18529–18543. [Google Scholar] [CrossRef]
- Huang, C.H.; Yang, M.; Chen, X.L.; Lu, C.Z. Bright bluish-green emitting Cu(I) complexes exhibiting efficient thermally activated delayed fluorescence. Dalton Trans. 2021, 50, 5171–5176. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, S.Y.; Liu, C.Y.; Ren, Z.G.; Lang, J.P. Silver(I) complexes with a P-N hybrid ligand and oxyanions: Synthesis, structures, photocatalysis and photocurrent responses. Dalton Trans. 2016, 45, 9294–9306. [Google Scholar] [CrossRef]
- SAINT, v8.34A; Bruker AXS, Inc.: Madison, WI, USA, 2013.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXTL-2016; Universität Göttingen: Göttingen, Germany, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian-09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Kohn, W.; Hohenberg, P. Inhomogeneous electron gas. Phys. Rev. 1964, 136, 864–871. [Google Scholar]
- Stephens, P.J.; Pan, J.J.; Devlin, F.J.; Cheeseman, J.R. Determination of the absolute configurations of natural products using TDDFT optical rotation calculations: The iridoid oruwacin. J. Nat. Prod. 2008, 71, 285–288. [Google Scholar] [CrossRef]
- Schaefer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
D−H···A | D−H | H···A | D···A | D−H···A |
---|---|---|---|---|
N3−H3N···O1 | 0.88 | 1.89 | 2.739(6) | 160.3 |
N8−H8N···O2 | 0.88 | 1.92 | 2.771(6) | 161.9 |
O1−H1A···N1 i | 0.85 | 1.88 | 2.726(5) | 174.7 |
O2−H2A···N6 ii | 0.85 | 1.86 | 2.711(5) | 178.0 |
Compound | 1·xSol |
---|---|
Empirical formula | C68H68Ag2N10O2P4S2 |
Formula weight | 1461.06 |
Crystal system | Triclinic |
Space group | Pī |
a/Å | 16.3659(15) |
b/Å | 17.0033(15) |
c/Å | 17.3911(15) |
α/° | 107.557(2) |
β/° | 105.421(2) |
γ/° | 101.808(3) |
Volume/Å3 | 4228.9(7) |
Z | 2 |
ρcalc g/cm3 | 1.147 |
μ/mm−1 | 0.629 |
F(000) | 1496 |
R1 a | 0.0621 |
wR2 b | 0.1846 |
GOF c | 1.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.-J.; Wu, Y.; Zhai, W.; Yang, N.; Li, H.-X.; Yang, W.; Lu, C.; Young, D.J.; Ren, Z.-G. A Multiple Stimuli–Responsive Ag/P/S Complex Showing Solvochromic and Mechanochromic Photoluminescence. Molecules 2023, 28, 5513. https://doi.org/10.3390/molecules28145513
Yan J-J, Wu Y, Zhai W, Yang N, Li H-X, Yang W, Lu C, Young DJ, Ren Z-G. A Multiple Stimuli–Responsive Ag/P/S Complex Showing Solvochromic and Mechanochromic Photoluminescence. Molecules. 2023; 28(14):5513. https://doi.org/10.3390/molecules28145513
Chicago/Turabian StyleYan, Jia-Jun, Yu Wu, Weijia Zhai, Ningwen Yang, Hong-Xi Li, Wei Yang, Chengrong Lu, David James Young, and Zhi-Gang Ren. 2023. "A Multiple Stimuli–Responsive Ag/P/S Complex Showing Solvochromic and Mechanochromic Photoluminescence" Molecules 28, no. 14: 5513. https://doi.org/10.3390/molecules28145513
APA StyleYan, J. -J., Wu, Y., Zhai, W., Yang, N., Li, H. -X., Yang, W., Lu, C., Young, D. J., & Ren, Z. -G. (2023). A Multiple Stimuli–Responsive Ag/P/S Complex Showing Solvochromic and Mechanochromic Photoluminescence. Molecules, 28(14), 5513. https://doi.org/10.3390/molecules28145513