Structural, Spectroscopic, and Dynamic Properties of in Interaction with Krypton Atom
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Methods
3.1. Potential Energy Surface
3.1.1. Ab Initio Calculations
3.1.2. Analytical Representation of the Ab Initio Surface
3.2. Bound States Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, Q.; Wang, J.K.; Zewail, A.H. Femtosecond dynamics of dissociation and recombination in solvent cages. Nature 1993, 364, 427–430. [Google Scholar] [CrossRef]
- Apkarian, V.A.; Schwentner, N. Molecular Photodynamics in Rare Gas Solids. Chem. Rev. 1999, 99, 1509–1514. [Google Scholar] [CrossRef]
- Greenblatt, B.J.; Zanni, M.T.; Neumark, D.M. Photodissociation of Clusters Studied with Anion Femtosecond Photoelectron Spectroscopy. Science 1997, 276, 1675–1678. [Google Scholar] [CrossRef]
- Kokoouline, V.; Dulieu, O.; Kosloff, R.; Masnou-Seeuws, F. Mapped Fourier methods for long-range molecules: Application to perturbations in the Rb2() photoassociation spectrum. J. Chem. Phys. 1999, 110, 9865–9876. [Google Scholar] [CrossRef] [Green Version]
- Weyhmann, W.; Pipkin, F.M. Optical Absorption Spectra of Alkali Atoms in Rare-Gas Matrices. Phys. Rev. 1965, 137, A490. [Google Scholar] [CrossRef]
- Braggio, C.; Calabrese, R.; Carugno, G.; Fiscelli, G.; Guarise, M.; Khanbekyan, A.; Noto, A.; Passante, R.; Rizzuto, L.; Ruoso, G.; et al. Spectroscopy of Alkali Atoms in Solid Matrices of Rare Gases: Experimental Results and Theoretical Analysis. Appl. Sci. 2022, 12, 6492. [Google Scholar] [CrossRef]
- Rodríguez-Cantano, R.; López-Durán, D.; González-Lezana, T.; Delgado-Barrio, G.; Villarreal, P.; Yurtsever, E.; Gianturco, F.A. Spin-polarized Rb2 interacting with bosonic He atoms: Potential energy surface and quantum structures of small clusters. J. Phys. Chem. A. 2012, 116, 2394–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.; Callegari, C.; Reho, J.; Stienkemeier, F.; Ernst, W.E.; Gutowski, M.; Scoles, G. Helium Cluster Isolation Spectroscopy of Alkali Dimers in the Triplet Manifold. J. Phys. Chem. A. 1998, 102, 4952–4965. [Google Scholar] [CrossRef]
- Schulz, C.P.; Claas, P.; Schumacher, D.; Stienkemeier, F. Formation and Stability of High-Spin Alkali Clusters. Phys. Rev. Lett. 2004, 92, 013401–013404. [Google Scholar] [CrossRef]
- Vongehr, S.; Kresin, V.V. Unusual pickup statistics of high-spin alkali agglomerates on helium nanodroplets. J. Chem. Phys. 2003, 119, 11124–11129. [Google Scholar] [CrossRef]
- Guillon, G.; Zanchet, A.; Leino, M.; Viel, A.; Zillich, R.E. Theoretical Study of Rb2 in HeN: Potential Energy Surface and Monte Carlo Simulations. J. Phys. Chem. A. 2011, 115, 6918–6926. [Google Scholar] [CrossRef] [PubMed]
- Alharzali, N.; Rodríguez-Segundo, R.; Prosmiti, R. Modelling interactions of cationic dimers in He droplets: Microsolvation trends in Hen clusters. Phys. Chem. Chem. Phys. 2021, 23, 7849–7859. [Google Scholar] [CrossRef]
- An der Lan, L.; Bartl, P.; Leidlmair, C.; Jochum, R.; Denifl, S.; Echt, O.; Scheier, P. Solvation of Na+, K+ and their dimers in helium. Chem. Eur. J. 2012, 18, 4411–4418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosmiti, R.; Delgado-Barrio, G.; Villarreal, P.; Yurtsever, E.; Coccia, E.; Gianturco, F.A. Structuring a Quantum Solvent around a Weakly Bound Dopant: The He − Cs2(3∑u) Complex. J. Phys. Chem. A. 2009, 113, 14718–14729. [Google Scholar] [CrossRef]
- Zanuttini, D.; Douady, J.; Jacquet, E.; Giglio, E.; Gervais, B. Structure and photoabsorption properties of cationic alkali dimers solvated in neon clusters. J. Chem. Phys. 2010, 133, 174503. [Google Scholar] [CrossRef]
- Bernheim, R.A.; Gold, L.P.; Tipton, T. Rydberg states of 7Li2 by pulsed optical–optical double resonance spectroscopy: Molecular constants of 7. J. Chem. Phys. 1983, 78, 3635–3646. [Google Scholar] [CrossRef]
- Bodo, E.; Gianturco, F.A.; Yurtsever, E.; Yurtsever, M. Neutral and ionic dopants in helium clusters: Interaction forces for the Li2(a3) − He and (X2) − He complexes. Mol. Phys. 2005, 103, 3223–3231. [Google Scholar] [CrossRef] [Green Version]
- Saidi, S.; Ghanmi, C.; Hassen, F.; Berriche, H. Ab initio Study of the Potential Energy Surface and Stability of the (X2) Alkali Dimer in Interaction with a Xenon Atom. Prog. Theor. Chem. Phys. 2012, 26, 321–330. [Google Scholar] [CrossRef]
- Fuchs, M.; Toennies, J.P. Scattering of highly vibrationally excited Li2 from He and Kr. J. Chem. Phys. 1986, 85, 7062–7076. [Google Scholar] [CrossRef]
- Douady, J.; Jacquet, E.; Giglio, E.; Zanuttini, D.; Gervais, B. Solvation of in Arn clusters. I. Structures and spectroscopic properties. J. Chem. Phys. 2008, 129, 184303–184313. [Google Scholar] [CrossRef]
- Kristensen, H.H.; Kranabetter, L.; Schouder, C.A.; Stapper, C.; Arlt, J.; Mudrich, M.; Stapelfeldt, H. Quantum-State-Sensitive Detection of Alkali Dimers on Helium Nanodroplets by Laser-Induced Coulomb Explosion. Phys. Rev. Lett. 2022, 128, 93201. [Google Scholar] [CrossRef] [PubMed]
- Alharzali, N.; Berriche, H.; Villarreal, P.; Prosmiti, R. Theoretical Study of Cationic Alkali Dimers Interacting with He: − He and − He van der Waals Complexes. J. Phys. Chem. A 2019, 123, 7814–7821. [Google Scholar] [CrossRef] [PubMed]
- Bodo, E.; Sebastianelli, F.; Gianturco, F.A.; Yurtsever, E.; Yurtsever, M. Ab initio quantum dynamics with very weak van der Waals interactions: Structure and stability of small (X1) − (He)n clusters. J. Chem. Phys. 2004, 120, 9160–9166. [Google Scholar] [CrossRef] [PubMed]
- Grebenev, S.; Toennies, J.P.; Vilesov, A.F. Superfluidity within a small helium-4 cluster: The microscopic andronikashvili experiment. Science 1998, 279, 2083–2086. [Google Scholar] [CrossRef]
- Ghanmi, C.; Nakbi, H.; Al-Qarni, H.J.; Alharzali, N.; Berriche, H. Structure, energetics, and spectroscopy of the (X2) interacting with the noble gas atoms Ar, Kr and Xe. J. Mol. Graph. Model. 2023, 120, 108413–108418. [Google Scholar] [CrossRef]
- Marinetti, F.; Uranga-Piña, L.; Coccia, E.; López-Durán, D.; Bodo, E.; Gianturco, F.A. Microsolvation of Cationic Dimers in 4He Droplets: Geometries of (He)N (A = Li, Na, K) from Optimized Energies. J. Phys. Chem. A 2007, 111, 12289–12294. [Google Scholar] [CrossRef] [Green Version]
- Stienkemeier, F.; Ernst, W.E.; Higgins, J.; Scoles, G. On the use of liquid helium cluster beams for the preparation and spectroscopy of the triplet states of alkali dimers and other weakly bound complexes. J. Chem. Phys. 1995, 102, 615–617. [Google Scholar] [CrossRef]
- Albertini, S.; Martini, P.; Schiller, A.; Schöbel, H.; Ghavidel, E.; Ončák, M.; Echt, O.; Scheier, P. Electronic transitions in dimers solvated in helium. Theor. Chem. Acc. 2021, 140, 29–40. [Google Scholar] [CrossRef]
- Bodo, E.; Yurtsever, E.; Yurtsever, M.; Gianturco, F.A. Ionic dimers in He droplets: Interaction potentials for − He, − He, and − He and stability of the smaller clusters. J. Chem. Phys. 2006, 124, 074320–074332. [Google Scholar] [CrossRef]
- Ho, T.S.; Rabitz, H. A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations. J. Chem. Phys. 1996, 104, 2584–2597. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242–253. [Google Scholar] [CrossRef]
- Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256–4266. [Google Scholar] [CrossRef]
- Čížek, J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. In Advances in Chemical Physics; LeFebvre, R., Moser, C., Eds.; Wiley: Hoboken, NJ, USA, 1969; Volume 14, pp. 35–89. [Google Scholar] [CrossRef]
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C. Importance of Angular Correlations between Atomic Electrons. Phys. Rev. 1962, 126, 1015–1019. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Abramowitz, M.; Irene, S. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1964; p. 470. [Google Scholar]
- Prosmiti, R.; Cunha, C.; Villarreal, P.; Delgado-Barrio, G. The van der Waals potential energy surfaces and structures of He–ICl and Ne–ICl clusters. J. Chem. Phys. 2002, 117, 7017–7023. [Google Scholar] [CrossRef] [Green Version]
Basis Set | AVQZ | AV5Z | CBS[Q5] | |||
---|---|---|---|---|---|---|
0 | 4.22 | 1730 | 4.17 | 1737 | 4.17 | 1745 |
10 | 4.14 | 1715 | 4.13 | 1722 | 4.13 | 1730 |
20 | 4.01 | 1698 | 4.01 | 1706 | 4.01 | 1715 |
30 | 3.88 | 1564 | 3.87 | 1572 | 3.87 | 1580 |
40 | 3.69 | 1391 | 3.68 | 1400 | 3.68 | 1408 |
50 | 3.52 | 1122 | 3.51 | 1130 | 3.51 | 1139 |
60 | 3.45 | 775 | 3.45 | 783 | 3.44 | 791 |
70 | 3.61 | 479 | 3.60 | 485 | 3.59 | 492 |
80 | 3.85 | 340 | 3.83 | 346 | 3.82 | 353 |
90 | 3.93 | 304 | 3.92 | 310 | 3.90 | 317 |
Complex | Method/References | ||
---|---|---|---|
( | 3.53 | 342 | RCCSD(T)/CBS[Q5] [24] |
( | - | 700 | Pseudopotential [15] |
( | 4.01 | 1745 | RCCSD(T)/CBS[Q5] |
RCCSD(T)/CBS[Q5] | RKHS | ||||
---|---|---|---|---|---|
0° | 4.17 | 1745 | 4.17 | 1746 | 0.057 |
10° | 4.13 | 1730 | 4.13 | 1730 | 0.000 |
20° | 4.01 | 1715 | 4.03 | 1715 | 0.000 |
30° | 3.87 | 1580 | 3.87 | 1581 | 0.063 |
40° | 3.68 | 1408 | 3.68 | 1407 | 0.071 |
50° | 3.51 | 1139 | 3.50 | 1141 | 0.175 |
60° | 3.44 | 791 | 3.44 | 790 | 0.126 |
70° | 3.59 | 492 | 3.59 | 492 | 0.000 |
80° | 3.82 | 353 | 4.82 | 353 | 0.000 |
90° | 3.90 | 317 | 4.90 | 317 | 0.000 |
= even/odd | |
---|---|
0 | −1633.440613/−1633.440613 |
1 | −1562.620803/−1562.620803 |
2 | −1492.719188/−1492.719188 |
3 | −1481.617393/−1481.617393 |
4 | −1422.606448/−1422.606448 |
5 | −1405.444466/−1405.444466 |
6 | −1352.065571/−1352.065571 |
7 | −1339.178576/−1339.178576 |
8 | −1331.488421/−1331.488421 |
9 | −1281.201931/−1281.201931 |
10 | −1263.686846/−1263.686846 |
114 | −335.655266/−335.655351 |
115 | −335.190171/−335.190064 |
116 | −326.764948/−326.764891 |
117 | −322.031270/−322.031221 |
118 | −318.591568/−318.591555 |
119 | −316.216834/−316.216848 |
240 | −25.004181/−18.144948 |
250 | −14.747134/−8.049236 |
260 | −6.805258/−0.477206 |
272 | −0.298997/- |
0° | 0.00337867 | 0.00727516 |
10° | 0.00346117 | 0.00761505 |
20° | 0.00973038 | 0.0087485 |
30° | 0.00407142 | 0.00994863 |
40° | 0.00455682 | 0.01166247 |
50° | 0.00510274 | 0.01350919 |
60° | 0.00546915 | 0.01473819 |
70° | 0.00508529 | 0.01356188 |
80° | 0.00430078 | 0.01101894 |
90° | 0.00399547 | 0.00998581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidi, S.; Mabrouk, N.; Dhiflaoui, J.; Berriche, H.
Structural, Spectroscopic, and Dynamic Properties of
Saidi S, Mabrouk N, Dhiflaoui J, Berriche H.
Structural, Spectroscopic, and Dynamic Properties of
Saidi, Samah, Nesrine Mabrouk, Jamila Dhiflaoui, and Hamid Berriche.
2023. "Structural, Spectroscopic, and Dynamic Properties of
Saidi, S., Mabrouk, N., Dhiflaoui, J., & Berriche, H.
(2023). Structural, Spectroscopic, and Dynamic Properties of