Effect of Solvent Polarity on the Spectral Characteristics of 5,10,15,20-Tetrakis(p-hydroxyphenyl)porphyrin
Abstract
:1. Introduction
2. Results
2.1. Effect of Solvents on UV-Vis Spectra
2.2. Effect of Solvents on Vibrational Spectra
3. Discussion
3.1. Correlation with the C-O Stretching Frequency
3.2. Correlation with the ET(30) Scale
r = 0.999 Sn = 0.57 n = 10 H2O − DMF
r = 0.997 Sn = 0.46 n = 10 H2O − acetone
r = 0.970 Sn = 0.30 n = 11 H2O − methanol
4. Experimental Section
4.1. Materials
4.2. Raman and FTIR Spectra
4.3. UV-Vis Spectra
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yao, Z.; Li, H.; Fan, Y.; Liang, X.; Xu, X.; Li, J. Pentacoordinated Cobalt(II) and Manganese(II) porphyrin N-Heterocyclic carbenes: Isolation, characterization and spectroscopy. Dyes Pigments 2020, 173, 107961–107965. [Google Scholar] [CrossRef]
- Wamser, C.C.; Ghosh, A. The hyperporphyrin concept: A contemporary perspective. JACS 2022, 2, 1543–1560. [Google Scholar] [CrossRef] [PubMed]
- Likhonina, A.E.; Mamardashvili, G.M.; Khodov, I.A.; Mamardashvili, N.Z. Synthesis and design of hybrid metalloporphyrin polymers based on palladium(II) and copper(II) cations and axial complexes of pyridyl-substituted Sn(IV) porphyrins with octopamine. Polymers 2013, 15, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Mamardashvili, G.; Kaigorodova, E.; Lebedev, I.; Mamardashvili, N. Molecular recognition of imidazole-based drug molecules by Cobalt(III)- and Zinc(II)-coproporphyrins in aqueous media. Molecules 2023, 28, 964. [Google Scholar] [CrossRef]
- Sobornova, V.; Maltceva, O.; Khodov, I.; Mamardashvili, N. 1H NMR study of kinetics of the Ni(II) and Zn(II) cations complex formation with 2-aza-5,10,15,20-tetraphenyl-21-carbaporphyrin. Inorganica Chim. Acta 2023, 556, 121638–121642. [Google Scholar] [CrossRef]
- Ge, R.; Li, X.; Zhuang, B.; Kang, S.-Z.; Qin, L.; Li, G. Assembly mechanism and photoproduced electron transfer for a novel cubic Cu2O/tetrakis(4-hydroxyphenyl) porphyrin hybrid with visible photocatalytic activity for hydrogen evolution. Appl. Catal. B-Environ. 2017, 211, 296–304. [Google Scholar] [CrossRef]
- Song, H.; Wang, G.; Wang, J.; Wang, Y.; Wei, H.; He, J.; Luo, S. 131I-labeled 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin for combined photodynamic and radionuclide therapy. J. Radioanal. Nucl. Chem. 2018, 316, 363–368. [Google Scholar] [CrossRef]
- Fakayode, O.; Kruger, C.; Songca, S.; Abrahamse, H.; Oluwafemi, O. Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis (4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Mat. Sci. Eng. C 2018, 92, 737–744. [Google Scholar] [CrossRef]
- Songca, S.P.; Mbatha, B. Solubilization of meso-tetraphenylporphyrin photosensitizers by substitution with fluorine and with 2,3-dihydroxy-1-propyloxy groups. J. Pharm. Pharmacol. 2000, 52, 1361–1367. [Google Scholar] [CrossRef]
- Kawasaki, R.; Yamana, K.; Shimada, R.; Sugikawa, K.; Ikeda, A. Water solubilization and thermal stimuli-triggered release of porphyrin derivatives using thermoresponsive polysaccharide hydroxypropyl cellulose for mitochondria-targeted photodynamic therapy. ACS Omega 2021, 6, 3209–3217. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, J.; Shi, Y.; Wang, Y.; Liu, J.; Dong, S. UV-Vis spectrophotometric titrations and vibrational spectroscopic characterization of meso-(p-hydroxyphenyl)porphyrins. J. Phys. Chem. B 2004, 108, 10185–10191. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, J.; Shi, Y.; Wang, Y.; Dong, S. Solvent effects on spectrophotometric titrations and vibrational spectroscopy of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin in aqueous DMF. Spectrochim. Acta Part A 2007, 67, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Jiang, J.; Shi, Y.; Wang, Y.; Wang, Y.; Dong, S. Sequential deprotonation of meso-(p-hydroxyphenyl)porphyrins in DMF: From hyperporphyrins to sodium porphyrin complexes. J. Phys. Chem. B 2006, 110, 587–594. [Google Scholar] [CrossRef] [PubMed]
- AKatritzky, R.; Fara, D.C.; Yang, H.F.; Tämm, K.; Tamm, T.; Karelson, M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004, 104, 175–198. [Google Scholar] [CrossRef]
- Sawicka, M.J.; Wróblewska, E.K.; Lubkowski, K.; Sośnicki, J.G. Thermosolvatochromism of 7H-indolo [1,2-a]quinolinium dyes in pure solvents. Dye. Pigment. 2021, 186, 109033–109040. [Google Scholar] [CrossRef]
- Laurence, C.; Mansour, S.; Vuluga, D.; Legros, J. Correlation analysis of solvent effects on solvolysis rates: What can the empirical parameters of solvents actually say? J. Phys. Org. Chem. 2020, 33, 4067–4077. [Google Scholar] [CrossRef]
- Catalán, J. On the ET (30), π*, Py, S’, and SPP empirical scales as descriptors of nonspecific solvent effects. J. Org. Chem. 1997, 62, 8231–8234. [Google Scholar] [CrossRef]
- Figueras, J. Hydrogen Bonding, Solvent Polarity, and the Visible Spectrum of Phenol Blue and Its Derivatives. J. Am. Chem. Soc. 1971, 93, 3255–3263. [Google Scholar] [CrossRef]
- Cerón-Carrasco, J.P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent polarity scales: Determination of new ET(30) values for 84 organic solvents. J. Phys. Org. Chem. 2014, 27, 512–518. [Google Scholar] [CrossRef]
- Glezakou, V.-A.; Rousseau, R.; Dang, L.X.; McGrail, B.P. Structure, dynamics and vibrational spectrum of supercritical CO2/H2O mixtures from ab initio molecular dynamics as a function of water cluster formation. Phys. Chem. Chem. Phys. 2010, 12, 8759–8771. [Google Scholar] [CrossRef]
- Jacques, P. On the Relative Contributions of Nonspecific and Specific Interactions to the Unusual Solvtochromism of a Typical Merocyanine Dye. J. Phys. Chem. 1986, 90, 5535–5539. [Google Scholar] [CrossRef]
- Pimentel, G.C. Hydrogen Bonding and Electronic Transitions: The Role of the Franck-Condon Principle. J. Am. Chem. Soc. 1957, 79, 3323–3326. [Google Scholar] [CrossRef]
- Pinheiro, C.; Lima, J.C.; Parola, A.J. Using hydrogen bonding-specific interactions to detect water in aprotic solvents at concentrations below 50 ppm. Sens. Actuat. B 2006, 114, 978–983. [Google Scholar] [CrossRef]
- Taylor, P.R. On the Origins of the Blue Shift of the Carbonyl n→π* Transition in Hydrogen-Bonding Solvents. J. Am. Chem. Soc. 1982, 104, 5248–5249. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Kayser, E.G.; Eastes, J.W.; Gilligan, W.H. Hydrogen Bonding by Protic Solvents to Nitro Oxygens. Effects on Electronic Spectra of Nitroaniline Derivatives. J. Am. Chem. Soc. 1973, 95, 5210–5214. [Google Scholar] [CrossRef]
- Brealey, G.J.; Kasha, M. The Rôle of Hydrogen Bonding in the n→π* Blue-shift Phenomenon. J. Am. Chem. Soc. 1955, 77, 4462–4468. [Google Scholar] [CrossRef]
- Haberfield, P.; Lux, M.S.; Rosen, D. Excited-State Solvation vs. Ground-State Solvation in the n→π* Solvent Blue Shift of Ketones and Azo Compounds. J. Am. Chem. Soc. 1977, 99, 6828–6831. [Google Scholar] [CrossRef]
- Garst, J.F.; Richards, W.R. Spectra of Alkali Phenoxides in Aqueous Dioxane. J. Am. Chem. Soc. 1965, 87, 4084–4086. [Google Scholar] [CrossRef]
- Binder, D.A.; Kreevoy, M.M. Interaction of Li+ with Phenoxide Ions in Acetonitrile. J. Phys. Chem. 1994, 98, 10008–10016. [Google Scholar] [CrossRef]
A | B | C | D | E | F | G | H | I a | Assignment |
---|---|---|---|---|---|---|---|---|---|
1552 | 1546 | 1550 | 1552 | 1550 | 1552 | 1510 | 1550 | 1509 | ν(CαCm) + δ(CαCmCPh)(ν19) |
1489 | 1489 | 1490 | 1489 | 1493 | 1490 | 1479 | 1490 | 1472 | ν(CβCβ) + δ(CβH) (ν11) |
1330 | 1326 | 1328 | 1328 | 1327 | 1328 | 1328 | 1326 | 1327 | ν(CαCβ) + δ(CβH) |
1239 | 1236 | 1234 | 1239 | 1240 | 1240 | 1238 | ν(NCα) + ν(CαCβ) + δ(CαCβCβ) + δ(CαCm) | ||
1084 | 1073 | 1071 | 1078 | 1074 | 1076 | 1062 | 1075 | 1061 | δ(CβH) + ν(CβCβ) (ν9) |
1005 | 1002 | 1000 | 1002 | 1001 | 1002 | 1005 | 1002 | 1003 | ν(CαCβ) + ν(NCα) + ν(CC)ph |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Liu, X.; Li, L.; Chang, Y.; Yao, W. Effect of Solvent Polarity on the Spectral Characteristics of 5,10,15,20-Tetrakis(p-hydroxyphenyl)porphyrin. Molecules 2023, 28, 5516. https://doi.org/10.3390/molecules28145516
Guo H, Liu X, Li L, Chang Y, Yao W. Effect of Solvent Polarity on the Spectral Characteristics of 5,10,15,20-Tetrakis(p-hydroxyphenyl)porphyrin. Molecules. 2023; 28(14):5516. https://doi.org/10.3390/molecules28145516
Chicago/Turabian StyleGuo, Hongwei, Xianhu Liu, Lan Li, Yanping Chang, and Wanqing Yao. 2023. "Effect of Solvent Polarity on the Spectral Characteristics of 5,10,15,20-Tetrakis(p-hydroxyphenyl)porphyrin" Molecules 28, no. 14: 5516. https://doi.org/10.3390/molecules28145516
APA StyleGuo, H., Liu, X., Li, L., Chang, Y., & Yao, W. (2023). Effect of Solvent Polarity on the Spectral Characteristics of 5,10,15,20-Tetrakis(p-hydroxyphenyl)porphyrin. Molecules, 28(14), 5516. https://doi.org/10.3390/molecules28145516