RNA 3D Structure Prediction: Progress and Perspective
Abstract
:1. Introduction
2. RNA 3D Structure Prediction Models
2.1. Physics-Based Models
2.1.1. One-Bead Nucleotide Model
2.1.2. Three-Bead Nucleotide Model
2.1.3. Five-Bead Nucleotide Model
2.1.4. Six/Seven-Bead Nucleotide Model
2.1.5. Coarse-Grain Helix-Centered Model
2.2. Knowledge-Based Fragment Assembly Models
2.2.1. Small Motifs as Fragments
2.2.2. Medium Motifs as Fragments
2.3. The Deep-Learning-Based Approaches
3. RNA 3D Structure Evaluation
3.1. Knowledge-Based Scoring Functions/Statistical Potentials
3.1.1. Two-Body Distance-Dependent Statistical Potentials
3.1.2. Two-Body Distance-Dependent and Angle-Dependent Statistical Potentials
3.1.3. Four-Body Contact Statistical Potential
3.2. Deep-Learning-Based Scoring Functions
4. RNA 3D Structure Refinement
5. Conclusions and Perspectives
5.1. On Physics-Based Structure Modeling
5.2. On Knowledge-Based Fragment-Assembly Structure Modeling
5.3. On Deep-Learning-Based Structure Modeling
5.4. On Overall Modeling for RNA 3D Structures
5.5. On RNA 3D Structure Evaluation
5.6. On RNA 3D Structure Refinement/Optimization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergkessel, M. Regulation of protein biosynthetic activity during growth arrest. Curr. Opin. Microbiol. 2020, 57, 62–69. [Google Scholar] [CrossRef]
- Mortimer, S.A.; Kidwell, M.A.; Doudna, J.A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 2014, 15, 469–479. [Google Scholar] [CrossRef]
- Chen, F.; Wassie, A.T.; Cote, A.J.; Sinha, A.; Alon, S.; Asano, S.; Daugharthy, E.R.; Chang, J.-B.; Marblestone, A.; Church, G.; et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 2016, 13, 679–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serganov, A.; Yuan, Y.-R.; Pikovskaya, O.; Polonskaia, A.; Malinina, L.; Phan, A.T.; Hobartner, C.; Micura, R.; Breaker, R.R.; Patel, D.J. Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs. Chem. Biol. 2004, 11, 1729–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheitl, C.P.M.; Mieczkowski, M.; Schindelin, H.; Höbartner, C. Structure and mechanism of the methyltransferase ribozyme MTR1. Nat. Chem. Biol. 2022, 18, 547–555. [Google Scholar] [CrossRef]
- Kavita, K.; Breaker, R.R. Discovering riboswitches: The past and the future. Trends Biochem. Sci. 2023, 48, 119–141. [Google Scholar] [CrossRef]
- Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; et al. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017, 45, D271–D281. [Google Scholar] [CrossRef]
- Schlick, T.; Pyle, A.M. Opportunities and Challenges in RNA Structural Modeling and Design. Biophys. J. 2017, 113, 225–234. [Google Scholar] [CrossRef] [Green Version]
- RNAcentral Consortium. RNAcentral 2021: Secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021, 49, D212–D220. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, Y.; Xiong, Y.; Xiao, Y. Advances in RNA 3D Structure Prediction. J. Chem. Inf. Model. 2022, 62, 5862–5874. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Marti-Renom, M.A. Computational RNA structure prediction. Curr. Bioinform. 2008, 3, 32–45. [Google Scholar]
- Laing, C.; Schlick, T. Computational approaches to 3D modeling of RNA. J. Physics Condens. Matter 2010, 22, 283101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, S.-J. RNA 3D Structure Prediction Using Coarse-Grained Models. Front. Mol. Biosci. 2021, 8, 720937. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-Z.; Wu, Y.-Y.; Wang, F.-H.; Tan, Z.-J. RNA structure prediction: Progress and perspective. Chin. Phys. B 2014, 23, 078701. [Google Scholar] [CrossRef] [Green Version]
- Puig Lombardi, E.; Londoño-Vallejo, A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020, 48, 1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.; Danino, Y.M.; Barshai, M.; Yacovzada, N.S.; Cohen, Y.; Olender, T.; Rotkopf, R.; Monchaud, D.; Hornstein, E.; Orenstein, Y. rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation. Nucleic Acids Res. 2022, 50, 11426–11441. [Google Scholar] [CrossRef]
- Cragnolini, T.; Derreumaux, P.; Pasquali, S. Coarse-Grained Simulations of RNA and DNA Duplexes. J. Phys. Chem. B 2013, 117, 8047–8060. [Google Scholar] [CrossRef] [Green Version]
- Cruz, J.A.; Blanchet, M.-F.; Boniecki, M.; Bujnicki, J.M.; Chen, S.-J.; Cao, S.; Das, R.; Ding, F.; Dokholyan, N.V.; Flores, S.C.; et al. RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction. RNA 2012, 18, 610–625. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Adamiak, R.W.; Blanchet, M.-F.; Boniecki, M.; Bujnicki, J.M.; Chen, S.-J.; Cheng, C.; Chojnowski, G.; Chou, F.-C.; Cordero, P.; et al. RNA-Puzzles Round II: Assessment of RNA structure prediction programs applied to three large RNA structures. RNA 2015, 21, 1066–1084. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Adamiak, R.W.; Antczak, M.; Batey, R.T.; Becka, A.J.; Biesiada, M.; Boniecki, M.J.; Bujnicki, J.M.; Chen, S.-J.; Cheng, C.Y.; et al. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA 2017, 23, 655–672. [Google Scholar] [CrossRef] [Green Version]
- Magnus, M.; Antczak, M.; Zok, T.; Wiedemann, J.; Lukasiak, P.; Cao, Y.; Bujnicki, J.M.; Westhof, E.; Szachniuk, M.; Miao, Z. RNA-Puzzles toolkit: A computational resource of RNA 3D structure benchmark datasets, structure manipulation, and evaluation tools. Nucleic Acids Res. 2020, 48, 576–588. [Google Scholar] [CrossRef]
- Miao, Z.; Adamiak, R.W.; Antczak, M.; Boniecki, M.J.; Bujnicki, J.M.; Chen, S.-J.; Cheng, C.Y.; Cheng, Y.; Chou, F.-C.; Das, R.; et al. RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. RNA 2020, 26, 982–995. [Google Scholar] [CrossRef]
- Kryshtafovych, A.; Antczak, M.; Szachniuk, M.; Zok, T.; Kretsch, R.C.; Rangan, R.; Pham, P.; Das, R.; Robin, X.; Studer, G.; et al. New prediction categories in CASP15. Proteins Struct. Funct. Bioinform. 2023. [Google Scholar] [CrossRef]
- Malhotra, A.; Tan, R.; Harvey, S. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys. J. 1994, 66, 1777–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, R.K.Z.; Petrov, A.S.; Harvey, S.C. YUP: A Molecular Simulation Program for Coarse-Grained and Multiscaled Models. J. Chem. Theory Comput. 2006, 2, 529–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonikas, M.A.; Radmer, R.J.; Laederach, A.; Das, R.; Pearlman, S.; Herschlag, D.; Altman, R.B. Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 2009, 15, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Sharma, S.; Chalasani, P.; Demidov, V.V.; Broude, N.E.; Dokholyan, N.V. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms. RNA 2008, 14, 1164–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krokhotin, A.; Houlihan, K.; Dokholyan, N.V. iFoldRNA v2: Folding RNA with constraints. Bioinformatics 2015, 31, 2891–2893. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-Z.; Wang, F.-H.; Wu, Y.-Y.; Tan, Z.-J. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. J. Chem. Phys. 2014, 141, 105102. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-Z.; Jin, L.; Wang, F.-H.; Zhu, X.-L.; Tan, Z.-J. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. Biophys. J. 2015, 109, 2654–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Shi, Y.-Z.; Feng, C.-J.; Tan, Y.-L.; Tan, Z.-J. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys. J. 2018, 115, 1403–1416. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-Z.; Jin, L.; Feng, C.-J.; Tan, Y.-L.; Tan, Z.-J. Predicting 3D structure and stability of RNA pseudoknots in mon-ovalent and divalent ion solutions. PLoS Comput. Biol. 2018, 14, e1006222. [Google Scholar] [CrossRef]
- Jin, L.; Tan, Y.-L.; Wu, Y.; Wang, X.; Shi, Y.-Z.; Tan, Z.-J. Structure folding of RNA kissing complexes in salt solutions: Predicting 3D structure, stability, and folding pathway. RNA 2019, 25, 1532–1548. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, Y.-L.; Yu, S.; Shi, Y.-Z.; Tan, Z.-J. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys. J. 2023, 122, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Boniecki, M.J.; Lach, G.; Dawson, W.; Tomala, K.; Lukasz, P.; Soltysinski, T.; Rother, K.M.; Bujnicki, J.M. SimRNA: A coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 2016, 44, e63. [Google Scholar] [CrossRef]
- Magnus, M.; Boniecki, M.J.; Dawson, W.; Bujnicki, J.M. SimRNAweb: A web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res. 2016, 44, W315–W319. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, S.-J. IsRNA: An Iterative Simulated Reference State Approach to Modeling Correlated Interactions in RNA Folding. J. Chem. Theory Comput. 2018, 14, 2230–2239. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Chen, S.-J. IsRNA1: De novo prediction and blind screening of RNA 3D structures. J. Chem. Theory Comput. 2021, 17, 1842–1857. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, S.-J.; Zhou, R. Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model. J. Phys. Chem. B 2021, 125, 11907–11915. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.J. RNAJP: Enhanced RNA 3D structure predictions with non-canonical interactions and global to-pology sampling. Nucleic Acids Res. 2023, 51, 3341–3356. [Google Scholar] [CrossRef]
- Cragnolini, T.; Laurin, Y.; Derreumaux, P.; Pasquali, S. Coarse-grained HiRE-RNA model for ab initio RNA folding beyond simple molecules, including noncanonical and multiple base pairings. J. Chem. Theory Comput. 2015, 11, 3510–3522. [Google Scholar] [CrossRef] [PubMed]
- Kerpedjiev, P.; zu Siederdissen, C.H.; Hofacker, I.L. Predicting RNA 3D structure using a coarse-grain helix-centered model. RNA 2015, 21, 1110–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl. Acad. Sci. USA 2007, 104, 14664–14669. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Karanicolas, J.; Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 2010, 7, 291–294. [Google Scholar] [CrossRef]
- Watkins, A.M.; Rangan, R.; Das, R. FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds. Structure 2020, 28, 963–976. [Google Scholar] [CrossRef] [PubMed]
- Parisien, M.; Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008, 452, 51–55. [Google Scholar] [CrossRef]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef]
- Biesiada, M.; Pachulska-Wieczorek, K.; Adamiak, R.W.; Purzycka, K.J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 2016, 103, 120–127. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Gong, Z.; Wang, Y.; Man, J.; Xiao, Y. Automated and fast building of three-dimensional RNA structures. Sci. Rep. 2012, 2, 734. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, J.; Huang, Y.; Xiao, Y. 3dRNA v2.0: An updated web server for RNA 3D structure prediction. Int. J. Mol. Sci. 2019, 20, 4116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Xiao, Y. 3dRNA: Building RNA 3D structure with improved template library. Comput. Struct. Biotechnol. J. 2020, 18, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Xiao, Y. 3dRNA: 3D Structure Prediction from Linear to Circular RNAs. J. Mol. Biol. 2022, 434, 167452. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Chen, S.-J. Physics-Based De Novo Prediction of RNA 3D Structures. J. Phys. Chem. B 2011, 115, 4216–4226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Chen, S.-J. Hierarchical Assembly of RNA Three-Dimensional Structures Based on Loop Templates. J. Phys. Chem. B 2017, 122, 5327–5335. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Yu, S.; Tan, Y.-L.; Tan, Z.-J. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys. J. 2022, 121, 3381–3392. [Google Scholar] [CrossRef]
- Shen, T.; Hu, Z.; Peng, Z.; Chen, J.; Xiong, P.; Hong, L.; Zheng, L.; Wang, Y.; King, I.; Wang, S. E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D Structure Prediction. arXiv 2022, arXiv:2207.01586. [Google Scholar]
- Pearce, R.; Omenn, G.S.; Zhang, Y. De novo RNA tertiary structure prediction at atomic resolution using geometric potentials from deep learning. BioRxiv 2022. [Google Scholar] [CrossRef]
- Feng, C.; Wang, W.; Han, R.; Wang, Z.; Ye, L.; Du, Z.; Wei, H.; Zhang, F.; Peng, Z.; Yang, J. Accurate de novo prediction of RNA 3D structure with transformer network. BioRxiv 2022. [Google Scholar] [CrossRef]
- Sha, C.M.; Wang, J.; Dokholyan, N.V. Predicting 3D RNA structure from solely the nucleotide sequence using Euclidean distance neural networks. Biophys. J. 2023, 122, 444A. [Google Scholar] [CrossRef]
- Tan, Y.-L.; Feng, C.-J.; Wang, X.; Zhang, W.; Tan, Z.-J. Statistical potentials for 3D structure evaluation: From proteins to RNAs. Chin. Phys. B 2021, 30, 028705. [Google Scholar] [CrossRef]
- Tan, Y.-L.; Feng, C.-J.; Jin, L.; Shi, Y.-Z.; Zhang, W.; Tan, Z.-J. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA 2019, 25, 793–812. [Google Scholar] [CrossRef]
- Capriotti, E.; Norambuena, T.; Marti-Renom, M.A.; Melo, F. All-atom knowledge-based potential for RNA structure prediction and assessment. Bioinformatics 2011, 27, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Bernauer, J.; Huang, X.; Sim, A.Y.; Levitt, M. Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation. RNA 2011, 17, 1066–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Hu, G.; Yang, Y.; Wang, J.; Zhou, Y. All-Atom Knowledge-Based Potential for RNA Structure Discrimination Based on the Distance-Scaled Finite Ideal-Gas Reference State. J. Comput. Biol. 2020, 27, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-L.; Wang, X.; Shi, Y.-Z.; Zhang, W.; Tan, Z.-J. rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys. J. 2022, 121, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-L.; Wang, X.; Yu, S.; Zhang, B.; Tan, Z.-J. cgRNASP: Coarse-grained statistical potentials with residue separation for RNA structure evaluation. NAR Genom. Bioinform. 2023, 5, lqad016. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Zhu, C.; Xiao, Y. 3dRNAscore: A distance and torsion angle dependent evaluation function of 3D RNA structures. Nucleic Acids Res. 2015, 43, e63. [Google Scholar] [CrossRef]
- Masso, M. All-atom four-body knowledge-based statistical potential to distinguish native tertiary RNA structures from nonnative folds. J. Theor. Biol. 2018, 453, 58–67. [Google Scholar] [CrossRef]
- Li, J.; Zhu, W.; Wang, J.; Li, W.; Gong, S.; Zhang, J.; Wang, W. RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks. PLOS Comput. Biol. 2018, 14, e1006514. [Google Scholar] [CrossRef] [Green Version]
- Townshend, R.J.L.; Eismann, S.; Watkins, A.M.; Rangan, R.; Karelina, M.; Das, R.; Dror, R.O. Geometric deep learning of RNA structure. Science 2021, 373, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Stasiewicz, J.; Mukherjee, S.; Nithin, C.; Bujnicki, J.M. QRNAS: Software tool for refinement of nucleic acid structures. BMC Struct. Biol. 2019, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Wu, R.; Zhan, J.; Zhou, Y. Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement. Nat. Commun. 2021, 12, 2777. [Google Scholar] [CrossRef]
- Antczak, M.; Zok, T.; Osowiecki, M.; Popenda, M.; Adamiak, R.W.; Szachniuk, M. RNAfitme: A webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures. BMC Bioinform. 2018, 19, 304. [Google Scholar] [CrossRef]
- Wang, J.; Mao, K.; Zhao, Y.; Zeng, C.; Xiang, J.; Zhang, Y.; Xiao, Y. Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide–nucleotide interactions from direct coupling analysis. Nucleic Acids Res. 2017, 45, 6299–6309. [Google Scholar] [CrossRef] [Green Version]
- Weiner, S.J.; Kollman, P.A.; Singh, U.C.; Case, D.A.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar] [CrossRef]
- Perez, A.; Marchán, I.; Svozil, D.; Sponer, J.; Cheatham, T.E., III; Laughton, C.A.; Orozco, M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007, 92, 3817–3829. [Google Scholar] [CrossRef] [Green Version]
- He, J.H.; Tao, H.Y.; Yan, Y.M.; Huang, S.Y.; Xiao, Y. Molecular Mechanism of Evolution and Human Infection with SARS-CoV-2. Viruses 2020, 12, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKerell, A.D., Jr.; Banavali, N.; Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 2000, 56, 257–265. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-Y.; Zhang, Z.-L.; Zhang, J.-S.; Zhu, X.-L.; Tan, Z.-J. Multivalent ion-mediated nucleic acid helix-helix interac-tions: RNA versus DNA. Nucleic Acids Res. 2015, 43, 6156–6165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.-H.; Wu, Y.-Y.; Tan, Z.-J. Salt contribution to the flexibility of single-stranded nucleic acid of finite length. Biopolymers 2013, 99, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Zhang, C.; Qiang, X.-W.; Yang, Y.-J.; Dai, L.; Tan, Z.-J.; Zhang, X.-H. Opposite Effects of High-Valent Cations on the Elasticities of DNA and RNA Duplexes Revealed by Magnetic Tweezers. Phys. Rev. Lett. 2020, 124, 058101. [Google Scholar] [CrossRef] [PubMed]
- Qiang, X.-W.; Zhang, C.; Dong, H.-L.; Tian, F.-J.; Fu, H.; Yang, Y.-J.; Dai, L.; Zhang, X.-H.; Tan, Z.-J. Multivalent Cations Reverse the Twist-Stretch Coupling of RNA. Phys. Rev. Lett. 2022, 128, 108103. [Google Scholar] [CrossRef] [PubMed]
- Lipfert, J.; Doniach, S. Small-Angle X-Ray Scattering from RNA, Proteins, and Protein Complexes. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Woodson, S.A. Metal ions and RNA folding: A highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 2005, 9, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.-J.; Chen, S.-J. Salt Contribution to RNA Tertiary Structure Folding Stability. Biophys. J. 2011, 101, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Xi, K.; Wang, F.-H.; Xiong, G.; Zhang, Z.-L.; Tan, Z.-J. Competitive Binding of Mg2+ and Na+ Ions to Nucleic Acids: From Helices to Tertiary Structures. Biophys. J. 2018, 114, 1776–1790. [Google Scholar] [CrossRef] [Green Version]
- Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 1978, 11, 179–246. [Google Scholar] [CrossRef]
- Tan, Z.-J.; Chen, S.-J. Electrostatic free energy landscapes for nucleic acid helix assembly. Nucleic Acids Res. 2006, 34, 6629–6639. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.-J.; Chen, S.-J. Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophys. J. 2006, 90, 1175–1190. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.-J.; Chen, S.-J. RNA helix stability in mixed Na+/Mg2+ solution. Biophys J. 2007, 92, 3615–3632. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; SantaLucia, J., Jr.; Burkard, M.E.; Kierzek, R.; Schroeder, S.J.; Jiao, X.; Cox, C.; Turner, D.H. Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with Watson−Crick Base Pairs. Biochemistry 1998, 37, 14719–14735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hukushima, K.; Nemoto, K. Exchange Monte Carlo Method and Application to Spin Glass Simulations. J. Phys. Soc. Jpn. 1996, 65, 1604–1608. [Google Scholar] [CrossRef] [Green Version]
- Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.-P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. [Google Scholar] [CrossRef] [Green Version]
- Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141–151. [Google Scholar] [CrossRef]
- Hori, N.; Denesyuk, N.A.; Thirumalai, D. Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension. J. Mol. Biol. 2016, 428, 2847–2859. [Google Scholar] [CrossRef] [Green Version]
- Denesyuk, N.A.; Hori, N.; Thirumalai, D. Molecular Simulations of Ion Effects on the Thermodynamics of RNA Folding. J. Phys. Chem. B 2018, 122, 11860–11867. [Google Scholar] [CrossRef] [PubMed]
- Denesyuk, N.A.; Thirumalai, D. Coarse-Grained Model for Predicting RNA Folding Thermodynamics. J. Phys. Chem. B 2013, 117, 4901–4911. [Google Scholar] [CrossRef] [Green Version]
- Massire, C.; Westhof, E. MANIP: An interactive tool for modelling RNA. J. Mol. Graph. Model. 1998, 16, 197–205. [Google Scholar] [CrossRef]
- Martinez, H.M.; Maizel, J.V.; Shapiro, B.A. RNA2D3D: A program for Generating, Viewing, and Comparing 3-Dimensional Models of RNA. J. Biomol. Struct. Dyn. 2008, 25, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049–1074. [Google Scholar] [CrossRef]
- Mathews, D.H.; Sabina, J.; Zuker, M.; Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 1999, 288, 911–940. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, S.-J. Predicting RNA Scaffolds with a Hybrid Method of Vfold3D and VfoldLA. In RNA Scaffolds; Springer: New York, NY, USA, 2021; Volume 2323, pp. 1–11. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, P.; Chen, S.-J. Vfold: A Web Server for RNA Structure and Folding Thermodynamics Prediction. PLoS ONE 2014, 9, e107504. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Zhang, D.; Chen, S.-J. Vfold-Pipeline: A web server for RNA 3D structure prediction from sequences. Bioinformatics 2022, 38, 4042–4043. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P. AlphaFold2 and the future of structural biology. Nat. Struct. Mol. Biol. 2021, 28, 704–705. [Google Scholar] [CrossRef]
- Bryant, P.; Pozzati, G.; Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022, 13, 1265. [Google Scholar] [CrossRef]
- Jones, D.T.; Thornton, J.M. The impact of AlphaFold2 one year on. Nat. Methods 2022, 19, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Pyle, A.M. rMSA: A Sequence Search and Alignment Algorithm to Improve RNA Structure Modeling. J. Mol. Biol. 2023, 435, 167904. [Google Scholar] [CrossRef]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Noé, F. Generating valid euclidean distance matrices. arXiv 2019, arXiv:1910.03131. [Google Scholar]
- Shirvanyants, D.; Ding, F.; Tsao, D.; Ramachandran, S.; Dokholyan, N.V. Discrete Molecular Dynamics: An Efficient and Versatile Simulation Method for Fine Protein Characterization. J. Phys. Chem. B 2012, 116, 8375–8382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sippl, M.J. Calculation of conformational ensembles from potentials of mena force: An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 1990, 213, 859–883. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Skolnick, J. A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins: Struct. Funct. Bioinform. 2001, 44, 223–232. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 2002, 11, 2714–2726. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Y. A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction. PLoS ONE 2010, 5, e15386. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Jia, Y.; Wei, Y.; Zhang, Y. What is the best reference state for designing statistical atomic potentials in protein structure prediction? Proteins Struct. Funct. Bioinform. 2012, 80, 2311–2322. [Google Scholar] [CrossRef] [Green Version]
- Samudrala, R.; Moult, J. An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 1998, 275, 895–916. [Google Scholar] [CrossRef] [Green Version]
- Rykunov, D.; Fiser, A. New statistical potential for quality assessment of protein models and a survey of energy functions. BMC Bioinform. 2010, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.-Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [Green Version]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes, 3rd ed.; The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Morcos, F.; Pagnani, A.; Lunt, B.; Bertolino, A.; Marks, D.S.; Sander, C.; Zecchina, R.; Onuchic, J.N.; Hwa, T.; Weigt, M. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA 2011, 108, E1293–E1301. [Google Scholar] [CrossRef] [PubMed]
- Morcos, F.; Hwa, T.; Onuchic, J.N.; Weigt, M. Direct Coupling Analysis for Protein Contact Prediction. Methods Mol. Biol. 2014, 1137, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Kretsch, R.C.; Simpkin, A.J.; Mulvaney, T.; Pham, P.; Rangan, R.; Bu, F.; Keegan, R.; Topf, M.; Rigden, D. Assessment of three-dimensional RNA structure prediction in CASP15. bioRxiv 2023. [Google Scholar] [CrossRef]
- Sato, K.; Akiyama, M.; Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 2021, 12, 941. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.-J.; Chen, S.-J. Predicting Ion Binding Properties for RNA Tertiary Structures. Biophys. J. 2010, 99, 1565–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.; Zhao, Y.; Chen, C.; Xiao, Y. Role of Ligand Binding in Structural Organization of AddA-riboswitch Aptamer: A Molecular Dynamics Simulation. J. Biomol. Struct. Dyn. 2011, 29, 403–416. [Google Scholar] [CrossRef]
- Ellis, R. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.-J.; Chen, S.-J. Ion-Mediated RNA Structural Collapse: Effect of Spatial Confinement. Biophys. J. 2012, 103, 827–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.-X. Protein folding in confined and crowded environments. Arch. Biochem. Biophys. 2008, 469, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Draper, D.E. RNA Folding: Thermodynamic and Molecular Descriptions of the Roles of Ions. Biophys. J. 2008, 95, 5489–5495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Zhang, K.; Wu, Q.; Huang, S.-Y. NLDock: A fast nucleic acid–ligand docking algorithm for modeling RNA/DNA–ligand complexes. J. Chem. Inf. Model. 2021, 61, 4771–4782. [Google Scholar] [CrossRef]
- Yan, Y.; Wen, Z.; Zhang, D.; Huang, S.-Y. Determination of an effective scoring function for RNA–RNA interactions with a physics-based double-iterative method. Nucleic Acids Res. 2018, 46, e56. [Google Scholar] [CrossRef]
- Sun, L.-Z.; Zhang, D.; Chen, S.-J. Theory and Modeling of RNA Structure and Interactions with Metal Ions and Small Molecules. Annu. Rev. Biophys. 2017, 46, 227–246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Wang, W. Atomistic Analysis of Pseudoknotted RNA Unfolding. J. Am. Chem. Soc. 2011, 133, 6882–6885. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Tao, H.; Xiao, Y.; Huang, S.-Y. HNADOCK: A nucleic acid docking server for modeling RNA/DNA–RNA/DNA 3D complex structures. Nucleic Acids Res. 2019, 47, W35–W42. [Google Scholar] [CrossRef]
- Tanzer, A.; Hofacker, I.L.; Lorenz, R. RNA modifications in structure prediction—Status quo and future challenges. Methods 2019, 156, 32–39. [Google Scholar] [CrossRef]
- Zhao, X.-C.; Dong, H.-L.; Li, X.-L.; Yang, H.-Y.; Chen, X.-F.; Dai, L.; Wu, W.-Q.; Tan, Z.-J.; Zhang, X.-H. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res. 2022, 50, 12344–12354. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Huang, S.-Y. Modeling protein–protein or protein–DNA/RNA complexes using the HDOCK webserver. Methods Mol. Biol. 2020, 2165, 217–229. [Google Scholar] [PubMed]
- Yan, Y.; Huang, S.-Y. RRDB: A comprehensive and non-redundant benchmark for RNA–RNA docking and scoring. Bioinformatics 2018, 34, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Tan, Y.-L.; Cheng, Y.-X.; Shi, Y.-Z.; Tan, Z.-J. Salt-Dependent RNA Pseudoknot Stability: Effect of Spatial Confinement. Front. Mol. Biosci. 2021, 8, 666369. [Google Scholar] [CrossRef]
Models | Refs. | CG Beads | Sampling a | Final Structures | From Sequence e | Availability |
---|---|---|---|---|---|---|
YUP | [25,26] | 1-bead | MC | Lowest-energy structure b | No | http://rumour.biology.gatech.edu/YammpWeb/ |
NAST | [27] | 1-bead | MD | Centroid structures of clusters c | No | https://simtk.org/home/nast |
iFoldRNA | [28,29] | 3-bead | DMD | Centroid structures of clusters c | Yes | https://dokhlab.med.psu.edu/ifoldrna |
CG model with salt effect | [30,31,32,33,34,35] | 3-bead | REMC | Lowest-energy structure d | Yes | No |
SimRNA | [36,37] | 5-bead | REMC | Centroid structures of clusters c | Yes | https://genesilico.pl/SimRNAweb |
IsRNA/IsRNA1 | [38,39] | 4/5-bead | REMD | Centroid structures of clusters c | Yes | http://rna.physics.missouri.edu/IsRNA/index.html |
IsRNA2 | [40] | 5-bead | REMD | Centroid structures of clusters c | Yes | http://rna.physics.missouri.edu/IsRNA/index.html |
RNAJP | [41] | 5-bead | MD | Lowest-energy structure b | No | http://rna.physics.missouri.edu/RNAJP/index.html |
HiRE-RNA | [42] | 6/7-bead | REMD | Centroid structures of clusters c | Yes | No |
Ernwin | [43] | helix-centered | MCMC | Lowest-energy structure b | No | http://github.com/pkerpedjiev/ernwin |
Models | Refs. | Fragment Feature | Final Structures | Availability |
---|---|---|---|---|
FARNA/FARFAR2 | [44,45,46] | 3-nucleotide fragments | Centroid structures of clusters c | https://rosie.rosettacommons.org/farfar2 |
MC-Fold/MC-Sym | [47] | SSE | Lowest-energy structures d | http://www.major.iric.ca |
RNAComposer | [48,49] | SSE | The representative structure is assembled from the best templates | http://rnacomposer.ibch.poznan.pl |
3dRNA | [50,51,52,53] | SSE a | Lowest-energy structures e | http://biophy.hust.edu.cn/new/3dRNA |
Vfold3D | [54] | CG SSE b | The representative structure is assembled from the best templates | http://rna.physics.missouri.edu/vfold3D/ |
VfoldLA | [55] | SSE a | Centroid structures of clusters | http://rna.physics.missouri.edu/vfoldLA/ |
FebRNA | [56] | CG SSE b | Lowest-energy structure f | https://github.com/Tan-group/FebRNA |
Approaches | Refs. | Neural Network Learning Information | Final Structures | Availability |
---|---|---|---|---|
RhoFold | [57] | Sequence representations and interactions between different nucleotides | Lowest-energy structure | https://github.com/RFOLD/RhoFold |
DeepFoldRNA | [58] | Structural information from evolutionary profiles | Lowest-energy structure | https://zhanggroup.org/DeepFoldRNA |
trRosettaRNA | [59] | MSA and secondary structure representations | Lowest-energy structure | https://yanglab.nankai.edu.cn/trRosettaRNA/ |
epRNA | [60] | RNA sequences | Centroid structures of clusters | https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/ |
Knowledge-Based Scoring Functions | |||||
---|---|---|---|---|---|
Scoring Functions | Refs. | Reference States | Geometrical Parameters | Atom Types | Availability |
RASP-ALL | [63] | Averaging [116] | Distance between atom pairs | 23 | http://melolab.org/webrasp/home.php |
All-atom KB potential | [64] | Quasi-chemical approximation [117] | Distance between atom pairs | 85 | No |
DFIRE-RNA | [65] | Finite-ideal-gas [118] | Distance between atom pairs | 85 | https://github.com/tcgriffith/dfire_rna |
rsRNASP | [66] | Averaging [116] + Random-walk-chain [119] | Distance between atom pairs | 85 | https://github.com/Tan-group/rsRNASP |
cgRNASP | [67] | Averaging [116] + Finite-ideal-gas [118] | Distance between atom pairs | 12 | https://github.com/Tan-group/cgRNASP |
3dRNAscore | [68] | Averaging [116] | Distance between atom pairs and torsional angles of backbone | 85 | http://biophy.hust.edu.cn/new/resources/3dRNAscore |
RAMP | [69] | Multinomial reference distribution | Atomic quadruplet interaction | 4 | No |
Deep-Learning-Based Scoring Functions | |||||
Scoring Functions | Refs. | Reference States | Geometrical Parameters | Atom Types | Availability |
RNA3DCNN | [70] | Free | Free, and the 3D grid representation of RNA structure as the input | 85 | https://github.com/lijunRNA/RNA3DCNN |
ARES | [71] | Free | Free and the 3D coordinates and chemical element type of each atom as the input. | 85 | http://drorlab.stanford.edu/ares.html |
Approaches | Refs. | Force Field | Refinement Characteristics | Availability |
---|---|---|---|---|
QRNAS | [72] | Amber with four optional energy terms | Reducing clash, enforcing backbone regularization, explicit hydrogen bonds, base pair co-planarity. co-planarity | http://genesilico.pl/software/stand-alone/qrnas |
BRiQ refinement | [73] | A fully knowledge-based atom-level force filed | Reducing clash, improving base pairing and backbone structures | https://github.com/Jian-Zhan/RNA-BRiQ |
RNAfitme | [74] | Charmm force field | Reducing clash and smoothing the structure | http://rnafitme.cs.put.poznan.pl/ |
3dRNA optimization | [75] | CG force field with evolutionary restraints from DCA | Improving global backbone structure | http://biophy.hust.edu.cn/new/3dRNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yu, S.; Lou, E.; Tan, Y.-L.; Tan, Z.-J. RNA 3D Structure Prediction: Progress and Perspective. Molecules 2023, 28, 5532. https://doi.org/10.3390/molecules28145532
Wang X, Yu S, Lou E, Tan Y-L, Tan Z-J. RNA 3D Structure Prediction: Progress and Perspective. Molecules. 2023; 28(14):5532. https://doi.org/10.3390/molecules28145532
Chicago/Turabian StyleWang, Xunxun, Shixiong Yu, En Lou, Ya-Lan Tan, and Zhi-Jie Tan. 2023. "RNA 3D Structure Prediction: Progress and Perspective" Molecules 28, no. 14: 5532. https://doi.org/10.3390/molecules28145532
APA StyleWang, X., Yu, S., Lou, E., Tan, Y. -L., & Tan, Z. -J. (2023). RNA 3D Structure Prediction: Progress and Perspective. Molecules, 28(14), 5532. https://doi.org/10.3390/molecules28145532