Friedel–Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A. Experimental Section
- Benzyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3a); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (35.6 mg, 72% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.06 (s, 2H), 7.52 (d, J = 2.6 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 6.98 (t, J = 7.5 Hz, 2H), 6.91 (d, J = 7.5 Hz, 2H), 6.80 (d, J = 8.1 Hz, 2H), 6.65 (t, J = 7.5 Hz, 2H), 5.07 (s, 2H), 0.71 (s, 9H), 0.29 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.0, 136.0, 135.8, 128.1, 127.9, 127.8, 127.6, 124.1, 121.4, 121.3, 118.8, 115.2, 110.6, 66.4, 44.6, 28.0, 20.1, −3.2; IR (cm−1) 3301, 3057, 2931, 2857, 1706, 1591, 1520, 1458, 1418; HRMS (ESI) m/z calcd for C31H35N2O2Si (M + H)+ 495.2468, found 495.2468.
- Ethyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3b); isolated by column chromatography (EtOAc/petroleum ether = 1:8); (29.8 mg, 69% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.08 (s, 2H), 7.48 (s, 2H), 7.24 (d, J = 7.8 Hz, 2H), 6.98 (t, J = 7.2 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 6.68 (t, J = 7.2 Hz, 2H), 4.13–4.09 (m, 2H), 1.05 (t, J = 7.2 Hz, 3H) 0.73 (s, 9H), 0.35 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.2, 135.8, 127.8, 124.1, 121.4, 121.3, 118.7, 115.4, 110.6, 60.6, 44.4, 28.0, 20.0, 14.0, −3.1; HRMS (ESI) m/z calcd for C26H32N2O2SiNa (M + Na)+ 455.2125, found 455.2125.
- Cyclohexyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3c); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (25.8 mg, 53% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.07 (s, 2H), 7.46 (s, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.97 (t, J = 7.2 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.67 (t, J = 7.2 Hz, 2H), 4.84–4.85 (m, 1H), 1.58–1.68 (m, 2H), 1.28–1.37 (m, 4H), 1.13–1.21 (m, 4H), 0.70 (s, 9H), 0.39 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.6, 135.8, 127.8, 124.1, 121.2, 118.6, 115.5, 110.5, 72.7, 44.6, 31.2, 27.9, 23.2, 20.0, −2.9; IR (cm−1) 3351, 3054, 2931, 2856, 1694, 1455, 1415, 1338, 1205; HRMS (ESI) m/z calcd for C30H38N2O2SiNa (M + Na)+ 509.2595, found 509.2597.
- tert-Butyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3d); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (10.1 mg, 22% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.04 (s, 2H), 7.38 (s, 2H), 7.26 (d, J = 1.4 Hz, 2H), 7.25 (s, 1H), 6.98 (t, J = 7.5 Hz, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.68 (t, J = 7.6 Hz, 2H), 1.25 (s, 9H), 0.61 (s, 9H), 0.42 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.0, 135.9, 127.8, 124.0, 122.0, 121.2, 118.6, 115.8, 110.5, 80.4, 45.3, 27.9, 27.8, 19.9, −2.8; HRMS (ESI) m/z calcd for C28H36N2O2SiNa (M + Na)+ 483.2444, found 483.2444.
- Naphthalen-1-yl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3e); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (39.8 mg, 75% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.01 (s, 2H), 7.72 (dd, J = 17.6, 8.2 Hz, 2H), 7.49 (s, 2H), 7.35 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 8.1 Hz, 3H), 7.21 (d, J = 8.5 Hz, 1H), 7.18 (d, J = 7.0 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.5 Hz, 2H), 6.86 (d, J = 8.2 Hz, 2H), 6.66 (t, J = 7.6 Hz, 2H), 5.48 (s, 2H), 0.69 (s, 9H), 0.23 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.3, 135.8, 133.3, 131.5, 131.4, 128.8, 128.1, 127.8, 127.0, 125.9, 125.5, 124.9, 124.1, 123.7, 121.33, 121.27, 118.8, 115.1, 110.6, 65.2, 44.6, 27.9, 20.0, −3.3; HRMS (ESI) m/z calcd for C35H36N2O2SiNa (M + Na)+ 567.2438, found 567.2442.
- Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(6-methyl-1H-indol-3-yl)acetate (3f); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (34.0 mg, 74% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 7.92 (s, 2H), 7.38 (d, J= 2.4 Hz, 2H), 7.02–7.00 (s, 2H), 6.74 (d, J = 8.4 Hz, 2H), 6.52 (dd, J = 7.8 Hz, 1.8 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 1.06 (t, J = 7.2 Hz, 3H), 0.73 (s, 9H), 0.34 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.2, 136.3, 130.8, 125.7, 123.5, 121.1, 120.6, 115.3, 110.6, 60.6, 44.4, 28.0, 21.5, 20.0, 14.1, −3.0; HRMS (ESI) m/z calcd for C28H36N2O2SiNa (M + Na)+ 483.2438, found 483.2435.
- Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(7-methyl-1H-indol-3-yl)acetate (3g); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (21.6 mg, 47% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 7.99 (s, 2H), 7.49 (d, J = 3.0 Hz, 2H), 6.78 (d, J = 4.8 Hz, 2H), 6.70 (d, J = 2.4 Hz, 2H), 6.61 (dd, J = 7.2 Hz, 6.6 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 2.43 (s, 6H), 1.06 (t, J =7.2 Hz, 3H), 0.73 (s, 9H), 0.34 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.2, 135.4, 127.3, 123.9, 121.9, 119.4, 119.3, 118.8, 116,0, 60.6, 44.6, 28.1, 20.0, 16.5, 14.1, −3.0; HRMS (ESI) m/z calcd for C28H36N2O2Si (M + H)+ 461.2624, found 461.2622.
- Ethyl 2,2-bis(5-(tert-butyl)-1H-indol-3-yl)-2-(tert-butyldimethylsilyl)acetate (3h); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (18.5 mg, 34% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 7.98 (s, 2H), 7.54 (d, J = 2.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.00 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 6.67 (s, 2H), 4.11 (q, J = 7.2 Hz, 2H), 1.08 (t, J = 7.2 Hz, 3H), 0.98 (s, 18H), 0.77 (s, 9H), 0.35 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 175.4, 140.8, 134.1, 127.8, 124.11, 119.0, 118.0, 115.2, 109.5, 60.5, 44.4, 34.1, 31.6, 28.2, 20.1, 14.1, −3.1; HRMS (ESI) m/z calcd for C34H48N2O2SiNa (M + Na)+ 567.3377, found 567.3379.
- Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(4-fluoro-1H-indol-3-yl)acetate (3i); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (38.8 mg, 69% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.15 (s, 2H), 7.76 (s, 2H), 7.13–7.16 (m, 1H), 7.08–7.11 (m, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.90–6.86 (m, 4H), 6.35 (q, J = 7.8 Hz, 2H), 5.11 (s,2H), 0.94 (s, 9H), 0.26 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.1, 156.2 (d, JC-F = 246 Hz), 138.8 (d, JC-F = 12 Hz), 135.9, 128.0, 127.6, 127.4, 124.8 (d, JC-F = 3 Hz), 121.5 (d, JC-F = 9 Hz), 116.1 (d, JC-F = 19.5 Hz), 115.6 (d, JC-F = 4.5 Hz), 106.9 (d, JC-F = 12 Hz), 104.9 (d, JC-F = 22.5 Hz), 66.6, 44.9, 28.7, 20.3, −3.5; IR (cm−1) 3469, 3034, 2931, 2858, 1698, 1574, 1498, 1471, 1223; HRMS (ESI) m/z calcd for C31H33F2N2O2Si (M + H)+ 531.2279, found 531.2276.
- Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-fluoro-1H-indol-3-yl)acetate (3j); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (34.5 mg, 65% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.12 (s, 2H), 7.50 (d, J = 2.5 Hz, 2H), 7.20–7.16 (m, 1H), 7.16–7.12 (m, 2H), 6.94–6.90 (m, 4H), 6.64 (dd, J = 9.0, 5.4 Hz, 2H), 6.64–6.38 (m, 2H), 5.08 (s, 2H), 0.72 (s, 9H), 0.27 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.8, 159.4 (d, JC-F = 237 Hz), 154.2 (d, JC-F = 64.5 Hz), 135.8, 128.0 (d, JC-F = 28.5 Hz), 127.7, 124.3 (d, JC-F = 3 Hz), 124.2, 122.0 (d, JC-F = 9 Hz), 115.1, 107.7 (d, JC-F = 24 Hz), 96.8 (d, JC-F = 25.5 Hz), 66.5, 66.5, 44.4, 27.9, 20.0, 1.0, −3.3; HRMS (ESI) m/z calcd for C31H33F2N2O2Si (M + H)+ 531.2279, found 531.2274.
- Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-chloro-1H-indol-3-yl)acetate (3k); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (44.4 mg, 79% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.15 (s, 2H), 7.57 (s, 2H), 7.20–7.13 (m, 5H), 6.97 (d, J = 7.3 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 6.69 (s, 2H), 5.10 (s, 2H), 0.75 (s, 9H), 0.28 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.7, 135.6, 134.2, 128.6, 128.2, 128.1, 127.9, 125.5, 124.5, 121.9, 120.4, 114.6. 111.9, 66.8, 44.2, 28.0, 20.1, −3.3; IR (cm−1) 3468, 3032, 2933, 2858, 1705, 1565, 1463, 1412, 1257, 1189; HRMS (ESI) m/z calcd for C31H32Cl2N2O2SiNa (M + Na)+ 585.1502, found 585.1508.
- Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-cyano-1H-indol-3-yl)acetate (3l); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (33.7 mg, 62% yield); red amorphous solid; 1H NMR (600 MHz, DMSO-d6) δ 11.65 (d, J = 1.8 Hz, 2H), 7.79 (d, J = 2.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.23 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 7.22–7.18 (m, 1H), 7.15 (t, J = 7.8 Hz, 2H), 7.00–6.93 (m, 2H), 6.75 (s, 2H), 5.09 (s, 2H), 0.66 (s, 9H), 0.24 (s, 6H); 13C NMR (150 MHz, DMSO-d6): δ 173.8, 137.8, 135.7, 128.1, 127.94, 127.91, 127.6, 126.8, 125.3, 123.3, 120.6, 114.2, 113.0, 100.0, 66.2, 43.6, 27.7, 19.7, −3.6; HRMS (ESI) m/z calcd for C33H32N4O2SiNa (M + Na)+ 567.2192, found 567.2193.
- Dimethyl 3,3’-(2-((2-bromobenzyl)oxy)-1-(tert-butyldimethylsilyl)-2-oxoethane-1,1-diyl)bis(1H-indole-6-carboxylate) (3m); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (51.6 mg, 75% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.83 (d, J = 2.4 Hz, 2H), 8.06 (d, J = 1.2 Hz, 2H), 7.79 (d, J = 2.4 Hz, 2H), 7.32 (dd, J = 1.2, 7.8 Hz, 1H), 7.26 (dd, J = 1.2, 7.8 Hz, 2H), 6.95 (td, J = 1.8, 7.2 Hz, 1H), 6.86 (td, J = 1.8, 7.2 Hz, 1H), 6.67 (d, J = 9.0 Hz, 2H), 6.63 (dd, J = 1.8, 7.8 Hz, 1H), 5.16 (s 2H), 3.83 (s, 6H), 0.72 (s, 9H), 0.31 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.5, 168.2, 135.2, 134.9, 132.3, 131.2, 129.4, 129.2, 127.7, 127.0, 122.9, 122.8, 120.5, 119.8, 115.2, 113.4, 65.9, 51.8, 44.4, 27.9, 20.0, −3.4; HRMS (ESI) m/z calcd for C31H33BrN2O2SiNa (M + Na)+ 595.1387, found 595.1389.
- Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-methoxy-1H-indol-3-yl)acetate (3n); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (28.0 mg, 57% yield); red amorphous solid; 1H NMR (600 MHz, DMSO-d6) δ 10.66 (s, 2H), 7.33 (d, J = 2.4 Hz, 2H), 6.74 (d, J = 1.8 Hz, 2H), 6.43 (d, J = 9.0 Hz, 2H), 6.29 (dd, J = 9.0 Hz, 2.4 Hz, 2H), 3.99 (q, J = 7.2 Hz, 2H), 3.65 (s, 6H), 1.00 (t, J = 7.2 Hz, 3H), 0.65 (s, 9H), 0.25 (s, 6H); 13C NMR (150 MHz, DMSO-d6): δ 174.5, 154.7, 136.5, 123.2, 121.8, 121.0, 113.6, 107.8, 94.0, 59.9, 54.8, 43.7, 27.8, 19.7, 14.0, −3.3; HRMS (ESI) m/z calcd for C28H36N2O4SiNa (M + Na)+ 515.2337, found 515.2339.
- Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-hydroxy-1H-indol-3-yl)acetate (3o); isolated by column chromatography (EtOAc/petroleum ether = 1:8); (7.9 mg, 17% yield); red amorphous solid; 1H NMR (600 MHz, DMSO-d6) δ 10.53 (s, 2H), 8.16 (s, 2H), 7.30 (s, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.40 (d, J = 8.4 Hz, 2H), 6.08 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 1.02 (t, J = 7.2 Hz, 3H), 0.63 (s, 9H), 0.26 (s, 6H); 13C NMR (150 MHz, DMSO-d6): δ 174.5, 149.0, 130.5, 128.2, 125.2, 112.6, 111.0, 110.7, 105.2, 59.8, 43.7, 27.9, 19.7, 14.0, −2.9; HRMS (ESI) m/z calcd for C26H32N2O4SiNa (M + Na)+ 487.2024, found 487.2026.
- Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-hydroxy-1H-indol-3-yl)acetate (3o’); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (9.2 mg, 25% yield); red amorphous solid; 1H NMR (600 MHz, DMSO-d6) δ 10.62 (s, 2H), 8.59 (s, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.03 (s, 2H), 6.81 (s, 2H), 6.58 (d, J = 8.4 Hz, 2H), 5.14 (s, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, DMSO-d6): δ 172.8, 150.2, 130.9, 127.1, 124.1, 111.8, 111.4, 111.3, 102.9, 60.2, 40.6, 14.2; HRMS (ESI) m/z calcd for C20H18N2O5 (M-(H2O) + H)+ 349.1188, found 349.1184.
- 3,3’-(Phenyl(trimethylsilyl)methylene)bis(1H-indole) (5ab); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (6.3 mg, 16% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 7.96 (s, 2H), 7.37 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.6 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.89 (s, 2H), 6.80 (t, J = 7.6 Hz, 2H), 0.14 (s, 9H); 13C NMR (150 MHz, CDCl3): δ 146.1, 136.7, 129.4, 127.6, 127.4, 125.1, 123.8, 122.9, 121.4, 121.3, 118.5, 110.9, 1.0; HRMS (ESI) m/z calcd for C26H26N2SiNa (M + Na)+ 417.1758, found 417.1755.
- Di(1H-indol-3-yl)(phenyl)methanol (5ab’); isolated by column chromatography (EtOAc/petroleum ether = 1:8); (10.1 mg, 30% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 7.87 (s, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34–7.36 (m, 4H), 7.29 (t, J = 7.5 Hz, 2H), 7.21–7.23 (m, 1H), 7.16–7.19 (m, 2H), 7.01 (t, J = 7.5 Hz, 2H), 6.64 (s, 2H), 5.90 (s, 1H); 13C NMR (150 MHz, CDCl3):δ 144.0, 136.7, 128.7, 128.2, 127.0, 126.1, 123.6, 121.9, 119.9, 119.7, 119.2, 111.0, 40.2; HRMS (ESI) m/z calcd for C23H17N2 (M-(H2O) + H)+ 321.1391, found 321.1395.
- 3,3’-(Hydroxy(phenyl)methylene)bis(1H-indol-5-ol) (5a); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (14.1 mg, 83% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.70 (s, 2H), 7.61 (s, 2H), 7.41–7.39 (m, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 2.3 Hz, 2H), 6.72 (dd, J = 8.3, 2.5 Hz, 4H), 5.73 (s, 1H); 13C NMR (150 MHz, acetone-d6):δ 151.2, 145.8, 132.8, 129.5, 128.79, 128.76, 126.6, 125.2, 118.9, 112.5, 112.2, 104.5, 41.2; HRMS (ESI) m/z calcd for C23H17N2O2 (M-(H2O) + H)+ 353.1289, found 353.1285.
- 3,3’-(Hydroxy(p-tolyl)methylene)bis(1H-indol-5-ol) (5b); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (23.0 mg, 60% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.68 (s, 2H), 7.53 (s, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.76 (d, J = 2.4 Hz, 2H), 6.70 (t, J = 1.8 Hz, 3H), 6.68 (d, J = 2.4 Hz, 1H), 5.66 (s, 1H), 2.29 (s, 3H); 13C NMR (150 MHz, acetone-d6):δ 151.2, 142.9, 135.7, 132.8, 129.4, 128.8, 125.2, 119.1, 112.5, 112.2, 104.5, 40.8, 21.1; IR (cm−1) 3378, 2922, 2856, 1704, 1584, 1459, 1362, 1184; HRMS (ESI) m/z calcd for C24H19N2O2 (M-(H2O) + H)+ 367.1441, found 367.1441.
- 3,3’-(Hydroxy(m-tolyl)methylene)bis(1H-indol-5-ol) (5c); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (23.4 mg, 61% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.68 (s, 2H), 7.52 (s, 2H), 7.23 (d, J = 1.8 Hz, 1H), 7.21 (d, J = 8.7 Hz, 2H), 7.17–7.13 (m, 2H), 7.01–6.99 (m, 1H), 6.76 (d, J = 2.4 Hz, 2H), 6.70–6.69 (m, 3H), 6.68 (d, J = 2.4 Hz, 1H), 5.66 (s, 1H), 2.26 (s, 3H); 13C NMR (150 MHz, acetone-d6): δ 151.2, 145.9, 138.0, 132.8, 130.2, 128.9, 128.7, 127.3, 126.6, 125.2, 119.1, 112.5, 112.2, 104.5, 41.2, 21.6; HRMS (ESI) m/z calcd for C24H19N2O2 (M-(H2O) + H)+ 367.1441, found 367.1442.
- 3,3’-((4-ethylphenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5d); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (21.9 mg, 55% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.68 (s, 2H), 7.50 (s, 2H), 7.29–7.27 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.12–7.11(m, 2H), 6.75 (d, J = 2.4 Hz, 2H), 6.70 (dd, J = 0.9, 2.4 Hz, 2H), 6.68 (d, J = 2.4 Hz, 1H), 6.67 (d, J = 2.4 Hz, 1H), 5.66 (s, 1H), 2.61 (q, J = 7.5 Hz, 2H), 1.20 (t, J = 7.8 Hz, 3H); 13C NMR (150 MHz, acetone-d6):δ 151.2, 143.2, 142.3, 132.9, 129.5, 128.9, 128.2, 125.2, 119.2, 112.5, 112.2, 104.5, 40.9, 16.1; IR (cm−1) 3305, 2964, 2929, 2869, 1704, 1584, 1458, 1361, 1168; HRMS (ESI) m/z calcd for C25H21N2O2 (M-(H2O) + H)+ 381.1598, found 381.1597.
- 3,3’-((4-(tert-Butyl)phenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5e); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (15.3 mg, 36% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.69(s, 2H), 7.52 (s, 1H), 7.29 (d, J = 2.1 Hz, 5H), 7.19 (d, J = 8.4 Hz, 3H), 6.75 (d, J = 2.4 Hz, 2H), 6.69 (d, J = 1.8 Hz, 2H), 6.67 (d, J = 2.4 Hz, 1H), 6.65 (d, J = 2.4 Hz, 1H), 5.65 (s, 1H), 1.28 (s, 9H); 13C NMR (150 MHz, acetone-d6): δ 151.3, 149.1, 142.9, 132.8, 129.1, 128.9, 125.6, 125.2, 119.2, 112.5, 112.2, 104.5, 40.7, 34.9, 31.8; HRMS (ESI) m/z calcd for C27H25N2O2 (M-(H2O) + H)+ 409.1911, found 409.1911.
- 3,3’-([1,1’-Biphenyl]-4-yl(hydroxy)methylene)bis(1H-indol-5-ol) (5f); isolated by column chromatography (EtOAc/petroleum ether = 1:6); (8.5 mg, 52%) yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.74 (s, 2H), 7.66–7.65 (m, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.52 (s, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.43 (t, J =7.2 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 7.23 (d, J = 2.4 Hz, 2H), 6.77 (dd, J = 1.8, 9.6 Hz, 4H), 6.69 (dd, J = 2.4, 8.4 Hz, 2H), 5.76 (s, 1H); 13C NMR (150 MHz, acetone-d6): δ 151.3, 145.3, 141.8, 139.3, 132.9, 130.1, 129.7, 128.9, 127.9, 127.6, 127.3, 125.3, 118.8, 112.5, 112.3, 104.5, 40.9; HRMS (ESI) m/z calcd for C29H21N2O2 (M-(H2O) + H)+ 429.1598, found 429.1600.
- 3,3’-(Hydroxy(naphthalen-2-yl)methylene)bis(1H-indol-5-ol) (5g); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (23.9 mg, 83% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.75 (s, 2H), 7.86–7.83 (m, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.77–7.74 (m, 1H), 7.58 (dd, J = 1.8, 8.4 Hz, 1H), 7.51 (s, 2H), 7.44–7.41 (m, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.77 (dd, J = 2.4, 10.2 Hz, 4H), 6.69 (dd, J = 2.4, 8.4 Hz, 2H), 5.89 (s, 1H); 13C NMR (150 MHz, acetone-d6): δ 151.3, 143.6, 134.6, 133.3, 132.9, 128.9, 128.8, 128.5, 128.4, 128.2, 127.3, 126.6, 126.0, 125.4, 118.7, 112.6, 112.3, 104.5, 41.4; HRMS (ESI) m/z calcd for C27H19N2O2 (M-(H2O) + H)+ 403.1441, found403.1442.
- 3,3’-((4-fluorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5h); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (20.6 mg, 70% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.73 (s, 2H), 7.57 (s, 2H), 7.40–7.36 (m, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.05–7.01 (m, 2H), 6.75 (d, J = 2.4 Hz, 2H), 6.71 (dd, J = 8.6, 2.4 Hz, 4H), 5.72 (s, 1H); 13C NMR (150 MHz, acetone-d6): δ 162.1 (d, JC-F = 240 Hz),151.3, 141.9 (d, JC-F = 3 Hz), 132.8, 131.1 (d, JC-F = 7.5 Hz), 128.7, 125.2, 118.8, 115.3 (d, JC-F = 21 Hz), 112.4 (d, JC-F = 39 Hz), 104.4, 40.5; HRMS (ESI) m/z calcd for C23H16FN2O2 (M-(H2O) + H)+ 371.1190, found 371.1190.
- 3,3’-((3-Fluorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5i); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (20.2 mg, 52% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.76 (s, 2H), 7.56 (s, 2H), 7.32–7.29 (m, 1H), 7.23 (d, J = 9.0 Hz, 3H), 7.12–7.09 (m, 1H), 6.96–6.93 (m, 1H), 6.76 (s, 4H), 6.70 (dd, J = 2.4, 6.0 Hz, 2H), 5.75 (s, 1H); 13C NMR (150 MHz, acetone-d6):δ 163.7 (d, JC-F = 241.5 Hz), 151.4, 149.1 (d, JC-F = 6 Hz), 132.8, 130.5 (d, JC-F = 7.5 Hz), 128.7, 125.5 (d, JC-F = 3 Hz), 125.3, 118.3, 116.1 (d, JC-F = 21 Hz), 113.2 (d, JC-F = 21 Hz), 112.5 (d, JC-F = 36 Hz), 104.3, 41.0; HRMS (ESI) m/z calcd for C23H16FN2O2 (M-(H2O) + H)+ 371.1190, found 371.1191.
- 3,3’-((3-Chlorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5j); isolated by column chromatography (EtOAc/petroleum ether = 1:3); (24.6 mg, 61% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.81 (s, 2H), 7.60 (d, J = 9.0 Hz, 2H), 7.38 (s, 1H), 7.34–7.28 (m, 2H), 7.22 (d, J = 8.4 Hz, 4H), 6.73 (s, 4H), 6.69–6.67 (m, 2H), 5.72 (s, 1H); 13C NMR (150 MHz, acetone-d6):δ 151.4, 148.6, 134.2, 132.8, 130.5, 129.4, 128.6, 128.1, 126.7, 125.3, 118.2, 112.6, 112.4, 104.3, 40.9; IR (cm−1) 3304, 2921, 2851, 1697, 1585, 1463, 1423, 1363, 1187; HRMS (ESI) m/z calcd for C23H16ClN2O2 (M-(H2O) + H)+ 387.0895, found 387.0894.
- 3,3’-((4-Chlorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5k); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (23.8 mg, 59% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.75 (s, 2H), 7.55 (s, 2H), 7.38–7.35 (m, 2H), 7.31– 7.28 (m, 2H), 7.23 (d, J = 6.0 Hz, 1H), 6.75–6.71 (m, 4H), 6.70 (dd, J = 2.4, 9.0 Hz, 2H), 5.71 (s, 1H); 13C NMR (150 MHz, acetone-d6):δ 151.3, 144.9, 132.8, 131.8, 131.2, 128.8, 128.7, 125.3, 118.4, 112.6, 112.4, 104.4, 40.6; HRMS (ESI) m/z calcd for C23H16ClN2O2 (M-(H2O) + H)+ 387.0895, found 387.0895.
- 3,3’-(Hydroxy(3-methoxyphenyl)methylene)bis(1H-indol-5-ol) (5l); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (24.4 mg, 61% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.70 (s, 2H), 7.53 (s, 2H), 7.17–7.22 (m, 3H), 6.96–6.98 (m, 2H), 6.77 (d, J = 6.0 Hz, 2H), 6.74 (d, J = 6.0 Hz, 2H), 6.68 (dd, J = 8.4 Hz, 2.4 Hz, 2H), 5.68 (s, 1H), 3.71 (s, 3H); 13C NMR (150 MHz, acetone-d6): δ 160.5, 151.1, 147.5, 132.7, 128.7, 125.1, 121.8, 118.7, 115.6, 112.4, 111.4, 104.4, 55.1, 41.2; HRMS (ESI) m/z calcd for C24H21N2O4 (M + H)+ 401.14958, found 401.14975.
- 1-(4-(Hydroxybis(5-hydroxy-1H-indol-3-yl)methyl)phenyl)pentan-1-one (5m); isolated by column chromatography (EtOAc/petroleum ether = 1:5); (24.5 mg, 55% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.76 (s, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.55 (s, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 1.8 Hz, 4H), 6.70 (dd, J = 2.4, 8.4 Hz, 2H), 5.79 (s, 1H), 2.99 (t, J = 7.2 Hz, 2H), 1.69–1.64 (m, 2H), 1.42–1.36 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, acetone-d6):δ 200.1, 151.42, 151.37, 136.1, 132.9, 128.8, 125.4, 118.2, 112.7, 112.4, 104.3, 41.4, 38.6, 27.3, 23.1, 14.3; HRMS (ESI) m/z calcd for C28H25N2O3 (M-(H2O) + H)+ 437.1865, found 437.1868.
- 3,3’-(Hydroxy(thiophen-2-yl)methylene)bis(1H-indol-5-ol) (5n); isolated by column chromatography (EtOAc/petroleum ether = 1:3); (15.0 mg, 40% yield); red amorphous solid; 1H NMR (600 MHz, acetone-d6) δ 9.74 (s, 2H), 7.56 (s, 2H), 7.24–7.22 (m, 3H), 6.92–6.91 (m, 4H), 6.86 (d, J = 2.4 Hz, 2H), 6.72(dd, J = 2.4, 6.0 Hz, 2H), 6.01 (s, 1H); 13C NMR (150 MHz, acetone-d6): δ 151.3, 150.6, 132.7, 128.5, 127.0, 125.5, 124.8, 124.1, 119.0, 112.6, 112.1, 104.4, 36.3; HRMS (ESI) m/z calcd for C21H15N2O2S (M-(H2O) + H)+ 359.0854, found 359.0852.
References
- Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.; Taha, M.; Ismail, N. A Review of bisindolylmethaneas an important scaffold for drug discovery. Curr. Med. Chem. 2015, 22, 4412–4433. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Gajbhiye, R.; Mandal, M.; Pal, C.; Meyyapan, M.; Mukherjee, J.; Jaisankar, P. Synthesis and antibacterial evaluation of 3,3′-diindolylmethane derivatives. Med. Chem. Res. 2014, 23, 1371–1377. [Google Scholar] [CrossRef]
- Palmieri, A.; Petrini, M. Recent advances in the synthesis of unsymmetrical bisindolylmethane derivatives. Synthesis 2019, 51, 829–841. [Google Scholar]
- Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methaneand synthetic analogs. Cancer Lett. 2008, 269, 326–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, T.; Namiki, M. Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria. Tetrahedron Lett. 1983, 24, 4719–4722. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Xie, Z.; Chen, M.; Li, L.; Peng, Y.; Chen, S.; Li, W.; Deng, B. Discovery of 3,3-di(indolyl)indolin-2-one as a novel scaffold for α-glucosidase inhibitors: In silico studies and SAR Predictions. Bioorg. Chem. 2017, 72, 228–233. [Google Scholar] [CrossRef]
- Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtiosaltum. Chem. Pharm. Bull. 1994, 42, 2449–2451. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.-S.; Wang, B.-W.; Jin, D.-P.; Gao, Z.-P.; Liang, H.; Wang, S.-H.; Xu, X.-T.; Zhang, K.; Zhang, X.-Y. Al(OTf)3-Catalyzed tandem coupling reaction between N,N-disubstituted aminomalonitriles and substituted arenes: A synthesis of 1-cyano-bisindolylmethane analogues. Adv. Synth. Catal. 2020, 362, 2870–2875. [Google Scholar] [CrossRef]
- Lafzi, F.; Kilic, H.; Saracoglu, N. Protocols for the syntheses of 2,2’-bis(indolyl)arylmethanes, 2-benzylated indoles, and 5,7-dihydroindolo[2,3-b]carbazoles. J. Org. Chem. 2019, 84, 12120–12130. [Google Scholar] [CrossRef]
- Ling, Y.; An, D.; Zhou, Y.; Rao, W. Ga(OTf)3-catalyzed temperature-controlled regioselective Friedel−Crafts alkylation of trifluoromethylated 3-indolylmethanols with 2-substituted indoles: Divergent synthesis of trifluoromethylated unsymmetrical 3,3′-and 3,6′-bis(indolyl)methanes. Org. Lett. 2019, 21, 3396–3401. [Google Scholar] [CrossRef]
- Liu, X.; Ma, S.; Toy, P.H. Halogen bond-catalyzed Friedel−Crafts reactions of aldehydes and ketones using a bidentate halogen bond donor catalyst: Synthesis of symmetrical bis(indolyl)methanes. Org. Lett. 2019, 21, 9212–9216. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Visible light-induced aerobic oxidative cross-coupling of glycine derivatives with indoles: A facile access to 3,3′-bisindolylmethanes. Org. Chem. Front. 2018, 5, 2120–2125. [Google Scholar] [CrossRef]
- Ye, L.; Cai, S.-H.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Feng, C.; Loh, T.-P. Photoredox catalysis induced bisindolylation of ethers/alcohols via sequential C–H and C–O bond cleavage. Org. Lett. 2017, 19, 6164–6167. [Google Scholar] [CrossRef]
- Singh, R.R.; Liu, R.S. Gold-catalyzed oxidative couplings of two indoles with one aryldiazo cyanide under oxidant-free conditions. Chem. Commun. 2017, 53, 4593–4596. [Google Scholar] [CrossRef]
- Karmakar, S.; Das, P.; Ray, D.; Ghosh, S.; Chattopadhyay, S.K. Ag(I)-Catalyzed domino cyclization–addition sequence with simultaneous carbonyl and alkyne activation as a route to 2,2′-disubstituted bisindolylarylmethanes. Org. Lett. 2016, 18, 5200–5203. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Priebbenow, D.L.; Bolm, C. Acylsilanes: Valuable organosilicon reagents in organic synthesis. Chem. Soc. Rev. 2013, 42, 8540–8571. [Google Scholar] [CrossRef]
- Boyce, G.R.; Grezler, S.N.; Johnson, J.S.; Linghu, X.; Malinovski, J.T.; Nicewicz, D.A.; Satterfield, A.D.; Schmitt, D.C.; Steward, K.M. Silyl glyoxylates. conception and realization of flexible conjunctive reagents for multicomponent coupling. J. Org. Chem. 2012, 77, 4503–4515. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.-J.; Huang, H.-M. Radical Brook rearrangements: Concept and recent developments. Angew. Chem. Int. Ed. 2022, 61, e202205671. [Google Scholar]
- Leibeling, M.; Shurrush, K.A.; Werner, V.; Perrin, L.; Marek, I. Preparation and reactivity of acyclic chiral allylzinc species by a Zinc-Brook rearrangement. Angew. Chem. Int. Ed. 2016, 55, 6057–6061. [Google Scholar] [CrossRef]
- Zhang, F.-G.; Marek, I. Brook rearrangement as trigger for carbene generation: Synthesis of stereodefined and fully substituted cyclobutenes. J. Am. Chem. Soc. 2017, 139, 8364–8370. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wen, S.; Jin, P.; Bao, W.; Liu, S.; Cong, H.; Shen, X. Synthesis of enantioenriched fluorinated enol silanes enabled by asymmetric reductive coupling of fluoroalkylacylsilanes and 1,3-enynes and Brook rearrangement. ACS Catal. 2022, 12, 2150–2157. [Google Scholar] [CrossRef]
- Moser, W.H. The Brook rearrangement in tandem bond formation strategies. Tetrahedron 2001, 57, 2065–2084. [Google Scholar] [CrossRef]
- Bonini, B.F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. Newly designed acylsilanes as versatile tools in organic synthesis. J. Organomet. Chem. 1998, 567, 181–189. [Google Scholar] [CrossRef]
- Bulman-Page, P.C.; Klair, S.S.; Rosenthal, S. Synthesis and chemistry of acylsilanes. Chem. Soc. Rev. 1990, 19, 147–195. [Google Scholar] [CrossRef]
- Brook, A.G. Molecular rearrangements of organosilicon compounds. Acc. Chem. Res. 1974, 7, 77–84. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Duret, G.; Marek, I. Regio- and stereoselective synthesis of fully substituted silyl enol ethers of ketones and aldehydes in acyclic systems. Angew. Chem. Int. Ed. 2019, 58, 14995–14999. [Google Scholar] [CrossRef]
- Feng, J.-J.; Oestreich, M. Tertiary α-silyl alcohols by diastereoselective coupling of 1,3-dienes and acylsilanes initiated by enantioselective copper-catalyzed borylation. Angew. Chem. Int. Ed. 2019, 58, 8211–8215. [Google Scholar] [CrossRef]
- Lee, N.; Tan, C.-H.; Leow, D. Asymmetric Brook rearrangement. Asian J. Org. Chem. 2019, 8, 25–31. [Google Scholar] [CrossRef]
- Simon, M.-O.; Li, C.-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev. 2012, 41, 1415–1427. [Google Scholar] [CrossRef]
- Butler, R.N.; Coyne, A.G. Water: Nature’s reaction enforcer—Comparative effects for organic synthesis “in-Water” and “On-Water”. Chem. Rev. 2010, 110, 6302–6337. [Google Scholar] [CrossRef]
- Chanda, A.; Fokin, V.V. Organic synthesis “On Water”. Chem. Rev. 2009, 109, 725–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev. 2006, 35, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Manabe, K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc. Chem. Res. 2002, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Lindström, U.M. Stereoselective organic reactions in water. Chem. Rev. 2002, 102, 2751–2772. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wu, B.; Zhou, X.; Chen, P.; Wang, X.; Zhou, Y.-G.; Liu, Y.; Li, C. Formal asymmetric catalytic thiolation with a bifunctional catalyst at a water–oil interface: Synthesis of benzyl thiols. Angew. Chem. Int. Ed. 2015, 54, 4522–4526. [Google Scholar] [CrossRef]
- Yu, J.-S.; Liu, Y.-L.; Tang, J.; Wang, X.; Zhou, J. Highly efficient “On Water” catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: Dramatic fluorine effects. Angew. Chem. Int. Ed. 2014, 53, 9512–9516. [Google Scholar] [CrossRef]
- Sengoden, M.; Punniyamurthy, T. “On Water”: Efficient iron-catalyzed cycloaddition of aziridines with heterocumulenes. Angew. Chem. Int. Ed. 2013, 52, 572–575. [Google Scholar] [CrossRef]
- Shapiro, N.; Vigalok, A. Highly efficient organic reactions “On water”, “In water”, and both. Angew. Chem. Int. Ed. 2008, 47, 2849–2852. [Google Scholar] [CrossRef]
- Zhu, C.; Han, M.-Y.; Liang, X.-X.; Guan, B.; Li, P.; Wang, L. Hydrogen-Bond-Assisted sequential reaction of silyl glyoxylates: Stereoselective synthesis of silyl enol ethers. Org. Lett. 2021, 23, 54–59. [Google Scholar] [CrossRef]
- Han, M.-Y.; Xie, X.; Zhou, D.; Li, P.; Wang, L. Organocatalyzed direct aldol reaction of silyl glyoxylates for the synthesis of α-hydroxysilanes. Org. Lett. 2017, 19, 2282–2285. [Google Scholar] [CrossRef]
- Han, M.-Y.; Lin, J.; Li, W.; Luan, W.-Y.; Mai, P.-L.; Zhang, Y. Catalyst-free nucleophilic addition reactions of silyl glyoxylates in water. Green Chem. 2018, 20, 1228–1232. [Google Scholar] [CrossRef]
- Greszler, S.N.; Johnson, J.S. Diastereoselective synthesis of pentasubstituted γ-butyrolactones from silyl glyoxylates and ketones through a double Reformatsky reaction. Angew. Chem. Int. Ed. 2009, 48, 3689–3691. [Google Scholar] [CrossRef]
- Xin, L.; David, A.N.; Jeffrey, S.J. Tandem carbon−carbon bond constructions via catalyzed cyanation/Brook rearrangement/c-acylation reactions of acylsilanes. Org. Lett. 2002, 4, 2957–2960. [Google Scholar]
- Huckins, J.R.; Rychnovsky, S.D. Synthesis of optically pure arylsilylcarbinols and their use as chiral auxiliaries in oxacarbenium ion reactions. J. Org. Chem. 2003, 68, 10135–10145. [Google Scholar] [CrossRef]
- Kondo, J.; Shinokubo, H.; Oshima, K. Oxidation of gem-borylsilylalkylcoppers to acylsilanes with air. Org. Lett. 2006, 8, 1185–1187. [Google Scholar] [CrossRef]
Entry | Catalyst | Solvent | Time (h) | Yield (%) b |
---|---|---|---|---|
1 | PTSA | H2O | 24 | 43 |
2 | CSA | H2O | 10 | 72 |
3 | MeSO3H | H2O | 24 | - |
4 | Benzoic acid | H2O | 70 | 33 |
5 | p-Fluorobenzoic acid | H2O | 69 | 28 |
6 | 3,5-Dinitrobenzoic acid | H2O | 104 | 37 |
7 | CH3CO2H | H2O | 32 | 5 |
8 | CSA | CH2Cl2 | 10 | 24 |
9 | CSA | toluene | 10 | 20 |
10 | CSA | DMF | 10 | 11 |
11 | CSA | THF | 10 | 28 |
12 | CSA | EtOH | 10 | 27 |
13 | CSA c | H2O | 28 | 53 |
14 | CSA d | H2O | 32 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liang, X.-X.; Zhang, W.; Han, M.-Y. Friedel–Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives. Molecules 2023, 28, 5685. https://doi.org/10.3390/molecules28155685
Li Q, Liang X-X, Zhang W, Han M-Y. Friedel–Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives. Molecules. 2023; 28(15):5685. https://doi.org/10.3390/molecules28155685
Chicago/Turabian StyleLi, Qi, Xiu-Xia Liang, Wang Zhang, and Man-Yi Han. 2023. "Friedel–Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives" Molecules 28, no. 15: 5685. https://doi.org/10.3390/molecules28155685
APA StyleLi, Q., Liang, X. -X., Zhang, W., & Han, M. -Y. (2023). Friedel–Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives. Molecules, 28(15), 5685. https://doi.org/10.3390/molecules28155685