A Systematic Exploration of B–F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level
Abstract
:1. Introduction
2. Results and Discussion
2.1. Insights Concerning the Performance of B3LYP/A′VTZ for Obtaining the Geometries of Fluoroborane-Type Molecules
2.2. Benchmark-Quality B–F BDEs via the W1w Thermochemical Protocol
2.3. Effect of Substituents on the Strength of B–F Bonds toward Homolytic Dissociation
2.4. Performance of DFT Methods for Computing B–F BDEs
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matteson, D.S. Product Subclass 5: Haloboranes. In Science of Synthesis, 6: Category 1, Organometallics; Kaufmann, D.E., Matteson, D.S., Schaumann, E., Regitz, M., Eds.; Thieme: Stuttgart, Germany, 2005. [Google Scholar] [CrossRef]
- Taylor, W.S.; Babcock, L.M. Gas-Phase Reactions of Catecholate and Related Anions with BF3 and SiF4. J. Am. Chem. Soc. 1995, 117, 6497–6503. [Google Scholar] [CrossRef]
- Pepi, F.; Tata, A.; Garzoli, S.; Rosi, M. Gas-phase ion chemistry of BF3/CH4 mixtures: Activation of methane by BF2+ ions. Chem. Phys. Lett. 2008, 461, 21–27. [Google Scholar] [CrossRef]
- Glicker, S.; Marcus, R.A. Rapid Gas-Phase Reactions. Amines and Boron Trifluoride. II. Pressure Dependence of Rate Constant. J. Am. Chem. Soc. 1969, 91, 7607–7610. [Google Scholar] [CrossRef]
- Glicker, S. Rapid gas-phase reactions. Reaction of ammonia and the methylamines with boron trifluoride. III. Pressure dependence of rate constant. J. Phys. Chem. 1973, 77, 1093–1095. [Google Scholar] [CrossRef]
- Evans, A.G. Polymerization of isobutene by boron trifluoride. J. Appl. Chem. 1951, 1, 240–242. [Google Scholar] [CrossRef]
- Miki, T.; Higashimura, T.; Okamura, S. Kinetic Studies of the Solution Polymerization of Trioxane Catalyzed by BF3•O(C2H5)2. VI. The Catalytic Mechanism of Boron Trifluoride Coordination Complexes in Ethylene Dichloride. Bull. Chem. Soc. Jpn. 1966, 39, 2480–2485. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Doll, K.M.; Holser, R.A. Boron trifluoride catalyzed ring-opening polymerization of epoxidized soybean oil in liquid carbon dioxide. Green Chem. 2009, 11, 1774–1780. [Google Scholar] [CrossRef]
- Mooney, E.F.; Qaseem, M.A. The cleavage of ethers, and the dehydration of alcohols, by boron trifluoride. Chem. Commun. 1967, 230–231. [Google Scholar] [CrossRef]
- Posner, G.H.; Shulman-Roskes, E.M.; Oh, C.H.; Carry, J.C.; Green, J.V.; Clark, A.B.; Dai, H.; Anjeh, T.E.N. BF3·OEt2 promotes fast, mild, clean and regioselective dehydration of tertiary alcohols. Tetrahedron Lett. 1991, 32, 6489–6492. [Google Scholar] [CrossRef]
- Lough, A.K. Use of Methanol containing Boron Trifluoride for the Esterification of Unsaturated Fatty Acids. Nature 1964, 202, 795. [Google Scholar] [CrossRef]
- Schaefer, J.J.; Doub, L. Boron Trifluoride Catalyzed Esterification of p-Aminosalicylic Acid. J. Am. Chem. Soc. 1949, 71, 3564. [Google Scholar] [CrossRef]
- Kleiman, R.; Spencer, G.F.; Earle, F.R. Boron trifluoride as catalyst to prepare methyl esters from oils containing unusual acyl groups. Lipids 1969, 4, 118–122. [Google Scholar] [CrossRef]
- Chen, Q.; Mollat du Jourdin, X.; Knochel, P. Transition-Metal-Free BF3-Mediated Regioselective Direct Alkylation and Arylation of Functionalized Pyridines Using Grignard or Organozinc Reagents. J. Am. Chem. Soc. 2013, 135, 4958–4961. [Google Scholar] [CrossRef]
- Denis Jumbam, N.D.; Maganga, Y.; Masamba, W.; Mbunye, N.I.; Mgoqi, E.; Mtwa, S. A New Alkylation of Aryl Alcohols by Boron Trifluoride Etherate. Molecules 2019, 24, 3720. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, A.J.; Davies, S.G.; Lee, J.A.; Roberts, P.M.; Russell, A.J.; Thomson, J.E.; Tyte, M.J. β-Fluoroamphetamines via the Stereoselective Synthesis of Benzylic Fluorides. Org. Lett. 2010, 12, 2936–2939. [Google Scholar] [CrossRef]
- Costa, P.; Mieres-Perez, J.; Özkan, N.; Sander, W. Activation of the B−F Bond by Diphenylcarbene: A Reversible 1,2-Fluorine Migration between Boron and Carbon. Angew. Chem. Int. Ed. 2017, 56, 1760–1764. [Google Scholar] [CrossRef]
- Takeo, H.; Sugie, M.; Matsumura, C. Microwave Spectroscopic Detection of Fluoroborane, BH2F. J. Mol. Spectrosc. 1993, 158, 201–207. [Google Scholar] [CrossRef]
- Oswald, M.; Flügge, J.; Botschwina, P. The equilibrium geometry of H2BF and H2BCl. J. Mol. Struct. 1994, 320, 227–236. [Google Scholar] [CrossRef]
- Cassoux, P.; Kuczkowski, R.L.; Fong, G.D.; Geanagel, R.A. The microwave spectrum and structure of trimethylamine-monofluoroborane. J. Mol. Struct. 1978, 48, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Cornet, S.M.; Dillon, K.B.; Entwistle, C.D.; Fox, M.A.; Goeta, A.E.; Goodwin, H.P.; Marder, T.B.; Thompson, A.L. Synthesis and characterisation of some new boron compounds containing the 2,4,6-(CF3)3C6H2 (fluoromes = Ar), 2,6-(CF3)2C6H3 (fluoroxyl = Ar’), or 2,4-(CF3)2C6H3 (Ar’’) ligands. Dalton Trans. 2003, 4395–4405. [Google Scholar] [CrossRef]
- Huh, J.O.; Kim, H.; Lee, K.M.; Lee, Y.S.; Do, Y.; Lee, M.H. o-Carborane-assisted Lewis acidity enhancement of triarylboranes. Chem. Commun. 2010, 46, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Bartlett, R.A.; Olmstead, M.M.; Power, P.P.; Shoner, S.C. Series of two-coordinate and quasi-two-coordinate transition-metal complexes: Synthesis, structural, and spectroscopic studies of sterically demanding borylamide ligands -NRBR′2 (R = Ph, R′ = Mes, Xyl; R = R′ = Mes), their lithium salts, Li(Et2O)2NRBR′2, and their transition-metal derivatives, M(NPhBMes2)2 (M = Cr, Co, Ni), Co(NPhBXyl2)2 and M(NMesBMes2)2 (M = Cr → Ni). J. Am. Chem. Soc. 1990, 112, 1048–1055. [Google Scholar] [CrossRef]
- Cresswell, A.J.; Davies, S.G.; Figuccia, A.L.A.; Fletcher, A.M.; Heijnen, D.; Lee, J.A.; Morris, M.J.; Kennett, A.M.R.; Roberts, P.M.; Thomson, J.E. Pinacolatoboron fluoride (pinBF) is an efficient fluoride transfer agent for diastereoselective synthesis of benzylic fluorides. Tetrahedron Lett. 2015, 56, 3373–3377. [Google Scholar] [CrossRef]
- Kawashima, Y.; Takeo, H.; Matsumura, C. Microwave spectrum of fluorodihydroxy borane, BF(OH)2. J. Mol. Spectrosc. 1979, 78, 493–505. [Google Scholar] [CrossRef]
- Coyle, T.D.; Cooper, J.; Ritter, J.J. Preparation and some reactions of difluoroborane. Inorg. Chem. 1968, 7, 1014–1020. [Google Scholar] [CrossRef]
- McCusker, P.A.; Glunz, L.J. Organoboron Compounds. I. Preparation and Properties of Some Alkyldifluoroboranes. J. Am. Chem. Soc. 1955, 77, 4253–4255. [Google Scholar] [CrossRef]
- Fox, M.A.; Greatrex, R.; Ormsby, D.L. Unexpected formation of new fluoroboranes from the reaction of NMe4B3H8 with BF3 and MeC≡CH: exo-2-FB4H9 and trans-MeCH=CHBF2. Chem. Commun. 2002, 2052–2053. [Google Scholar] [CrossRef]
- McCusker, P.A.; Makowski, H.S. Organoboron Compounds. IV. Phenyldifluoroborane and Other Aryldihalogenoboranes. J. Am. Chem. Soc. 1957, 79, 5185–5188. [Google Scholar] [CrossRef]
- Vedejs, E.; Chapman, R.W.; Fields, S.C.; Lin, S.; Schrimpf, M.R. Conversion of Arylboronic Acids into Potassium Aryltrifluoroborates: Convenient Precursors of Arylboron Difluoride Lewis Acids. J. Org. Chem. 1995, 60, 3020–3027. [Google Scholar] [CrossRef]
- Jemson, H.M.; Lewis-Bevan, W.; Gerry, M.C.L. The infrared spectrum of aminodifluoroborane, NH2BF2: Partial assignment of the fundamentals and analysis of the band near 1608 cm−1. Can. J. Chem. 2011, 66, 2088–2099. [Google Scholar] [CrossRef]
- Lovas, F.J.; Johnson, D.R. Reaction of BF3 with NH3: Microwave spectrum of BF2NH2. J. Chem. Phys. 1973, 59, 2347–2353. [Google Scholar] [CrossRef]
- Rablen, P.R.; Hartwig, J.F. Accurate Borane Sequential Bond Dissociation Energies by High-Level ab Initio Computational Methods. J. Am. Chem. Soc. 1996, 118, 4648–4653. [Google Scholar] [CrossRef]
- Grant, D.J.; Dixon, D.A. Heats of Formation and Bond Energies of the H(3–n)BXn Compounds for (X = F, Cl, Br, I, NH2, OH, and SH). J. Phys. Chem. A 2009, 113, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.M.; de Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J. Chem. Phys. 1999, 111, 1843–1856. [Google Scholar] [CrossRef]
- Karton, A. A computational chemist’s guide to accurate thermochemistry for organic molecules. WIREs Comput. Mol. Sci. 2016, 6, 292–310. [Google Scholar] [CrossRef]
- Karton, A.; Spackman, P.R. Evaluation of density functional theory for a large and diverse set of organic and inorganic equilibrium structures. J. Comput. Chem. 2021, 42, 1590. [Google Scholar] [CrossRef]
- Kasuya, T.; Lafferty, W.J.; Lide, D.R. Microwave Spectrum, Structure, Boron Quadrupole Coupling Constants, and Dipole Moment of Difluoroborane. J. Chem. Phys. 1968, 48, 1–4. [Google Scholar] [CrossRef]
- Sunahori, F.X.; Clouthier, D.J. The electronic spectrum of the fluoroborane free radical. II. Analysis of laser-induced fluorescence and single vibronic level emission spectra. J. Chem. Phys. 2009, 130, 164310. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kuwabara, R.; Takami, M.; Kuchitsu, K. Infrared Diode Laser Spectroscopy of the ν2 Band of BF3. J. Mol. Spectrosc. 1986, 115, 333–352. [Google Scholar] [CrossRef]
- Karton, A. Quantum Mechanical Thermochemical Predictions 100 years after the Schrödinger Equation. In Annual Reports in Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 18, pp. 123–166. [Google Scholar] [CrossRef]
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Karton, A.; Rabinovich, E.; Martin, J.M.L. W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. J. Chem. Phys. 2006, 125, 144108. [Google Scholar] [CrossRef] [Green Version]
- Karton, A.; Sylvetsky, N.; Martin, J.M.L. W4-17: A diverse and high-confidence dataset of atomization energies for benchmarking high-level electronic structure methods. J. Comput. Chem. 2017, 38, 2063–2075. [Google Scholar] [CrossRef]
- Karton, A.; Daon, S.; Martin, J.M.L. W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data. Chem. Phys. Lett. 2011, 510, 165–178. [Google Scholar] [CrossRef]
- O’Reilly, R.J.; Balanay, M.P. A quantum chemical study of the effect of substituents in governing the strength of the S–F bonds of sulfenyl-type fluorides toward homolytic dissociation and fluorine atom transfer. Chem. Data Collect. 2019, 20, 100186. [Google Scholar] [CrossRef]
- Garifullina, A.; Mahboob, A.; O’Reilly, R.J. A dataset of homolytic C–Cl bond dissociation energies obtained by means of W1w theory. Chem. Data Collect. 2016, 3–4, 21–25. [Google Scholar] [CrossRef]
- O’Reilly, R.J.; Karton, A. Highly accurate CCSD(T) homolytic Al–H bond dissociation enthalpies—Chemical insights and performance of density functional theory. Aust. J. Chem. 2023, in press. [Google Scholar] [CrossRef]
- Lu, W.; O’Reilly, R.J. Homolytic B–Cl bond dissociation energies of chloroborane-type molecules. Mong. J. Chem. 2022, 23, 9–18. [Google Scholar] [CrossRef]
- O’Reilly, R.J.; Balanay, M. Homolytic S–Cl bond dissociation enthalpies of sulfenyl chlorides—A high-level G4 thermochemical study. Chem. Data Collect. 2019, 19, 100180. [Google Scholar] [CrossRef]
- Zhu, S.; O’Reilly, R.J. A quantum chemical study of the gas-phase homolytic S–Br bond dissociation enthalpies of sulfenyl bromides. Chem. Data Collect. 2020, 28, 100430. [Google Scholar] [CrossRef]
- Kaliyeva, L.; Zhumagali, S.; Akhmetova, N.; Karton, A.; O’Reilly, R.J. Stability of the chlorinated derivatives of the DNA/RNA nucleobases, purine and pyrimidine toward radical formation via homolytic C–Cl bond dissociation. Int. J. Quantum Chem. 2017, 117, e25319. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, R.J.; Karton, A.; Radom, L. Effect of substituents on the strength of N–X (X = H, F, and Cl) bond dissociation energies: A high-level quantum chemical study. J. Phys. Chem. A 2011, 115, 5496–5504. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, R.J.; Karton, A.; Radom, L. N–H and N–Cl Homolytic Bond Dissociation Energies and Radical Stabilization Energies: An Assessment of Theoretical Procedures Through Comparison With Benchmark-Quality W2w Data. Int. J. Quantum Chem. 2012, 112, 1862–1878. [Google Scholar] [CrossRef]
- O’Reilly, R.J.; Karton, A. A Dataset of Highly Accurate Homolytic N–Br Bond Dissociation Energies Obtained by Means of W2 Theory. Int. J. Quantum Chem. 2016, 116, 52–60. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.K.; Woon, D.E.; Peterson, K.A.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 1999, 110, 7667–7676. [Google Scholar] [CrossRef] [Green Version]
- Karton, A.; Martin, J.M.L. Explicitly correlated Wn theory: W1-F12 and W2-F12. J. Chem. Phys. 2012, 136, 124114. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.; Kroll, N.M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 1974, 82, 89–155. [Google Scholar] [CrossRef]
- Hess, B.A. Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 1985, 32, 756–763. [Google Scholar] [CrossRef]
- Merrick, J.P.; Moran, D.; Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Boese, A.D.; Handy, N.C. A new parametrization of exchange–correlation generalized gradient approximation functionals. J. Chem. Phys. 2001, 114, 5497–5503. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Ernzerhof, M.; Perdew, J.P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 1998, 109, 3313–3320. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Tao, J.M.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [Green Version]
- Boese, A.D.; Handy, N.C. New exchange-correlation density functionals: The role of the kinetic-energy density. J. Chem. Phys. 2002, 116, 9559–9569. [Google Scholar] [CrossRef]
- van Voorhis, T.; Scuseria, G.E. A novel form for the exchange-correlation energy functional. J. Chem. Phys. 1998, 109, 400–410. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics. Phys. Chem. Chem. Phys. 2012, 10, 13171. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 2020, 11, 8208–8215. [Google Scholar] [CrossRef] [PubMed]
- Mardirossian, N.; Head-Gordon, M. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V. J. Chem. Phys. 2015, 142, 074111. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Hamprecht, F.A.; Cohen, A.J.; Tozer, D.J.; Handy, N.C. Development and assessment of new exchange-correlation functionals. J. Chem. Phys. 1998, 109, 6264–6271. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q.; Muller, R.P.; Goddard, W.A. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. J. Chem. Phys. 2005, 122, 014105. [Google Scholar] [CrossRef] [Green Version]
- Peverati, R.; Truhlar, D.G. A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J. Chem. Phys. 2011, 135, 191102. [Google Scholar] [CrossRef]
- Austin, A.; Petersson, G.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A Density Functional with Spherical Atom Dispersion Terms. J. Chem. Theory. Comput. 2012, 8, 4989–5007. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef] [Green Version]
- Peverati, R.; Truhlar, D.G. Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem. Chem. Phys. 2012, 14, 16187. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Mardirossian, N.; Head-Gordon, M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 2014, 16, 9904–9924. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4, 1849–1868. [Google Scholar] [CrossRef]
- Boese, A.D.; Martin, J.M.L. Development of density functionals for thermochemical kinetics. J. Chem. Phys. 2004, 121, 3405–3416. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [Google Scholar] [CrossRef] [PubMed]
- Peverati, R.; Truhlar, D.G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. J. Phys. Chem. Lett. 2011, 2, 2810–2817. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2006, 144, 214110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolsky, A.; Karton, A.; Sertchook, R.; Vuzman, D.; Martin, J.M.L. Double-Hybrid Functionals for Thermochemical Kinetics. J. Phys. Chem. Lett. 2008, 112, 3–8. [Google Scholar] [CrossRef]
- Karton, A.; Tarnopolsky, A.; Lamere, J.F.; Schatz, G.C.; Martin, J.M.L. Highly Accurate First-Principles Benchmark Data Sets for the Parameterization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. J. Phys. Chem. A 2008, 112, 12868–12886. [Google Scholar] [CrossRef]
- Schwabe, T.; Grimme, S. Towards chemical accuracy for the thermodynamics of large molecules: New hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys. 2006, 8, 4398. [Google Scholar] [CrossRef]
- Kozuch, S.; Martin, J.M.L. Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comput. Chem. 2013, 34, 2327–2344. [Google Scholar] [CrossRef]
- Kozuch, S.; Martin, J.M.L. DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys. 2011, 13, 20104. [Google Scholar] [CrossRef]
- Kozuch, S.; Gruzman, D.; Martin, J.M.L. DSD-BLYP: A General Purpose Double Hybrid Density Functional Including Spin Component Scaling and Dispersion Correction. J. Phys. Chem. C 2010, 114, 20801–20808. [Google Scholar] [CrossRef]
- Brémond, É.; Adamo, C. Seeking for parameter-free double-hybrid functionals: The PBE0-DH model. J. Chem. Phys. 2011, 135, 024106. [Google Scholar] [CrossRef]
- Brémond, É.; Sancho-Garcia, J.C.; Pérez-Jiménez, Á.J.; Adamo, C. Double-hybrid functionals from adiabatic-connection: The QIDH model. J. Chem. Phys. 2014, 141, 031101. [Google Scholar] [CrossRef] [Green Version]
- Goerigk, L.; Grimme, S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Man Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 291–309. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
Molecule | Level | r(B–H) | r(B–F) | ∠HBF | ∠FBF |
---|---|---|---|---|---|
H2BF | B3LYP/A′VTZ | 1.191 | 1.322 | 117.8 | – |
CCSD(T)/aVTZ a | 1.193 | 1.325 | 117.8 | – | |
HBF2 | B3LYP/A′VTZ | 1.185 | 1.318 | 120.9 | 118.1 |
CCSD(T)/aVTZ a | 1.186 | 1.319 | 121.0 | 118.0 | |
FHB• | B3LYP/A′VTZ | 1.201 | 1.305 | 121.1 | – |
CCSD(T)/aVTZ a | 1.203 | 1.309 | 121.0 | – | |
BF3 | B3LYP/A′VTZ | – | 1.316 | – | 120.0 |
CCSD(T)/aVTZ a | – | 1.315 | – | 120.0 | |
F2B• | B3LYP/A′VTZ | – | 1.310 | – | 121.4 |
CCSD(T)/aVTZ a | – | 1.312 | – | 121.0 |
Molecule | R1 | R2 | BDE0 | BDE298 | BDEe | MSE | RSE | rB–F (Å) |
---|---|---|---|---|---|---|---|---|
1 | BH2 | BH2 | 542.4 | 545.9 | 554.6 | −63.8 | −103.9 | 1.352 |
2 | AlH2 | AlH2 | 576.2 | 578.1 | 585.2 | −56.0 | −79.5 | 1.347 |
3 | HC(=O) | H | 581.5 | 585.0 | 597.2 | −7.3 | −121.3 | 1.321 |
4 | NH2 | BH2 | 594.6 | 598.5 | 609.1 | −19.5 | −95.6 | 1.359 |
5 | BH2 | H | 601.9 | 606.5 | 618.3 | −25.2 | −81.8 | 1.335 |
6 | AlH2 | H | 634.0 | 637.5 | 648.4 | −17.5 | −58.5 | 1.336 |
7 | SiH3 | SiH3 | 652.0 | 655.7 | 665.3 | −23.4 | −34.4 | 1.333 |
8 | PH2 | PH2 | 657.5 | 661.5 | 671.0 | −29.9 | −22.2 | 1.335 |
9 | SH | SH | 668.0 | 672.3 | 682.2 | −32.8 | −8.4 | 1.332 |
10 | CN | CN | 680.3 | 684.7 | 696.9 | −20.6 | −8.2 | 1.310 |
11 | PH2 | H | 680.7 | 685.2 | 697.6 | −18.1 | −10.2 | 1.328 |
12 | SiH3 | H | 682.1 | 686.6 | 700.1 | −9.4 | −17.5 | 1.327 |
13 | SH | H | 682.6 | 687.3 | 699.7 | −20.6 | −5.6 | 1.328 |
14 | HC≡C | H | 682.4 | 688.0 | 704.2 | −8.6 | −16.9 | 1.327 |
15 | Cl | Cl | 691.2 | 695.7 | 706.0 | −16.4 | −1.4 | 1.315 |
16 | CN | H | 691.6 | 696.7 | 712.0 | −11.3 | −5.5 | 1.314 |
17 | NH2 | H | 700.9 | 706.0 | 719.1 | −11.3 | 3.7 | 1.343 |
18 | NH2 | NH2 | 703.2 | 708.0 | 720.0 | −14.4 | 8.9 | 1.356 |
19 | Cl | H | 703.1 | 708.3 | 722.0 | −1.4 | −3.8 | 1.315 |
20 | Cl | F | 705.3 | 710.1 | 721.1 | −9.2 | 5.7 | 1.315 |
21 | SiH3 | F | 706.1 | 710.3 | 721.4 | 19.1 | −22.4 | 1.325 |
22 | OH | OH | 705.8 | 711.0 | 722.3 | −7.7 | 5.1 | 1.338 |
23 | H | H | 707.5 | 713.5 | 731.0 | 0.0 | 0.0 | 1.322 |
24 | CH3 | H | 710.9 | 715.8 | 731.3 | 6.4 | −4.1 | 1.332 |
25 | CH3 | CH3 | 711.8 | 716.1 | 729.3 | 8.7 | −6.1 | 1.344 |
26 | OH | H | 711.7 | 717.0 | 730.6 | 8.1 | −4.6 | 1.337 |
27 | NH2 | F | 712.7 | 717.6 | 729.1 | −7.8 | 11.9 | 1.335 |
28 | CF3 | H | 714.2 | 718.7 | 733.3 | −3.4 | 8.5 | 1.310 |
29 | F | F | 714.5 | 719.5 | 730.9 | −9.6 | 15.6 | 1.316 |
30 | F | H | 723.7 | 729.2 | 743.8 | 17.1 | −1.4 | 1.318 |
Class a | Method | MAD | MD | LD c | NO |
---|---|---|---|---|---|
GGA | revPBE | 36.9 | −36.9 | 54.6 (10) | 30 |
BPW91 | 22.5 | −22.5 | 40.8 (10) | 29 | |
HCTH407 | 20.4 | −20.4 | 40.9 (10) | 27 | |
B97-D | 19.1 | −19.1 | 41.5 (10) | 27 | |
BLYP | 19.0 | −19.0 | 40.6 (10) | 25 | |
BP86 | 11.7 | −11.3 | 30.3 (10) | 19 | |
PBE | 9.5 | −7.9 | 26.4 (10) | 13 | |
MGGA | TPSS | 28.7 | −28.7 | 43.4 (10) | 30 |
r2SCAN | 25.4 | −25.4 | 42.4 (10) | 30 | |
MN15-L | 20.2 | −20.2 | 39.2 (4) | 30 | |
B97M-V | 16.0 | −16.0 | 39.0 (10) | 23 | |
VSXC | 13.8 | −13.8 | 37.1 (10) | 17 | |
τ-HCTH | 13.0 | −12.8 | 35.1 (10) | 19 | |
MN12-L | 12.9 | −12.9 | 37.0 (10) | 15 | |
HGGA | BH&HLYP | 45.6 | −45.6 | 54.2 (10) | 30 |
B3PW91 | 27.5 | −27.5 | 40.5 (10) | 30 | |
APF | 26.8 | −26.8 | 38.8 (10) | 30 | |
PBE0 | 26.3 | −26.3 | 37.6 (10) | 30 | |
APF-D | 23.6 | −23.6 | 35.5 (10) | 30 | |
B3LYP | 22.2 | −22.2 | 37.7 (10) | 30 | |
X3LYP | 20.4 | −20.4 | 35.5 (10) | 30 | |
SOGGA11-X | 19.0 | −19.0 | 27.6 (10) | 30 | |
ωB97X-D b | 16.7 | −16.7 | 23.6 (10) | 29 | |
B97-1 | 12.7 | −12.7 | 27.2 (10) | 20 | |
ωB97-X b | 11.3 | −11.3 | 16.2 (10) | 20 | |
CAM-B3LYP b | 8.5 | −8.5 | 16.7 (10) | 10 | |
ωB97X-V b | 7.8 | −7.8 | 15.5 (3) | 7 | |
N12-SX b | 4.8 | −4.2 | 20.7 (10) | 3 | |
ωB97 b | 4.8 | −4.8 | 15.4 (3) | 1 | |
HMGGA | TPSSh | 34.3 | −34.3 | 46.3 (10) | 30 |
PW6B95 | 12.7 | −12.7 | 24.4 (3) | 19 | |
τ-HCTHh | 9.1 | −9.0 | 26.4 (10) | 13 | |
M05-2X | 9.0 | +8.4 | 14.2 (29) | 11 | |
M06-2X | 7.3 | −7.1 | 15.3 (3) | 7 | |
M08-HX | 7.3 | −7.3 | 12.1 (23) | 8 | |
MN15 | 6.2 | +2.3 | 16.4 (3) | 5 | |
M11 b | 5.8 | +0.4 | 18.9 (1) | 5 | |
M06 | 5.0 | −4.5 | 18.5 (10) | 4 | |
ωB97M-V b | 4.0 | −3.8 | 14.1 (4) | 4 | |
BMK | 3.5 | −2.6 | 15.7 (3) | 2 | |
DHDFT | PBE0-DH | 25.4 | −25.4 | 32.4 (3) | 30 |
PBE-QIDH | 13.8 | −13.8 | 20.3 (10) | 30 | |
mPW2-PLYP | 11.0 | −11.0 | 16.6 (10) | 21 | |
B2-PLYP | 10.6 | −10.6 | 16.5 (10) | 17 | |
DSD-PBEP86 | 9.3 | −9.3 | 13.2 (29) | 14 | |
PWPB95 | 8.6 | −8.6 | 14.5 (3) | 8 | |
B2GP-PLYP | 8.4 | −8.4 | 11.8 (29) | 5 | |
B2K-PLYP | 6.8 | −6.8 | 9.9 (29) | 0 | |
DSD-BLYP | 3.8 | +3.8 | 10.0 (10) | 0 | |
DSD-PBEB95 | 1.8 | −1.1 | 6.4 (3) | 0 |
Class | Functional | ∆MAD a | ∆LD b |
---|---|---|---|
GGA | revPBE | −3.6 | −3.8 |
BLYP | −2.7 | −3.1 | |
BP86 | −1.6 | −2.4 | |
PBE | −1.0 | −1.6 | |
MGGA | TPSS | −1.8 | −2.0 |
HGGA | B3PW91 | −2.3 | −2.6 |
PBE0 | −1.1 | −1.4 | |
B3LYP | −2.3 | −2.5 | |
CAM-B3LYP | −1.0 | −1.3 | |
HMGGA | PW6B95 | −0.6 | −0.9 |
BMK | −0.6 | −2.1 | |
DH | B2-PLYP | −1.0 | −1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Reilly, R.J.; Karton, A. A Systematic Exploration of B–F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level. Molecules 2023, 28, 5707. https://doi.org/10.3390/molecules28155707
O’Reilly RJ, Karton A. A Systematic Exploration of B–F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level. Molecules. 2023; 28(15):5707. https://doi.org/10.3390/molecules28155707
Chicago/Turabian StyleO’Reilly, Robert J., and Amir Karton. 2023. "A Systematic Exploration of B–F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level" Molecules 28, no. 15: 5707. https://doi.org/10.3390/molecules28155707
APA StyleO’Reilly, R. J., & Karton, A. (2023). A Systematic Exploration of B–F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level. Molecules, 28(15), 5707. https://doi.org/10.3390/molecules28155707