Synergistic Effects between Lignin, Cellulose and Coal in the Co-Pyrolysis Process of Coal and Cotton Stalk
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Sample
2.2. Thermal Behavior Analysis of Sample
2.3. Evolution Curve of Low Molecular Weight Gases
2.3.1. Separate Pyrolysis
2.3.2. Co-Pyrolysis of Coal and Biomass
2.4. Evolution Curve of Benzene and Other Aromatic Compounds
2.4.1. Separate Pyrolysis
2.4.2. Co-Pyrolysis of Coal and Biomass
2.5. Synergistic Effect
3. Materials and Methods
3.1. Sample Collection and Blend Preparation
3.2. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mehlig, D.; ApSimon, H.; Staffell, I. The impact of the UK’s COVID-19 lockdowns on energy demand and emissions. Environ. Res. Lett. 2021, 16, 054037. [Google Scholar] [CrossRef]
- Jess, A. What might be the energy demand and energy mix to reconcile the world’s pursuit of welfare and happiness with the necessity to preserve the integrity of the biosphere? Energy Policy 2010, 38, 4663–4678. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Du, C.; Li, S.; Liu, X. Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples. Renew. Energy 2020, 147, 1352–1357. [Google Scholar] [CrossRef]
- Zhang, G.; Reinmöller, M.; Klinger, M.; Meyer, B. Ash melting behavior and slag infiltration into alumina refractory simulating co-gasification of coal and biomass. Fuel 2015, 139, 457–465. [Google Scholar] [CrossRef]
- Du, C.; Wu, X.; Yu, G.; Song, X.; Xu, J. Investigation into the flow behavior of high-temperature ash and low-temperature ash of high calcium coal. J. Energy Inst. 2020, 93, 1951–1959. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Xu, P.; Zhou, J.; Yang, F. Biomass hydrogen donor assisted microwave pyrolysis of low-rank pulverized coal: Optimization, product upgrade and synergistic mechanism. Waste Manag. 2022, 143, 177–185. [Google Scholar] [CrossRef]
- Tauseef, M.; Ansari, A.A.; Khoja, A.H.; Naqvi, S.R.; Liaquat, R.; Nimmo, W.; Daood, S.S. Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production. Fuel 2022, 318, 123685. [Google Scholar] [CrossRef]
- Herbert, G.J.; Krishnan, A.U. Quantifying environmental performance of biomass energy. Renew. Sustain. Energy Rev. 2016, 59, 292–308. [Google Scholar] [CrossRef]
- Oh, K.C.; Kim, J.; Park, S.Y.; Kim, S.J.; Cho, L.H.; Lee, C.G.; Roh, J.; Kim, D.H. Development and validation of torrefaction optimization model applied element content prediction of biomass. Energy 2021, 214, 119027. [Google Scholar] [CrossRef]
- Augustine, A. Spent tea waste as a biomass for co-gasification enhances the performance of semi-industrial gasifier working on groundnut shell. Biomass Bioenergy 2021, 145, 105964. [Google Scholar] [CrossRef]
- Yan, L.; Cao, Y.; He, B. On the kinetic modeling of biomass/coal char co-gasification with steam. Chem. Eng. J. 2018, 331, 435–442. [Google Scholar] [CrossRef]
- Kamble, A.D.; Saxena, V.K.; Chavan, P.D.; Mendhe, V.A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol. 2019, 29, 171–186. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Bhattacharya, S. Enhancement of performance and emission characteristics by co-gasification of biomass and coal using an entrained flow gasifier. J. Energy Inst. 2021, 95, 166–178. [Google Scholar] [CrossRef]
- Wei, J.; Wang, M.; Xu, D.; Shi, L.; Li, B.; Bai, Y.; Yu, G.; Bao, W.; Xu, J.; Zhang, H.; et al. Migration and transformation of alkali/alkaline earth metal species during biomass and coal co-gasification: A review. Fuel Process. Technol. 2022, 235, 107376. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Zhang, Z.; Li, H.; Li, X.; Egorov, R.I.; Strizhak, P.A.; Gao, X. Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renew. Sustain. Energy Rev. 2019, 103, 384–398. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Fan, Y.; Zhang, B.; Guo, W.; Zhang, R.; Li, Y.; Yang, B. Synergistic effects from co-pyrolysis of lignocellulosic biomass with low-rank coal: A perspective based on the interaction of organic components. Fuel 2021, 306, 121648. [Google Scholar] [CrossRef]
- Tian, B.; Wang, J.; Qiao, Y.; Huang, H.; Xu, L.; Tian, Y. Understanding the pyrolysis synergy of biomass and coal blends based on volatile release, kinetics and char structure. Biomass Bioenergy 2023, 168, 106687. [Google Scholar] [CrossRef]
- Yuan, S.; Dai, Z.-H.; Zhou, Z.-J.; Chen, X.-L.; Yu, G.-S.; Wang, F.-C. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char. Bioresour. Technol. 2012, 109, 188–197. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, P.; Liu, X.; Zhang, Q.; Hu, J. Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification. Bioresour. Technol. 2020, 302, 122876. [Google Scholar] [CrossRef]
- Kumar, A.; Yan, B.; Tao, J.; Li, J.; Kumari, L.; Oba, B.T.; Aborisade, M.A.; Chen, G. Influence of waste plastic on pyrolysis of low-lipid microalgae: A study on thermokinetics, behaviors, evolved gas characteristics, and products distribution. Renew. Energy 2022, 185, 416–430. [Google Scholar] [CrossRef]
- Hong, D.; Li, P.; Si, T.; Guo, X. ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene. Energy 2021, 218, 119553. [Google Scholar] [CrossRef]
- Lu, K.-M.; Lee, W.-J.; Chen, W.-H.; Lin, T.-C. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy 2013, 105, 57–65. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass-Convers. Biorefin. 2018, 8, 799–812. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, J.; Zhang, Q. Effects of Torrefaction on the Pyrolysis Behavior and Bio-Oil Properties of Rice Husk by Using TG-FTIR and Py-GC/MS. Energy Fuels 2014, 28, 5857–5863. [Google Scholar] [CrossRef]
- Daffalla, S.B.; Mukhtar, H.; Shaharun, M.S. Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems. PLoS ONE 2020, 15, e0243540. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, S.; Wu, Y.; Wu, S.; Gao, J. The roles of the low molecular weight compounds in the low-temperature pyrolysis of low-rank coal. J. Energy Inst. 2019, 92, 203–209. [Google Scholar] [CrossRef]
- Meng, A.; Zhou, H.; Qin, L.; Zhang, Y.; Li, Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis 2013, 104, 28–37. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Chen, H.; Xu, J. Understanding the release behavior of biomass model components and coal in the co-pyrolysis process. J. Energy Inst. 2022, 101, 122–130. [Google Scholar] [CrossRef]
- Wang, J.; Du, J.; Chang, L.; Xie, K. Study on the structure and pyrolysis characteristics of Chinese western coals. Fuel Process. Technol. 2010, 91, 430–433. [Google Scholar] [CrossRef]
- Saynik, P.B.; Moholkar, V.S. Influence of different salts of alkali and alkaline earth metals on the pyrolysis of Prosopis juliflora. Biofuels Bioprod. Biorefin. 2022, 16, 1038–1049. [Google Scholar] [CrossRef]
- Xiong, X.; Miao, Y.; Lu, X.; Tan, H.; Rahman, Z.U.; Li, P. C1∼C2 hydrocarbons generation and mutual conversion behavior in coal pyrolysis process. Fuel 2022, 308, 121929. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, H.; Jin, L.; He, X.; Zhu, S. Pyrolysis Behavior of Macerals from Weakly Reductive Coals. Energy Fuels 2010, 24, 6314–6320. [Google Scholar] [CrossRef]
- Chen, X.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process. Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Usino, D.O.; Supriyanto; Ylitervo, P.; Pettersson, A.; Richards, T. Influence of temperature and time on initial pyrolysis of cellulose and xylan. J. Anal. Appl. Pyrolysis 2020, 147, 104782. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Liu, B.; Chen, Y.; Xiao, J.; Dong, Z.; Gong, M.; Chen, H. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Fuel 2020, 267, 117302. [Google Scholar] [CrossRef]
- Malucelli, L.C.; Lacerda, L.G.; Dziedzic, M.; Filho, M.A.D.S.C. Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: A review of recent research. Rev. Environ. Sci. Bio/Technol. 2017, 16, 131–145. [Google Scholar] [CrossRef]
- Kalpana, V.; Perarasu, V. Analysis on cellulose extraction from hybrid biomass for improved crystallinity. J. Mol. Struct. 2020, 1217, 128350. [Google Scholar] [CrossRef]
- Horst, D.J.; Behainne, J.J.R.; Júnior, P.P.D.A.; Kovaleski, J.L. An experimental comparison of lignin yield from the Klason and Willstatter extraction methods. Energy Sustain. Dev. 2014, 23, 78–84. [Google Scholar] [CrossRef]
Samples | Proximate Analysis, ad, wt% | Ultimate Analysis, d, wt% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | VM | FC | A | C | H | S | O a | N | |
QQH | 3.10 | 43.09 | 40.16 | 13.65 | 62.24 | 3.41 | 1.09 | 18.84 | 0.77 |
CS | 4.30 | 82.39 | 12.52 | 0.79 | 47.37 | 6.41 | 0.05 | 44.87 | 0.51 |
CL | 3.69 | 90.03 | 6.24 | 0.04 | 43.04 | 6.51 | 0.03 | 49.68 | 0.70 |
LG | 3.80 | 53.51 | 39.02 | 3.67 | 59.45 | 5.23 | 5.41 | 25.62 | 0.62 |
Sample | mg/kg | |||||
---|---|---|---|---|---|---|
K | Ca | Na | Mg | Al | Fe | |
QQH | 612 | 20,314 | 4743 | 6587 | 1959 | 426 |
CS | 902 | 1406 | 940 | 479 | 465 | 665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Yan, L.; Guo, C.; Jia, D.; Guo, N.; Wang, L. Synergistic Effects between Lignin, Cellulose and Coal in the Co-Pyrolysis Process of Coal and Cotton Stalk. Molecules 2023, 28, 5708. https://doi.org/10.3390/molecules28155708
Ding X, Yan L, Guo C, Jia D, Guo N, Wang L. Synergistic Effects between Lignin, Cellulose and Coal in the Co-Pyrolysis Process of Coal and Cotton Stalk. Molecules. 2023; 28(15):5708. https://doi.org/10.3390/molecules28155708
Chicago/Turabian StyleDing, Xuehe, Lihua Yan, Chang Guo, Dianzeng Jia, Nannan Guo, and Luxiang Wang. 2023. "Synergistic Effects between Lignin, Cellulose and Coal in the Co-Pyrolysis Process of Coal and Cotton Stalk" Molecules 28, no. 15: 5708. https://doi.org/10.3390/molecules28155708
APA StyleDing, X., Yan, L., Guo, C., Jia, D., Guo, N., & Wang, L. (2023). Synergistic Effects between Lignin, Cellulose and Coal in the Co-Pyrolysis Process of Coal and Cotton Stalk. Molecules, 28(15), 5708. https://doi.org/10.3390/molecules28155708