Hydrothermal Synthesis of a Technical Lignin-Based Nanotube for the Efficient and Selective Removal of Cr(VI) from Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of AL-TiNTs
2.1.1. SEM
2.1.2. EDS
2.1.3. BET
2.1.4. XRD
2.1.5. FT-IR
2.2. Adsorption
2.2.1. Mass Ratios of AL/Nano-TiO2
2.2.2. pH
2.2.3. AL-TiNT Dosage
2.2.4. Temperature
2.2.5. Cr(VI) Concentration
2.3. Photodegradation Study
2.4. Co-Existing Anions
2.5. Theoretical Study
2.5.1. Adsorption Kinetics
2.5.2. Adsorption Isotherms
2.5.3. Thermodynamics
2.6. Selective Adsorption
2.7. Mechanism Study
- (1).
- The amino group in AL grafted onto titanate nanotubes was protonated and adsorbed Cr(VI) by electrostatic attraction under acidic conditions;
- (2).
- Under visible light, the AL-TiNTs generated electrons, and the Cr(VI) adsorbed on the AL-TiNTs was reduced to Cr(III);
- (3).
- The positively charged Cr(III) reached the electronegative surface of the titanate nanotubes by electrostatic attraction and was eventually absorbed by the titanate nanotubes through ion exchange with Na+ and H+ between the nanotube layers or through complexation and co-precipitation [4].
2.8. Regenerative and Applicative Study
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of AL-TiNTs
3.2.1. Amination of TL
3.2.2. Synthesis of AL-TiNTs
3.3. Characterizations
3.4. Experimental Design
3.4.1. Adsorption Experiment
3.4.2. Photocatalytic Degradation Experiments
3.4.3. Reusability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakkeeran, E.; Patra, C.; Shahnaz, T.; Rangabhashiyam, S.; Selvaraju, N. Continuous biosorption assessment for the removal of hexavalent chromium from aqueous solutions using Strychnos nux vomica fruit shell. Bioresour. Technol. Rep. 2018, 3, 256–260. [Google Scholar] [CrossRef]
- Pang, Y.; Chen, Z.; Zhao, R.; Yi, C.; Qiu, X.; Qian, Y.; Lou, H. Facile synthesis of easily separated and reusable silver nanoparticles/aminated alkaline lignin composite and its catalytic ability. J. Colloid Interface Sci. 2021, 587, 334–346. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Y.; Zheng, J.; Tan, M.; Wang, Z.; Wu, M. Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)-Sulfite Reactions. Environ. Sci. Technol. 2015, 49, 12363–12371. [Google Scholar] [CrossRef]
- Yu, C.; Tang, X.; Li, L.S.; Chai, X.L.; Xiao, R.; Wu, D.; Tang, C.J.; Chai, L.Y. The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: Performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation. Bioresour. Technol. 2019, 283, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Liu, D.; Fan, M.; Yang, D.; Zhu, R.; Ge, F.; Zhu, J.; He, H. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J. Hazard. Mater. 2010, 173, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Hu, J.; Li, H.; Li, J.; Huang, Y. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere 2016, 148, 227–232. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, J.; Wang, Z.; Zheng, X.; Zheng, J.; Wu, W.; Wu, M.; Xue, Q. A green approach towards simultaneous remediations of chromium(VI) and arsenic(III) in aqueous solution. Chem. Eng. J. 2015, 262, 1144–1151. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhao, P.-Y.; Liang, B.-L.; Chen, K.; Wang, G.-S. Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 2023, 202, 66–75. [Google Scholar] [CrossRef]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Biswas, A.; Chandra, B.P.; Prathibha, C. Highly efficient and simultaneous remediation of heavy metal ions (Pb(II), Hg(II), As(V), As(III) and Cr(VI)) from water using Ce intercalated and ceria decorated titanate nanotubes. Appl. Surf. Sci. 2023, 612, 155841. [Google Scholar] [CrossRef]
- Kim, I.J.; Zhao, W.; Park, J.G.; Meng, Z. Carbon nanotube filter for heavy metal ion adsorption. Ceram. Int. 2021, 47, 33280–33285. [Google Scholar] [CrossRef]
- Rodrigues, E.; Almeida, O.; Brasil, H.; Moraes, D.; dos Reis, M.A.L. Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study. Appl. Clay Sci. 2019, 172, 57–64. [Google Scholar] [CrossRef]
- Guo, C.; Chen, W.; Yan, S.; Chen, Y.; Zhao, X.; Zhang, P.; Ma, W.; Yang, A. Novel zirconia-halloysite nanotube material for arsenite adsorption from water. J. Environ. Chem. Eng. 2023, 11, 109181. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Chen, J.-J.; Cao, W.-Z.; Persson, K.M.; Ouyang, T.; Zhang, L.; Xie, X.; Liu, F.; Li, J.; Chang, C.-T. Novel materials for Cr(VI) adsorption by magnetic titanium nanotubes coated phosphorene. J. Mol. Liq. 2019, 287, 110826. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Fu, H.; Yi, X.H.; Wang, P.; Zhao, C.; Wang, C.C.; Zheng, W. Simultaneous Cr(VI) reduction and Cr(III) removal of bifunctional MOF/Titanate nanotube composites. Environ. Pollut. 2019, 249, 502–511. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Liu, J.; Duan, H. Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review. Chemosphere 2021, 282, 131046. [Google Scholar] [CrossRef]
- Tu, C.; Luo, W.; Peng, Y.; Yu, P.; Shi, C.; Wu, Z.; Shao, L.; Zhan, P. Preparation of lignin-based carbon nanotubes using micelles as soft template. Ind. Crops Prod. 2023, 191, 116009. [Google Scholar] [CrossRef]
- Osman, L.S.; Hamidon, T.S.; Latif, N.H.A.; Elias, N.H.H.; Saidin, M.; Shahidan, S.; Abdullah, S.H.A.; Ali, N.A.; Rusli, S.S.M.; Ibrahim, M.N.M.; et al. Rust conversion of archeological cannonball from Fort Cornwallis using oil palm frond lignin. Ind. Crops Prod. 2023, 192, 116107. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.-C.; Sun, R.-C. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: A review. J. Leather Sci. Eng. 2019, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Kelley, S.S.; Venditti, R.A. Lignin-Based Thermoplastic Materials. ChemSusChem 2016, 9, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Shuyi, S.; Gan, H.; Linjun, W.; Lin, C.; Danyuan, X.; Zhou, H.; Lin, X.; Qin, Y. Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Carbohydr. Polym. 2019, 223, 115080. [Google Scholar] [CrossRef] [PubMed]
- Bartczak, P.; Klapiszewski, L.; Wysokowski, M.; Majchrzak, I.; Czernicka, W.; Piasecki, A.; Ehrlich, H.; Jesionowski, T. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent. J. Environ. Manag. 2017, 204, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, J.; Ge, Y. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chem. Eng. J. 2017, 308, 809–817. [Google Scholar] [CrossRef]
- Ying, W.; Shi, Z.; Yang, H.; Xu, G.; Zheng, Z.; Yang, J. Effect of alkaline lignin modification on cellulase-lignin interactions and enzymatic saccharification yield. Biotechnol. Biofuels 2018, 11, 214. [Google Scholar] [CrossRef]
- He, T.; Jiang, Y.; Chang, S.; Zhou, X.; Ji, Y.; Fang, X.; Zhang, Y. Antibacterial and high-performance bioplastics derived from biodegradable PBST and lignin. Ind. Crops Prod. 2023, 191, 115930. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Zhou, H.; Li, Z.; Fu, Y.; Qin, M. Utilization of lignin separated from pre-hydrolysis liquor via horseradish peroxidase modification as an adsorbent for methylene blue removal from aqueous solution. Ind. Crops Prod. 2021, 167, 113535. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Lv, X.; Wang, T.; Xue, B. Synthesis of novel lignosulfonate-modified graphene hydrogel for ultrahigh adsorption capacity of Cr(VI) from wastewater. J. Clean. Prod. 2021, 295, 126406. [Google Scholar] [CrossRef]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Ge, Y.; Song, Q.; Li, Z. A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution. J. Ind. Eng. Chem. 2015, 23, 228–234. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhao, Y.; Bo, S.; Yang, L.; Xiao, Z.; An, Q.; Zhai, S. Magnetic aminated lignin/CeO2/Fe3O4 composites with tailored interfacial chemistry and affinity for selective phosphate removal. Sci. Total Environ. 2021, 796, 148984. [Google Scholar] [CrossRef]
- Liu, N.; Chen, X.; Zhang, J.; Schwank, J.W. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 2014, 225, 34–51. [Google Scholar] [CrossRef]
- Fan, G.; Lin, R.; Su, Z.; Lin, X.; Xu, R.; Chen, W. Removal of Cr (VI) from aqueous solutions by titanate nanomaterials synthesized via hydrothermal method. Can. J. Chem. Eng. 2017, 95, 717–723. [Google Scholar] [CrossRef]
- Li, K.; Yang, H.; Wang, L.; Chai, S.; Zhang, R.; Wu, J.; Liu, X. Facile integration of FeS and titanate nanotubes for efficient removal of total Cr from aqueous solution: Synergy in simultaneous reduction of Cr(VI) and adsorption of Cr(III). J. Hazard. Mater. 2020, 398, 122834. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, W.; Qian, F.-J.; Zhao, T.-L.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. A novel synthesis of porous TiO2 nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. J. Environ. Chem. Eng. 2020, 8, 104061. [Google Scholar] [CrossRef]
- Niu, G.; Liu, W.; Wang, T.; Ni, J. Absorption of Cr(VI) onto amino-modified titanate nanotubes using 2-bromoethylamine hydrobromide through SN2 reaction. J. Colloid Interface Sci. 2013, 401, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, W.; Borthwick, A.G.L.; Wang, T.; Li, F.; Guan, Y. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping. J. Hazard. Mater. 2016, 317, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Liu, X.; Chen, G. Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin. Results Phys. 2019, 12, 405–411. [Google Scholar] [CrossRef]
- Akbarzadeh, R.; Farhadian, N.; Asadi, A.; Hasani, T.; Salehi Morovat, S. Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst. Environ. Sci. Pollut. Res. Int. 2021, 28, 9417–9429. [Google Scholar] [CrossRef]
- Liu, W.; Ni, J.; Yin, X. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Res. 2014, 53, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Li, Z.; Kong, Y.; Song, Q.; Wang, K. Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms. J. Ind. Eng. Chem. 2014, 20, 4429–4436. [Google Scholar] [CrossRef]
- Faix, O. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–27. [Google Scholar] [CrossRef]
- Lu, Q.F.; Huang, Z.K.; Liu, B.; Cheng, X. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids. Bioresour. Technol. 2012, 104, 111–118. [Google Scholar] [CrossRef]
- Nosheen, S.; Galasso, F.S.; Suib, S.L. Role of Ti-O bonds in phase transitions of TiO2. Langmuir 2009, 25, 7623–7630. [Google Scholar] [CrossRef]
- Li, T.; Lu, S.; Wang, Z.; Huang, M.; Yan, J.; Liu, M. Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci. Total Environ. 2021, 765, 142745. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Nwankwo, W.; Osibote, O.A.; Paumo, H.K.; Ama, O.M.; Adetunji, C.O.; Siloko, I.U. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manag. 2021, 280, 111809. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Wang, T.; Ni, J. Highly efficient adsorption of Cr(VI) from aqueous solutions by amino-functionalized titanate nanotubes. Chem. Eng. J. 2013, 225, 153–163. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Zhang, Y.; Li, L.; Jiang, L.; Wang, C. Heavy metal sorption properties of magnesium titanate mesoporous nanorods. J. Mater. Chem. A 2015, 3, 11796–11800. [Google Scholar] [CrossRef]
- Chi, Z.; Hao, L.; Dong, H.; Yu, H.; Liu, H.; Wang, Z.; Yu, H. The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment. Chem. Eng. J. 2020, 382, 122789. [Google Scholar] [CrossRef]
- Li, Y.; Bian, Y.; Qin, H.; Zhang, Y.; Bian, Z. Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide. Appl. Catal. B 2017, 206, 293–299. [Google Scholar] [CrossRef]
- Zafar, Z.; Fatima, R.; Kim, J.O. Effect of HCl treatment on physico-chemical properties and photocatalytic performance of Fe-TiO2 nanotubes for hexavalent chromium reduction and dye degradation under visible light. Chemosphere 2021, 284, 131247. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Han, C.; Bai, L.; Sun, X. One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and Congo red: Performance and practical application. Bioresour. Technol. 2022, 369, 128373. [Google Scholar] [CrossRef]
- Hu, Z.; Ge, M.; Guo, C. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 2021, 268, 128834. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhang, G. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism. Chem. Eng. J. 2016, 283, 721–729. [Google Scholar] [CrossRef]
- Sharaf El-Deen, S.E.A.; Ammar, N.S.; Jamil, T.S. Adsorption behavior of Co(II) and Ni(II) from aqueous solutions onto titanate nanotubes. Fuller. Nanotub. Carbon Nanostructures 2016, 24, 455–466. [Google Scholar] [CrossRef]
- Alminderej, F.M.; Younis, A.M.; Albadri, A.E.A.E.; El-Sayed, W.A.; El-Ghoul, Y.; Ali, R.; Mohamed, A.M.A.; Saleh, S.M. The superior adsorption capacity of phenol from aqueous solution using Modified Date Palm Nanomaterials: A performance and kinetic study. Arab. J. Chem. 2022, 15, 104120. [Google Scholar] [CrossRef]
- Tan, Y.; Lv, X.; Wang, W.; Cui, C.; Bao, Y.; Jiao, S. Surface-functionalization of hydrogen titanate nanowires for efficiently selective adsorption of methylene blue. Appl. Surf. Sci. 2023, 615, 156265. [Google Scholar] [CrossRef]
- Heo, J.W.; An, L.; Chen, J.; Bae, J.H.; Kim, Y.S. Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. Chemosphere 2022, 295, 133815. [Google Scholar] [CrossRef]
- Charmas, B.; Zięzio, M.; Jedynak, K. Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption. Molecules 2023, 28, 4922. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Han, C.; Lv, X.; Bai, L.; Sun, X.; Zhang, P. Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies. Bioresour. Technol. 2022, 344, 126186. [Google Scholar] [CrossRef]
- Periyasamy, S.; Gopalakannan, V.; Viswanathan, N. Fabrication of magnetic particles imprinted cellulose based biocomposites for chromium(VI) removal. Carbohydr. Polym. 2017, 174, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-N.; Wang, X.-L.; Yang, D.-S. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 2015, 8, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yan, T.; Jiang, F. Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride. J. Taiwan Inst. Chem. Eng. 2014, 45, 1842–1849. [Google Scholar] [CrossRef]
- Kumar, A.; Jena, H.M. Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2. Process Saf. Environ. Prot. 2017, 109, 63–71. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Qi, Z.; Shen, C.; Li, F.; Ma, C.; Huang, M.; Wang, Z.; Li, J. Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter. Environ. Pollut. 2019, 251, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, X.; Wang, T.; Fu, J.; Ni, J. Selective and irreversible adsorption of mercury(II) from aqueous solution by a flower-like titanate nanomaterial. J. Mater. Chem. A 2015, 3, 17676–17684. [Google Scholar] [CrossRef]
- Xiong, Z.; Zheng, H.; Hu, Y.; Hu, X.; Ding, W.; Ma, J.; Li, Y. Selective adsorption of Congo red and Cu(II) from complex wastewater by core-shell structured magnetic carbon@zeolitic imidazolate frameworks-8 nanocomposites. Sep. Purif. Technol. 2021, 277, 119053. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Jia, J.; Liu, W.; Yao, X.; Feng, J.; Dong, S.; Sun, J. Magnetic Biochar Derived from Fenton Sludge/CMC for High-Efficiency Removal of Pb(II): Synthesis, Application, and Mechanism. Molecules 2023, 28, 4983. [Google Scholar] [CrossRef]
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.H.; Chang, J.S.; Lin, C.S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef]
Isotherm Model | Parameter | Temperature (K) | |||
---|---|---|---|---|---|
293 K | 298 K | 303 K | 308 K | ||
Langmuir | qm (mg/g) | 88.97 | 89.85 | 88.18 | 86.13 |
KL (L/mg) | 0.24 | 0.43 | 0.61 | 1.12 | |
R2 | 0.9923 | 0.9972 | 0.9948 | 0.9912 | |
Freundlich | KF ((mg/g) (L/mg)1/n) | 30.39 | 37.83 | 42.65 | 49.86 |
1/n | 0.30 | 0.28 | 0.24 | 0.21 | |
R2 | 0.9843 | 0.9839 | 0.9905 | 0.9774 | |
Temkin | KT (L/mol) | 3.34 | 7.41 | 15.30 | 49.06 |
B1 (J/mol) | 17.66 | 16.63 | 14.82 | 12.80 | |
R2 | 0.9856 | 0.9893 | 0.9891 | 0.9731 | |
Dubinin–Radushkevich | qm (mol/g) | 0.0042 | 0.0041 | 0.0037 | 0.0033 |
KD (mol2/g2) | 0.0029 | 0.0025 | 0.0020 | 0.0016 | |
R2 | 0.9866 | 0.9879 | 0.9917 | 0.9804 | |
E (kJ/mol) | 13.09 | 14.29 | 15.69 | 17.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Sun, Y.; Hao, M.; Yu, F.; He, J. Hydrothermal Synthesis of a Technical Lignin-Based Nanotube for the Efficient and Selective Removal of Cr(VI) from Aqueous Solution. Molecules 2023, 28, 5789. https://doi.org/10.3390/molecules28155789
Wang Q, Sun Y, Hao M, Yu F, He J. Hydrothermal Synthesis of a Technical Lignin-Based Nanotube for the Efficient and Selective Removal of Cr(VI) from Aqueous Solution. Molecules. 2023; 28(15):5789. https://doi.org/10.3390/molecules28155789
Chicago/Turabian StyleWang, Qiongyao, Yongchang Sun, Mingge Hao, Fangxin Yu, and Juanni He. 2023. "Hydrothermal Synthesis of a Technical Lignin-Based Nanotube for the Efficient and Selective Removal of Cr(VI) from Aqueous Solution" Molecules 28, no. 15: 5789. https://doi.org/10.3390/molecules28155789
APA StyleWang, Q., Sun, Y., Hao, M., Yu, F., & He, J. (2023). Hydrothermal Synthesis of a Technical Lignin-Based Nanotube for the Efficient and Selective Removal of Cr(VI) from Aqueous Solution. Molecules, 28(15), 5789. https://doi.org/10.3390/molecules28155789