Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Ratios of COD/SO42− on Removal Efficiencies of Sulfate and COD in SRRB
2.1.1. Effect of Different COD/SO42− Ratios on Sulfate Removal Efficiency in SRBR
2.1.2. Effect of Different COD/SO42− Ratios on COD Removal Efficiency in SRBR
2.2. Effect of HRTs on Sulfide Removal and Electricity Generation in SOFC
2.3. The Removal of COD, Sulfate, Sulfide and Electricity Generation in Wastewater Treatment System
- * Removal efficiency of COD and sulfate in the SRBR:
- * Sulfide removal and electricity generation in SOFC
3. Discussion
4. Materials and Methods
4.1. Inoculum and Culture Medium
4.2. Design of Wastewater Treatment System
4.2.1. Sulfate-Reducing Bioreactor (SRBR)
- * Feeding tank
- * Synthetic wastewater composition
- * SRBR and operating conditions
4.2.2. Sulfide-Oxidizing Fuel Cell (SOFC)
- * Design and fabrication of SOFC
- * Preparation of SOFC electrode
- * SOFC operation conditions
4.2.3. Determination of Suitable Conditions for SRBR and SOFC
- * Determination of COD/SO42− ratios for sulfate removal in SRBR
- * Determination of suitable HRTs for sulfide removal and electricity generation in SOFC
- * Performance of wastewater treatment system
4.3. Analytical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cai, J.; Quaisar, M.; Ding, A.; Wang, K.; Sun, Y.; Wang, R. Microbial fuel cells simultaneously treating sulfide and nitrate under different influent sulfide to nitrate molar ratios. Energy Fuels 2020, 34, 3858–3866. [Google Scholar]
- Chen, Z.; Zhang, S.H.; Zhong, L. Simultaneous sulfide removal, nitrogen removal and electricity generation in a coupled microbial fuel cell system. Bioresour. Technol. 2019, 291, 121888. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Lima, R.M.F.; Leao, V.A. Water treatment with limestone for sulfate removal. J. Hazard. Mater. 2012, 221–222, 45–55. [Google Scholar]
- Angelov, A.; Bratkova, S.; Loukanov, A. Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energy Convers. Manag. 2013, 67, 283–286. [Google Scholar] [CrossRef]
- Guerrero-Rangel, N.; Rodriguez-de la Garza, J.A.; Garza-Garcia, Y.; Rios-Gonzalez, L.J.; Sosa-Santillan, G.J. Comparative study of three cathodic electron acceptors on performance of mediatorless microbial fuel cell. Int. J. Electr. Power. Eng. 2010, 4, 27–31. [Google Scholar]
- Neculita, C.M.; Zagury, G.J.; Busiere, B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs. J. Environ. Qual. 2007, 36, 1–16. [Google Scholar]
- Batterman, S.; Grant-Alfieri, A.; Seo, S.-H. Low level exposure to hydrogen sulfide: A review of emissions, community exposure, health effects, and exposure guidelines. Crit. Rev. Toxicol. 2023, 53, 244–295. [Google Scholar]
- Lloyd, D. Hydrogen sulfide: Clandestine microbial messenger. Trends Microbiol. 2006, 14, 456–462. [Google Scholar]
- Tang, K.; Baskaran, V.; Nemati, M. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 2009, 44, 73–94. [Google Scholar]
- Zhang, L.; de Schryver, P.; de Gusseme, B.; de Myynck, W.; Boon, N.; Vertraete, W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Res. 2008, 42, 1–12. [Google Scholar]
- Dou, L.; Zhang, M.; Pan, L. Sulfide removal characteristics, pathways and potential application of a novel chemolithotrophic sulfide-oxidizing strain. Marinobacter sp. SDSWS8. Environ. Res. 2022, 212, 113176. [Google Scholar]
- Lee, E.Y.; Cho, K.S.; Ryu, H.W. Simultaneous removal of H2S and NH3 in biofilter inoculates with Acidithiobacillus thiooxidans TAS. J. Biosci. Bioeng. 2005, 99, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ho, K.I.; Liu, F.C.; Ho, M.N.; Wang, A.J.; Ren, N.Q.; Lee, D.J. Autotrophic and heterotrophic denitrification by a newly isolated strain Pseudomonas sp. C27. Bioresour. Technol. 2013, 145, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Tong, Z.H.; Sheng, G.P.; Chen, Y.Z.; Zhang, F.; Mu, Z.X.; Wang, H.L.; Zeng, R.J.; Liu, X.W.; Yu, H.Q.; et al. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. Biosens. Bioelectron. 2010, 26, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Song, T.S.; Wang, D.B.; Wang, H.; Li, X.; Liang, Y.; Xie, J. Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell. Int. J. Hydrogen Energy 2015, 40, 3868–3874. [Google Scholar] [CrossRef]
- Barua, P.K.; Deka, D. Electricity generation from biowaste based microbial fuel cells. Int. J. Energy Inf. Commun. 2010, 1, 77–92. [Google Scholar]
- Koók, L.; Nemestóthy, N.; Bélafi-Bakó, K.; Bakonyi, P. Investigating the specific role of external load on the performance versus stability trade-off in microbial fuel cells. Bioresour. Technol. 2020, 309, 123313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, H.; Shi, C.; Zhou, S.; Ni, J. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method. J. Hazard. Mater. 2009, 171, 724–730. [Google Scholar]
- Holzman, D.C. Microbe power. Environ. Health Persp. 2005, 113, A754–A757. [Google Scholar] [CrossRef]
- Jang, J.K.; Pham, T.H.; Chang, I.S.; Khang, K.H.; Moon, H.; Cho, K.S.; and Kim, B.H. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 2004, 39, 1007–1012. [Google Scholar] [CrossRef]
- Malik, S.; Kishore, S.; Dhasmana, A.; Kumari, P.; Mitra, T.; Chaudhary, V.; Kumari, R.; Bora, J.; Ranjan, A.; Minkina, T.; et al. A perspective review on microbial fuel cells in treatment and product recovery from wastewater. Water 2023, 15, 316. [Google Scholar]
- Van Den Brand, T.P.; Roest, K.; Chen, G.H.; Brdjanovic, D.; van Loosdrecht, M.C.M. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World J. Microbiol. Biotechnol. 2015, 31, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Roy, H.; Rahman, T.U.; Tasnim, N.; Arju, J.; Rafid, M.M.; Islam, M.R.; Pervez, M.N.; Cai, Y.; Naddeo, V.; Islam, M.S. Microbial Fuel cell construction features and application for sustainable wastewater treatment. Membranes 2023, 13, 490. [Google Scholar] [PubMed]
- Kim, H.; Kim, B.; Yu, J. Power generation response to readily biodegradable COD in single-chamber microbial fuel cells. Bioresour. Techno. 2015, 186, 136–140. [Google Scholar] [CrossRef]
- Moharir, P.V.; Tembhurkar, A.R. Effect of recirculation on bioelectricity generation using microbial fuel cell with hfood waste leachate as substrate. Int. J. Hydrogen Energy 2018, 43, 10061–10069. [Google Scholar] [CrossRef]
- Subha, C.; Kavitha, S.; Abishekar, S.; Tamilarasan, K.; Arulazhagan, P.; Rajesh Banu, J. Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continous upflow anaerobic microbial fuel cell. Fuel 2019, 251, 224–232. [Google Scholar] [CrossRef]
- Xin, X.; Hong, J.; Liu, Y. Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate. Sci. Total Environ. 2019, 670, 50–58. [Google Scholar] [CrossRef]
- Yang, Z.; Pei, H.; Hou, Q.; Jiang, L.; Zhang, L.; Nie, C. Algal biofilm-assisted micobial fuel cell to enhance domestic wastewater treatment nutrient, organics removal and bioenergy production. Chem. Eng. J. 2018, 332, 277–285. [Google Scholar] [CrossRef]
- Abourached, C.; English, M.J.; Liu, H. Wastewater treatment by Microbial fuel cell (MFC) prior irrigation water reuse. J. Clean. Prod. 2016, 137, 144–149. [Google Scholar] [CrossRef]
- Gacitúa, M.A.; Muñoz, E.; González, B. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulfphate consumption and pH. Bioelectrochemistry 2018, 199, 26–32. [Google Scholar] [CrossRef]
- Gao, C.; Wang, A.; Zhao, Y. Contribution of sulfate-reducing bacteria to the electricity generation in microbial fuel cells. Adv. Mater. Res. 2014, 1008–1009, 285–289. [Google Scholar] [CrossRef]
- Zhang, K. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell. Int. J. Electrochem. Sci. 2017, 12, 10553–10566. [Google Scholar]
- Liu, H.; Zhang, B.; Liu, Y.; Wang, Z.; Hao, L. Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell. Inter. J. Hydrogen Energy 2015, 40, 8128–8136. [Google Scholar] [CrossRef]
- Sangcharoen, A.; Niyom, W.; Suwannasilp, B.B. A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: Performance and microbial community. Process Biochem. 2015, 50, 1648–1655. [Google Scholar] [CrossRef]
- Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 2006, 39, 3401–3408. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Prasad, R. A critical review on microbial fuel cells technology: Perspectives on wastewater treatment. Open Biotechnol. J. 2021, 15, 131–141. [Google Scholar] [CrossRef]
- Hong, S.W.; Chang, I.S.; Choi, Y.S.; Kim, B.H.; Chung, T.H. Response from freshwater sediment during electricity generation using microbial fuel cells. Bioprocess Biosyst. Eng. 2009, 32, 389–395. [Google Scholar] [CrossRef]
- Kong, X.; Sun, Y.; Yuan, Z.; Li, D.; Li, L.; Li, Y. Effect of cathode electron-receiver on the performance of microbial fuel cells. Int. J. Hydrog. Energy 2010, 35, 7224–7227. [Google Scholar] [CrossRef]
- You, S.J.; Ren, N.Q.; Zhao, Q.L.; Kiely, P.D.; Wang, J.Y.; Yang, F.L.; Fu, L.; Peng, L. Improving phosphate buffer-free cathode performance of microbial fuel cell base on biological nitrification. Biosens. Bioelectron. 2009, 24, 3698–3701. [Google Scholar] [CrossRef]
- Zhao, F.; Rahunen, N.; Varcoe, J.R.; Roberts, A.J.; Avignone-Rossa, C.; Thumser, A.E. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosens. Bioelectron. 2009, 24, 1931–1936. [Google Scholar] [CrossRef]
- Moon, C.; Singh, R.; Veeravalli, S.S.; Shanmugam, S.R.; Chaganti, S.R.; Lalman, J.A.; Heath, D.D. Effect of COD:SO42− ratio, HRT and Linoleic acid concentration on mesophilic sulfate reduction: Reactor performance and microbial population dynamics. Water 2015, 7, 2275–2292. [Google Scholar] [CrossRef]
- Rossi, R.; Cario, B.P.; Santoro, C.; Yang, W.; Saikaly, P.E.; Logan, B.E. Evaluation of electrode and solution area-based resistance enables quantitative comparisons of factors impacting microbial fuel cell performance. Environ. Sci. Technol. 2019, 53, 3977–3986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, J.; Yang, Q.; Feng, C.; Zhu, Y.; Ye, Z.; Ni, J. Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). Biores. Technol. 2012, 124, 1–7. [Google Scholar] [CrossRef]
- Damianovic, M.H.R.Z.; Foresti, E. Anaerobic Degradation of synthetic wastewaters at different levels of sulfate and COD/Sulfate ratios in horizontal-flow anaerobic reactors (HAIB). Environ. Engine Sci. 2007, 24, 384–393. [Google Scholar] [CrossRef]
- Mohan, S.V.; Rao, N.C.; Prasad, K.K.; Sarma, P.N. Bioaugmentaion of anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochem. 2005, 40, 2849–2857. [Google Scholar] [CrossRef]
- El Bayoumy, M.A.; Bewtra, J.K.; Ali, H.I.; Biswas, N. Removal of heavy metals and COD by SRB in UAFF reactor. J. Environ. Eng. 1999, 125, 532–539. [Google Scholar] [CrossRef]
- Choi, E.; Rim, J.M. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci. Technol. 1991, 23, 1259–1264. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Tian, C.; Ye, Z.; Liu, Y.; Lei, Z. Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells. Bioresour. Technol. 2013, 138, 198–203. [Google Scholar] [CrossRef]
- Ieropoulos, I.; Greenman, J.; Melhuish, C.; Hart, J. Comparative study of three types of microbial fuel cell. Enzyme Technol. 2005, 37, 238–245. [Google Scholar] [CrossRef]
- Dutta, P.K.; Rabaey, K.; Yuan, Z.; Keller, J. Spontaneous electrochemical removal of aqueous sulfide. Water Res. 2008, 42, 4965–4975. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, D.; Wang, Y. Electron transfer from sulfate-reducing bacteria biofilm promoted by reduced graphene sheets. Chin. J. Ocean Limnol. 2012, 30, 12. [Google Scholar] [CrossRef]
- Miran, W.; Jang, J.; Nawaz, M.; Shahzad, A.; Jeong, S.; Jeon, E.; Lee, D.S. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere 2017, 189, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Postgate, J.R. The Sulfate-Reducing Bacteria, 2nd ed.; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Miller, T.L.; Wolin, M.J. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 1974, 27, 985. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Cord-Ruwisch, R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Meth. 1985, 4, 33–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kieu, T.Q.H.; Nguyen, T.Y.; Do, C.L. Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Molecules 2023, 28, 6197. https://doi.org/10.3390/molecules28176197
Kieu TQH, Nguyen TY, Do CL. Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Molecules. 2023; 28(17):6197. https://doi.org/10.3390/molecules28176197
Chicago/Turabian StyleKieu, Thi Quynh Hoa, Thi Yen Nguyen, and Chi Linh Do. 2023. "Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell" Molecules 28, no. 17: 6197. https://doi.org/10.3390/molecules28176197
APA StyleKieu, T. Q. H., Nguyen, T. Y., & Do, C. L. (2023). Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Molecules, 28(17), 6197. https://doi.org/10.3390/molecules28176197