Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Hop Varieties (Azacca, Idaho-7, and Sultana)
Azacca Hops | Idaho-7 Hops | Sultana Hops | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | Analyte | RT 2 | 6 h | 24 h | Final | 6 h | 24 h | Final | 6 h | 24 h | Final | Aroma |
Methyl ester | Methyl 4-ethyl 4-pentenoate | 13.6 | 0.050 ± 0.011 | 0.040 ± 0.002 | 0.015 ± 0.004 | Sweet, yeast [19] | ||||||
Methyl 6-methyl heptanoate | 16.6 | 0.018 ± 0.004 | 0.004 ± 0.001 | |||||||||
Methyl 6-methyl octanoate | 21.7 | 0.013 ± 0.004 | 0.025 ± 0.008 | |||||||||
Methyl 4-decenoate | 27.2 | 0.028 ± 0.007 | 0.004 ± 0.001 | 0.024 ± 0.007 | 0.041 ± 0.011 | 0.061 ± 0.018 | 0.202 ± 0.061 | 0.040 ± 0.016 | ||||
Methyl geranate | 27.7 | 0.008 ± 0.001 | 0.008 ± 0.002 | 0.011 ± 0.003 | 0.009 ± 0.004 | 0.018 ± 0.007 | 0.013 ± 0.004 | 0.031 ± 0.009 | 0.192 ± 0.058 | 0.116 ± 0.021 | Sweet, candy [21] | |
Methyl 3,6-dodecanoate | 35.4 | 0.013 ± 0.004 | 0.018 ± 0.006 | |||||||||
Ethyl ester | Ethyl heptanoate | 17.1 | 0.013 ± 0.003 | 0.019 ± 0.001 | Fruity [25] | |||||||
Ethyl octanoate | 22.0 | 0.012 ± 0.004 | 0.041 ± 0.012 | 0.088 ± 0.022 | 0.025 ± 0.009 | 0.004 ± 0.001 | 0.173 ± 0.052 | 0.160 ± 0.030 | Fruity, brandy [20] | |||
Ethyl phenylethanoate | 24.0 | 0.006 ± 0.001 | ||||||||||
Ethyl 4-methyl octanoate | 25.1 | 0.032 ± 0.010 | 0.056 ± 0.005 | |||||||||
Ethyl nonanoate | 26.5 | 0.007 ± 0.001 | 0.012 ± 0.003 | 0.010 ± 0.003 | 0.023 ± 0.007 | 0.016 ± 0.001 | Fruity [20] | |||||
Ethyl 8-methyl nonanoate | 29.2 | 0.005 ± 0.001 | 0.033 ± 0.010 | 0.027 ± 0.005 | ||||||||
Ethyl trans-4-decenoate | 30.1 | 0.008 ± 0.001 | 0.034 ± 0.008 | 0.019 ± 0.006 | 0.073 ± 0.022 | 0.160 ± 0.012 | Pear, pineapple [17] | |||||
Ethyl decanoate | 30.9 | 0.017 ± 0.003 | 0.096 ± 0.024 | 0.024 ± 0.008 | 0.117 ± 0.035 | 0.123 ± 0.017 | Fruity [20] | |||||
Ethyl dodecanoate | 38.8 | 0.003 ± 0.001 | 0.031 ± 0.009 | 0.014 ± 0.002 | Floral, fruity [20] | |||||||
Other ester | 1-methylbutyl propionate | 11.0 | 0.028 ± 0.008 | 0.028 ± 0.001 | 0.011 ± 0.004 | |||||||
2-methylbutyl 2-methylpropanoate | 13.1 | 0.086 ± 0.020 | 0.070 ± 0.017 | 0.039 ± 0.010 | 0.036 ± 0.010 | 0.077 ± 0.031 | 0.043 ± 0.015 | 0.024 ± 0.007 | 0.087 ± 0.026 | 0.076 ± 0.008 | Earthy [19] | |
Terpinyl acetate 3 | 13.5 | 0.017 ± 0.005 | 0.069 ± 0.021 | Spice, herbal, citrus [26] | ||||||||
2-ethylhexyl penatanoate | 17.4 | 0.014 ± 0.001 |
Azacca Hops | Idaho-7 Hops | Sultana Hops | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | Analyte | RT 2 | 6 h | 24 h | Final | 6 h | 24 h | Final | 6 h | 24 h | Final | Aroma |
Ketone | 2-Nonanone | 16.8 | 0.020 ± 0.003 | 0.010 ± 0.003 | 0.019 ± 0.008 | 0.013 ± 0.004 | Fruity [24] | |||||
2-Decanone | 21.6 | 0.011 ± 0.003 | 0.011 ± 0.001 | 0.008 ± 0.002 | 0.005 ± 0.001 | 0.014 ± 0.006 | 0.009 ± 0.003 | 0.024 ± 0.007 | 0.014 ± 0.003 | Citrusy, orange [27] | ||
6-Undecen-2-one | 25.5 | 0.007 ± 0.002 | 0.006 ± 0.001 | 0.004 ± 0.001 | ||||||||
2-Undecanone | 26.3 | 0.024 ± 0.006 | 0.026 ± 0.002 | 0.032 ± 0.008 | 0.024 ± 0.010 | 0.025 ± 0.010 | 0.041 ± 0.014 | 0.044 ± 0.013 | 0.032 ± 0.005 | Orange [24] | ||
Jasmine lactone | 30.6 | 0.013 ± 0.004 | 0.013 ± 0.002 | Fruity, sweet, floral [28] | ||||||||
2-Dodecanone | 30.7 | 0.004 ± 0.001 | 0.003 ± 0.001 | 0.008 ± 0.003 | 0.004 ± 0.001 | 0.006 ± 0.002 | Fruity, citrus [29] | |||||
2-Tridecanone | 34.9 | 0.007 ± 0.002 | 0.008 ± 0.002 | 0.009 ± 0.004 | 0.037 ± 0.015 | 0.009 ± 0.003 | 0.003 ± 0.001 | 0.021 ± 0.006 | 0.011 ± 0.002 | Fruity, green [30] | ||
Alcohol | Isothujol 3 | 13.7 | 0.033 ± 0.001 | |||||||||
α-Terpineol 3 | 13.8 | 0.018 ± 0.007 | 0.013 ± 0.004 | Lilac [24] | ||||||||
Linalool | 17.1 | 0.025 ± 0.002 | 0.037 ± 0.011 | 0.012 ± 0.003 | 0.029 ± 0.002 | 0.027 ± 0.011 | 0.038 ± 0.013 | 0.018 ± 0.005 | 0.026 ± 0.008 | 0.101 ± 0.007 | Sweet, floral, orange [19] | |
Citronellol | 23.5 | 0.007 ± 0.002 | 0.014 ± 0.003 | Sweet, floral [24] | ||||||||
cis-Geraniol | 24.7 | 0.009 ± 0.002 | 0.015 ± 0.005 | Orange, citrus [19] | ||||||||
2-Undecanol | 26.7 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.005 ± 0.001 | 0.021 ± 0.006 | 0.019 ± 0.004 | Fruity [24] | |||||
Humuleneol II | 40.1 | 0.003 ± 0.001 | 0.007 ± 0.002 | 0.004 ± 0.001 | 0.015 ± 0.005 | 0.011 ± 0.003 | Floral, spicy, citrus [31] | |||||
Voltaile acid | Gamolenic acid 3 | 41.2 | 0.004 ± 0.001 | 0.022 ± 0.007 | 0.017 ± 0.003 |
Azacca Hops | Idaho-7 Hops | Sultana Hops | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | Analyte | RT 2 | 6 h | 24 h | Final | 6 h | 24 h | Final | 6 h | 24 h | Final | Aroma |
Monoterpene | β-Pinene | 11.4 | 0.050 ± 0.015 | 0.017 ± 0.008 | 0.006 ± 0.001 | 0.007 ± 0.002 | 0.029 ± 0.009 | 0.224 ± 0.067 | 0.017 ± 0.001 | Piney, woody [19] | ||
β-Myrcene | 11.9 | 0.686 ± 0.201 | 0.534 ± 0.115 | 0.601 ± 0.149 | 0.126 ± 0.064 | 0.254 ± 0.103 | 0.085 ± 0.029 | 0.140 ± 0.042 | 0.416 ± 0.240 | 0.661 ± 0.097 | Balsamic, woody, herbal [19] | |
β-Ocimene | 14.6 | 0.017 ± 0.008 | 0.012 ± 0.004 | 0.014 ± 0.003 | 0.005 ± 0.003 | 0.017 ± 0.007 | Earthy, smokey, green [19] | |||||
Cosmene | 18.6 | 0.011 ± 0.003 | 0.005 ± 0.002 | 0.005 ± 0.002 | 0.018 ± 0.005 | |||||||
Sesquiterpene | Ylangene | 29.6 | 0.003 ± 0.001 | 0.007 ± 0.002 | 0.018 ± 0.005 | 0.008 ± 0.002 | Spicy, fresh, woody [32] | |||||
α-Copaene | 29.8 | 0.004 ± 0.001 | 0.008 ± 0.002 | 0.011 ± 0.003 | 0.006 ± 0.002 | 0.005 ± 0.002 | 0.004 ± 0.001 | 0.025 ± 0.007 | 0.020 ± 0.004 | Woody, wax, honey [19] | ||
β-Caryophyllene | 31.6 | 0.064 ± 0.020 | 0.115 ± 0.032 | 0.152 ± 0.038 | 0.019 ± 0.001 | 0.053 ± 0.021 | 0.054 ± 0.018 | 0.063 ± 0.019 | 0.345 ± 0.104 | 0.319 ± 0.110 | Oily, fruity, woody, spicy [19] | |
α-Humulene | 33.1 | 0.196 ± 0.061 | 0.334 ± 0.119 | 0.413 ± 0.102 | 0.057 ± 0.027 | 0.170 ± 0.068 | 0.130 ± 0.044 | 0.235 ± 0.071 | 1.478 ± 0.443 | 0.875 ± 0.433 | Woody, musty [19] | |
γ-Muurolene | 34.0 | 0.010 ± 0.003 | 0.018 ± 0.005 | 0.024 ± 0.006 | 0.003 ± 0.001 | 0.017 ± 0.007 | 0.009 ± 0.003 | 0.009 ± 0.003 | 0.045 ± 0.014 | 0.031 ± 0.014 | ||
β-Eudesmene | 34.4 | 0.008 ± 0.002 | 0.011 ± 0.003 | 0.006 ± 0.002 | 0.003 ± 0.001 | 0.016 ± 0.005 | 0.011 ± 0.004 | |||||
γ-Gurjunene 3 | 34.7 | 0.010 ± 0.003 | 0.014 ± 0.003 | 0.003 ± 0.001 | 0.023 ± 0.007 | 0.017 ± 0.006 | Woody [32] | |||||
α-Muurolene | 35.0 | 0.006 ± 0.003 | 0.009 ± 0.002 | 0.004 ± 0.001 | 0.029 ± 0.009 | 0.009 ± 0.004 | ||||||
γ-Cadinene | 35.5 | 0.017 ± 0.005 | 0.021 ± 0.005 | 0.014 ± 0.006 | 0.043 ± 0.017 | 0.008 ± 0.003 | 0.009 ± 0.003 | 0.056 ± 0.017 | 0.029 ± 0.008 | Herbal, thyme, woody [31] | ||
δ-Cadinene | 35.9 | 0.017 ± 0.006 | 0.026 ± 0.010 | 0.033 ± 0.008 | 0.011 ± 0.005 | 0.040 ± 0.016 | 0.015 ± 0.005 | 0.012 ± 0.004 | 0.089 ± 0.027 | 0.032 ± 0.012 | Woody [18] | |
α-Cadinene | 36.4 | 0.006 ± 0.001 | 0.015 ± 0.004 | 0.006 ± 0.002 | ||||||||
α-Calacorene | 36.6 | 0.010 ± 0.002 | 0.003 ± 0.001 | 0.017 ± 0.005 | 0.005 ± 0.002 | Woody [18] | ||||||
Cadalene | 41.6 | 0.007 ± 0.002 | 0.008 ± 0.002 | 0.065 ± 0.020 | 0.004 ± 0.001 |
Hop Variety | Days Since Inoculation + Hopping | SG 1 | pH 1 | SPME Samples Analyzed |
---|---|---|---|---|
Azacca hops | 0 | 1.057 ± 0.001 | 5.21 ± 0.04 | 6 h (Control, T1, T2, T3) |
1.6–2.5 mL/100 g total oils | 1 | 1.036 ± 0.002 | 4.93 ± 0.06 | 24 h (Control, T1, T2, T3) |
14–16% alpha acids | 5 | 1.009 ± 0.001 | 4.40 ± 0.02 | |
4–5.5% beta acids | 14 | 1.009 ± 0.001 | 4.38 ± 0.03 | Final (Control, T1, T2, T3) |
Idaho-7 hops | 0 | 1.059 ± 0.002 | 5.12 ± 0.05 | 6 h (Control, T1, T2, T3) |
1.0–5.0 mL/100 g total oils | 1 | 1.047 ± 0.014 | 4.86 ± 0.12 | 24 h (Control, T1, T2, T3) |
9–14% alpha acids | 5 | 1.010 ± 0.001 | 4.60 ± 0.01 | |
3.5–9.1% beta acids | 14 | 1.006 ± 0.001 | 4.32 ± 0.02 | Final (Control, T1, T2, T3) |
Sultana hops | 0 | 1.056 ± 0.001 | 5.12 ± 0.03 | 6 h (Control, T1, T2, T3) |
2.5–4.0 mL/100 g total oils | 1 | 1.025 ± 0.022 | 4.86 ± 0.12 | 24 h (Control, T1, T2, T3) |
13–15% alpha acids | 5 | 1.008 ± 0.001 | 4.53 ± 0.06 | |
4–5% beta acids | 14 | 1.008 ± 0.001 | 4.46 ± 0.01 | Final (Control, T1, T2, T3) |
2.2. Aroma Development and Hops Biotransformation
2.3. Sensory Analysis
3. Materials and Methods
3.1. Fermentation
3.2. Sensory Panel
3.3. Solid Phase Microextraction (SPME)
3.4. Gas Chromatography–Mass Spectrometry Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Korpelainen, H.; Pietiläinen, M. Hop (Humulus lupulus L.): Traditional and Present Use, and Future Potential. Econ. Bot. 2021, 75, 302–322. [Google Scholar] [CrossRef]
- Browning, M. Cheers to a Growing Craft Beer Industry; USDA: Washington DC, USA. Available online: https://www.nifa.usda.gov/about-nifa/blogs/cheers-growing-craft-beer-industry (accessed on 19 January 2023).
- Svedlund, N.; Evering, S.; Gibson, B.; Krogerus, K. Fruits of Their Labour: Biotransformation Reactions of Yeasts during Brewery Fermentation. Appl. Microbiol. Biotechnol. 2022, 106, 4929–4944. [Google Scholar] [CrossRef]
- Rettberg, N.; Biendl, M.; Garbe, L.-A. Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools—A Review. J. Am. Soc. Brew. Chem. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Kishimoto, T.; Wanikawa, A.; Kono, K.; Shibata, K. Comparison of the Odor-Active Compounds in Unhopped Beer and Beers Hopped with Different Hop Varieties. J. Agric. Food Chem. 2006, 54, 8855–8861. [Google Scholar] [CrossRef]
- Takoi, K.; Tokita, K.; Usami, Y.; Matsumoto, I.; Nakayama, Y.-Y.; Takoi, K.; Tokita, K.; Sanekata, A.; Usami, Y.; Itoga, Y.; et al. Varietal Difference of Hop-Derived Flavour Compounds in Late-Hopped/Dry-Hopped Beers. Brew. Sci. 2016, 69. Available online: https://www.brewingscience.de/ (accessed on 1 July 2023).
- Lafontaine, S.R.; Shellhammer, T.H. Investigating the Factors Impacting Aroma, Flavor, and Stability in Dry-Hopped Beers. Tech. Q. 2019, 56, 13–23. [Google Scholar] [CrossRef]
- Štefániková, J.; Nagyová, V.; Hynšt, M.; Kudláková, D.; Árvay, J.; Dráb, Š. A Comparison of Sensory Evaluation and an Electronic Nose Assay in the Assessment of Aroma in Dry Hopped Beers. KVASNY PRUMYSL 2020, 66, 224–231. [Google Scholar] [CrossRef]
- Brendel, S.; Hofmann, T.; Granvogl, M. Dry-Hopping to Modify the Aroma of Alcohol-Free Beer on a Molecular Level—Loss and Transfer of Odor-Active Compounds. J. Agric. Food Chem. 2020, 68, 8602–8612. [Google Scholar] [CrossRef] [PubMed]
- Tusha, K.; Nešpor, J.; Jelínek, L.; Vodičková, H.; Kinčl, T.; Dostálek, P. Effect of Czech Hop Varieties on Aroma of Dry-Hopped Lager Beer. Foods 2022, 11, 2520. [Google Scholar] [CrossRef]
- França, H.S.; Acosta, A.; Jamal, A.; Romao, W.; Mulloor, J.; Almirall, J.R. Experimental and Ab Initio Investigation of the Products of Reaction from Δ9-Tetrahydrocannabinol (Δ9-THC) and the Fast Blue BB Spot Reagent in Presumptive Drug Tests for Cannabinoids. Forensic Chem. 2020, 17, 100212. [Google Scholar] [CrossRef]
- Cottrell, M.T. A Search for Diastatic Enzymes Endogenous to Humulus Lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer. J. Am. Soc. Brew. Chem. 2022, 81, 435–447. [Google Scholar] [CrossRef]
- Morcol, T.B.; Wysocki, K.; Sankaran, R.P.; Matthews, P.D.; Kennelly, E.J. UPLC-QTof-MSEMetabolomics Reveals Changes in Leaf Primary and Secondary Metabolism of Hop (Humulus lupulus L.) Plants under Drought Stress. J. Agric. Food Chem. 2020, 68, 14698–14708. [Google Scholar] [CrossRef] [PubMed]
- Praet, T.; van Opstaele, F.; Jaskula-Goiris, B.; Aerts, G.; de Cooman, L. Biotransformations of Hop-Derived Aroma Compounds by Saccharomyces Cerevisiae upon Fermentation. Cerevisia 2012, 36, 125–132. [Google Scholar] [CrossRef]
- Bingman, M.T.; Hinkley, J.L.; Bradley, C.P.; Cole, C.A. Aroma Profiles of Dry-Hopped Ciders Produced with Citra, Galaxy, and Mosaic Hops. Appl. Sci. 2022, 12, 310. [Google Scholar] [CrossRef]
- Hinkley, J.L.; Bingman, M.T.; Lee, J.S.; Bradley, C.P.; Cole, C.A. Volatile Profile Survey of Five Apple Varieties Grown in Southwest Colorado from Juice to Finished, Dry-Hopped Cider. J. Am. Soc. Brew. Chem. 2021, 81, 131–140. [Google Scholar] [CrossRef]
- Tromelin, A.; Koensgen, F.; Audouze, K.; Guichard, E.; Thomas-Danguin, T. Exploring the Characteristics of an Aroma-Blending Mixture by Investigating the Network of Shared Odors and the Molecular Features of Their Related Odorants. Molecules 2020, 25, 3032. [Google Scholar] [CrossRef] [PubMed]
- Campelo, P.H.; Alves Filho, E.G.; Silva, L.M.A.; de Brito, E.S.; Rodrigues, S.; Fernandes, F.A.N. Modulation of Aroma and Flavor Using Glow Discharge Plasma Technology. Innov. Food Sci. Emerg. Technol. 2020, 62, 102363. [Google Scholar] [CrossRef]
- Su, X.; Hurley, K.; Xu, Z.; Xu, Y.; Rutto, L.; O’Keefe, S.; Scoggins, H.; Yin, Y. Performance of Alternative Drying Techniques on Hop (Humulus Lupulus L.) Aroma Quality: An HS-SPME-GC-MS-O and Chemometrics Combined Approach. Food Chem. 2022, 381, 132289. [Google Scholar] [CrossRef]
- He, W.; Liu, S.; Heponiemi, P.; Heinonen, M.; Marsol-Vall, A.; Ma, X.; Yang, B.; Laaksonen, O. Effect of Saccharomyces Cerevisiae and Schizosaccharomyces Pombe Strains on Chemical Composition and Sensory Quality of Ciders Made from Finnish Apple Cultivars. Food Chem. 2021, 345, 128833. [Google Scholar] [CrossRef]
- Wang, Y.; Kays, S.J. Contribution of Volatile Compounds to the Characteristic Aroma of Baked “Jewel” Sweetpotatoes. J. Am. Soc. Hortic. Sci. 2000, 125, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Bingman, M.T.; Stellick, C.E.; Pelkey, J.P.; Scott, J.M.; Cole, C.A. Monitoring Cider Aroma Development throughout the Fermentation Process by Headspace Solid Phase Microextraction (Hs-Spme) Gas Chromatography–Mass Spectrometry (Gc-Ms) Analysis. Beverages 2020, 6, 40. [Google Scholar] [CrossRef]
- Curran, A.M.; Rabin, S.I.; Prada, P.A.; Furton, K.G. Comparison of the Volatile Organic Compounds Present in Human Odor Using SPME-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Y. Seasonal Variation of Volatile Composition and Odor Activity Value of “Marion” (Rubus Spp. Hyb) and “Thornless Evergreen” (R. laciniatus L.) Blackberries. J. Food Sci. 2005, 70, C13–C20. [Google Scholar]
- Fan, W.; Qian, M.C. Characterization of Aroma Compounds of Chinese “Wuliangye” and “Jiannanchun” Liquors by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Goodner, K.L.; Mahattanatawee, K.; Plotto, A.; Sotomayor, J.A.; Jordán, M.J. Aromatic Profiles of Thymus Hyemalis and Spanish T. Vulgaris Essential Oils by GC-MS/GC-O. Ind. Crops. Prod. 2006, 24, 264–268. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM Fragrance Ingredient Safety Assessment, 2-Decanone, CAS Registry Number 693-54-9. Food Chem. Toxicol. 2020, 146, 111735. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, Y.; Fu, X.; Liao, Y.; Yuan, Y.; Jia, Y.; Dong, F.; Yang, Z. Biosynthesis of Jasmine Lactone in Tea (Camellia Sinensis) Leaves and Its Formation in Response to Multiple Stresses. J. Agric. Food Chem. 2018, 66, 3899–3909. [Google Scholar] [CrossRef]
- Wu, S.; Yang, J.; Dong, H.; Liu, Q.; Li, X.; Zeng, X.; Bai, W. Key Aroma Compounds of Chinese Dry-Cured Spanish Mackerel (Scomberomorus Niphonius) and Their Potential Metabolic Mechanisms. Food Chem. 2021, 342, 128381. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Nerín, C. Compounds Responsible for Off-Odors in Several Samples Composed by Polypropylene, Polyethylene, Paper and Cardboard Used as Food Packaging Materials. Food Chem. 2020, 309, 125792. [Google Scholar] [CrossRef]
- van Opstaele, F.; Praet, T.; Aerts, G.; de Cooman, L. Characterization of Novel Single-Variety Oxygenated Sesquiterpenoid Hop Oil Fractions via Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry/Olfactometry. J. Agric. Food Chem. 2013, 61, 10555–10564. [Google Scholar] [CrossRef]
- Septiana, S.; Yuliana, N.D.; Bachtiar, B.M.; Wijaya, C.H. Aroma-Active Compounds of Melaleuca Cajuputi Essential Oil, a Potent Flavor on Cajuputs Candy. AIMS Agric. Food 2020, 5, 292–306. [Google Scholar] [CrossRef]
- Brendel, S.; Hofmann, T.; Granvogl, M. Hop-Induced Formation of Ethyl Esters in Dry-Hopped Beer. Food Prod. Process. Nutr. 2020, 2, 18. [Google Scholar] [CrossRef]
- Klimczak, K.; Cioch-Skoneczny, M. Biotransformation of Hops-Derived Compounds in Beer—A Review. Acta Univ. Cibiniensis. Ser. E Food Technol. 2022, 26, 1–18. [Google Scholar] [CrossRef]
- Liu, Y. The Application of Mathematical Optimization and Flavor-Detection Technologies for Modeling Aroma of Hops; University of Nebraska-Lincoln: Lincoln, NE, USA, 2021. [Google Scholar]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The Molecular Biology of Fruity and Floral Aromas in Beer and Other Alcoholic Beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piornos, J.A.; Balagiannis, D.P.; Methven, L.; Koussissi, E.; Brouwer, E.; Parker, J.K. Elucidating the Odor-Active Aroma Compounds in Alcohol-Free Beer and Their Contribution to the Worty Flavor. J. Agric. Food Chem. 2020, 68, 10088–10096. [Google Scholar] [CrossRef]
- Beer 25. Diacetyl. American Society for Brewing Chemists. Available online: https://www.asbcnet.org/Methods/BeerMethods/Pages/Beer-25-MasterMethod.aspx (accessed on 3 January 2023).
- Varela, P.; Ares, G. Sensory Profiling, the Blurred Line between Sensory and Consumer Science. A Review of Novel Methods for Product Characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCabe, A.K.; Keyes, J.K.; Hemetsberger, H.; Kurr, C.V.; Albright, B.; Ward, M.G.; McKinley, M.L.; Breezley, S.J.; Cole, C.A. Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops. Molecules 2023, 28, 5802. https://doi.org/10.3390/molecules28155802
McCabe AK, Keyes JK, Hemetsberger H, Kurr CV, Albright B, Ward MG, McKinley ML, Breezley SJ, Cole CA. Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops. Molecules. 2023; 28(15):5802. https://doi.org/10.3390/molecules28155802
Chicago/Turabian StyleMcCabe, Anna K., Jasmine K. Keyes, Heidi Hemetsberger, Chris V. Kurr, Bryan Albright, Michael G. Ward, Megan L. McKinley, Steven J. Breezley, and Callie A. Cole. 2023. "Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops" Molecules 28, no. 15: 5802. https://doi.org/10.3390/molecules28155802
APA StyleMcCabe, A. K., Keyes, J. K., Hemetsberger, H., Kurr, C. V., Albright, B., Ward, M. G., McKinley, M. L., Breezley, S. J., & Cole, C. A. (2023). Aroma Profile Development in Beer Fermented with Azacca, Idaho-7, and Sultana Hops. Molecules, 28(15), 5802. https://doi.org/10.3390/molecules28155802