An Organofluorine Isoselenocyanate Analogue of Sulforaphane Affects Antimetabolite 5-Fluorouracil’s Anticancer Activity: A Perspective for New Combinatory Therapy in Triple-Negative Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. In Vitro Model
Cell Growth and Type of Interaction
2.2. In Vivo Studies
2.2.1. Tumor Growth and Metastasis in Lung
2.2.2. Biochemical Tests and Blood Count
3. Discussion
4. Materials and Methods
4.1. Cells and Reagents
4.2. Cell Growth Assay
4.3. Quantitative Analysis of Interactions
4.4. Identification of Apoptosis and Necrosis
4.5. Wound Assay
4.6. Animals
4.7. Tumor Growth
4.8. Determination Type of Interaction
4.9. Blood Analysis
4.10. Metastatic Foci Quantification
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Camacho, E.; Trilla-Fuertes, L.; Gámez-Pozo, A.; Dapía, I.; López-Vacas, R.; Zapater-Moros, A.; Lumbreras-Herrera, M.I.; Arias, P.; Zamora, P.; Vara, J.Á.F.; et al. Synergistic Effect of Antimetabolic and Chemotherapy Drugs in Triple-Negative Breast Cancer. Biomed. Pharmacother. 2022, 149, 112844. [Google Scholar] [CrossRef] [PubMed]
- Chalabi-Dchar, M.; Fenouil, T.; Machon, C.; Vincent, A.; Catez, F.; Marcel, V.; Mertani, H.C.; Saurin, J.-C.; Bouvet, P.; Guitton, J.; et al. A Novel View on an Old Drug, 5-Fluorouracil: An Unexpected RNA Modifier with Intriguing Impact on Cancer Cell Fate. NAR Cancer 2021, 3, zcab032. [Google Scholar] [CrossRef] [PubMed]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) Resistance and the New Strategy to Enhance the Sensitivity against Cancer: Implication of DNA Repair Inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.J.; Van Der Wilt, C.L.; Van Moorsel, C.J.A.; Kroep, J.R.; Bergman, A.M.; Ackland, S.P. Basis for Effective Combination Cancer Chemotherapy with Antimetabolites. Pharmacol. Ther. 2000, 87, 227–253. [Google Scholar] [CrossRef]
- Wu, H.L.; Gong, Y.; Ji, P.; Xie, Y.F.; Jiang, Y.Z.; Liu, G.Y. Targeting Nucleotide Metabolism: A Promising Approach to Enhance Cancer Immunotherapy. J. Hematol. Oncol. 2022, 15, 1–21. [Google Scholar] [CrossRef]
- Suzuki, R.; Kang, Y.; Li, X.; Roife, D.; Zhang, R.; Fleming, J.B. Genistein Potentiates the Antitumor Effect of 5-Fluorouracil by Inducing Apoptosis and Autophagy in Human Pancreatic Cancer Cells. Anticancer Res. 2014, 34, 4685–4692. [Google Scholar]
- Patel, B.B.; Sengupta, R.; Qazi, S.; Vachhani, H.; Yu, Y.; Rishi, A.K.; Majumdar, A.P.N. Curcumin Enhances the Effects of 5-Fluorouracil and Oxaliplatin in Mediating Growth Inhibition of Colon Cancer Cells by Modulating EGFR and IGF-1R. Int. J. Cancer 2008, 122, 267–273. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Forbes-Hernández, T.Y.; Gasparrini, M.; Amici, A.; Cianciosi, D.; Quiles, J.L.; Battino, M. Manuka Honey Synergistically Enhances the Chemopreventive Effect of 5-Fluorouracil on Human Colon Cancer Cells by Inducing Oxidative Stress and Apoptosis, Altering Metabolic Phenotypes and Suppressing Metastasis Ability. Free Radic. Biol. Med. 2018, 126, 41–54. [Google Scholar] [CrossRef]
- Bose, C.; Awasthi, S.; Sharma, R.; Beneš, H.; Hauer-Jensen, M.; Boerma, M.; Singh, S.P. Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Attenuates Its Cardiotoxicity in a Breast Cancer Model. PLoS ONE 2018, 13, e0193918. [Google Scholar] [CrossRef]
- Milczarek, M.; Mielczarek, L.; Lubelska, K.; Dąbrowska, A.; Chilmonczyk, Z.; Matosiuk, D.; Wiktorska, K. In Vitro Evaluation of Sulforaphane and a Natural Analog as Potent Inducers of 5-Fluorouracil Anticancer Activity. Molecules 2018, 23, 3040. [Google Scholar] [CrossRef] [Green Version]
- Milczarek, M.; Wiktorska, K.; Mielczarek, L.; Koronkiewicz, M.; Dąbrowska, A.; Lubelska, K.; Matosiuk, D.; Chilmonczyk, Z. Autophagic Cell Death and Premature Senescence: New Mechanism of 5-Fluorouracil and Sulforaphane Synergistic Anticancer Effect in MDA-MB-231 Triple Negative Breast Cancer Cell Line. Food Chem. Toxicol. 2018, 111, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Milczarek, M.; Misiewicz-Krzemińska, I.; Lubelska, K.; Wiktorska, K. Combination Treatment with 5-Fluorouracil and Isothiocyanates Shows an Antagonistic Effect in Chinese Hamster Fibroblast Cells Line-V79. Acta Pol. Pharm.–Drug Res. 2011, 68, 331–342. [Google Scholar]
- Cierpiał, T.; Łuczak, J.; Kwiatkowska, M.; Kiełbasiński, P.; Mielczarek, L.; Wiktorska, K.; Chilmonczyk, Z.; Milczarek, M.; Karwowska, K. Organofluorine Isoselenocyanate Analogues of Sulforaphane: Synthesis and Anticancer Activity. ChemMedChem 2016, 11, 2398–2409. [Google Scholar] [CrossRef]
- Wagner, K.U. Know Thy Cells: Commonly Used Triple-Negative Human Breast Cancer Cell Lines Carry Mutations in RAS and Effectors. Breast Cancer Res. 2022, 24, 10–11. [Google Scholar] [CrossRef]
- Roshanazadeh, M.; Rezaei, H.B.; Rashidi, M. Quercetin Synergistically Potentiates the Anti-Metastatic Effect of 5-Fluorouracil on the MDA-MB-231 Breast Cancer Cell Line. Iran. J. Basic Med. Sci. 2021, 24, 928–934. [Google Scholar] [CrossRef]
- Chou, T.C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.S.; Dutta, P.; Austin, D.; Wang, P.; Awad, A.; Vadgama, J.V. Combination of Resveratrol and 5-Flurouracil Enhanced Antitelomerase Activity and Apoptosis by Inhibiting STAT3 and Akt Signaling Pathways in Human Colorectal Cancer Cells. Oncotarget 2018, 9, 32943–32957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Song, J.; Hwang, S.; Choi, J.; Song, G.; Lim, W. Apigenin Enhances Apoptosis Induction by 5-Fluorouracil through Regulation of Thymidylate Synthase in Colorectal Cancer Cells. Redox Biol. 2021, 47, 102144. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.Y.; Zhou, B.F.; Xie, Y.Y.; Lou, J.; Li, K.Q. Bufalin and 5-Fluorouracil Synergistically Induce Apoptosis in Colorectal Cancer Cells. Oncol. Lett. 2018, 15, 8019–8026. [Google Scholar] [CrossRef] [Green Version]
- Tomooka, F.; Kaji, K.; Nishimura, N.; Kubo, T.; Iwai, S.; Shibamoto, A.; Suzuki, J.; Kitagawa, K.; Namisaki, T.; Akahane, T.; et al. Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity. Cells 2023, 12, 687. [Google Scholar] [CrossRef]
- Sancho-Martínez, S.M.; Piedrafita, F.J.; Cannata-Andía, J.B.; López-Novoa, J.M.; López-Hernández, F.J. Necrotic Concentrations of Cisplatin Activate the Apoptotic Machinery but Inhibit Effector Caspases and Interfere with the Execution of Apoptosis. Toxicol. Sci. 2011, 122, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Sun, M.; Kong, X.; Li, Y.; Wang, X.; Lv, S.; Ding, X.; Gao, S.; Cun, J.; Cai, C.; et al. Huaier Extract Synergizes with Tamoxifen to Induce Autophagy and Apoptosis in ER-Positive Breast Cancer Cells. Oncotarget 2016, 7, 26003–26015. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M.S.; Zong, W.-X. Chemotherapeutic Approaches for Targeting Cell Death Pathways. Oncologist 2006, 11, 342–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Arcy, M.S. Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin Circumvents Cancer Drug Resistance by Induction of a Necroptotic Death. Mol. Cancer Ther. 2007, 6, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Khaw-On, P.; Pompimon, W.; Banjerdpongchai, R. Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells. Int. J. Mol. Sci. 2019, 20, 3953. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, H.M.; Zhou, C.; Li, Q.; Ma, L.; Zhang, Z.; Sun, Y.; Wang, L.; Zhang, X.; Zhu, B.; et al. Non-Benzoquinone Geldanamycin Analogs Trigger Various Forms of Death in Human Breast Cancer Cells. J. Exp. Clin. Cancer Res. 2016, 35, 149. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.Y.Q.; Lim, J.H.; Ang, W.H. Induction of Targeted Necrosis with HER2-Targeted Platinum(Iv) Anticancer Prodrugs. Chem. Sci. 2015, 6, 3051–3056. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Fan, J.; Ai, G.; Liu, J.; Luo, N.; Li, C.; Cheng, Z. Berberine in Combination with Cisplatin Induces Necroptosis and Apoptosis in Ovarian Cancer Cells. Biol. Res. 2019, 52, 37. [Google Scholar] [CrossRef] [Green Version]
- Kamran, S.; Sinniah, A.; Chik, Z.; Alshawsh, M.A. Diosmetin exerts synergistic effects in combination with 5-fluorouracil in colorectal cancer cells. Biomedicines 2022, 10, 531. [Google Scholar] [CrossRef]
- Galot-Linaldi, J.; Hernández-Sánchez, K.M.; Estrada-Muñiz, E.; Vega, L. Anacardic Acids from Amphipterygium Adstringens Confer Cytoprotection against 5-Fluorouracil and Carboplatin Induced Blood Cell Toxicity While Increasing Antitumoral Activity and Survival in an Animal Model of Breast Cancer. Molecules 2021, 26, 3241. [Google Scholar] [CrossRef]
- VanderVeen, B.N.; Sougiannis, A.T.; Velazquez, K.T.; Carson, J.A.; Fan, D.; Murphy, E.A. The Acute Effects of 5 Fluorouracil on Skeletal Muscle Resident and Infiltrating Immune Cells in Mice. Front. Physiol. 2020, 11, e593468. [Google Scholar] [CrossRef]
- Hashemzehi, M.; Naghibzadeh, N.; Asgharzadeh, F.; Mostafapour, A.; Hassanian, S.M.; Ferns, G.A.; Cho, W.C.; Avan, A.; Khazaei, M. The Therapeutic Potential of Losartan in Lung Metastasis of Colorectal Cancer. EXCLI J. 2020, 19, 927–935. [Google Scholar] [CrossRef]
- Haemmerle, M.; Stone, R.L.; Menter, D.G.; Afshar-Kharghan, V.; Sood, A.K. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 2018, 33, 965–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Fang, J.; Jiao, D.; Liu, Z. Elevated Platelet Count Predicts Poor Prognosis in Breast Cancer Patients with Supraclavicular Lymph Node Metastasis. Cancer Manag. Res. 2020, 12, 6069–6075. [Google Scholar] [CrossRef] [PubMed]
- Sabrkhany, S.; Kuijpers, M.J.E.; Oude Egbrink, M.G.A.; Griffioen, A.W. Platelets as Messengers of Early-Stage Cancer. Cancer Metastasis Rev. 2021, 40, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Rong, L.; Jia, X.; Li, R.; Yu, B.; Hu, J.; Luo, X.; Badea, S.R.; Xu, C.; Fu, G.; et al. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat. Commun. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
Day | TGI | Hypothetical TGI |
---|---|---|
13 | 59.8 | 63.9 |
15 | 55.0 | 59.3 |
17 | 56.8 | 61.3 |
20 | 51.9 | 51.1 |
22 | 51.6 | 55.3 |
24 | 50.9 | 49.5* |
27 | 50.5 | 52.2 |
Group | ||||||
---|---|---|---|---|---|---|
Unit | Healthy Mice | Control | 5-FU | ISC | ISC + 5-FU | |
Leukocytes | [103/μL] | 5.9 ± 1.5 * | 216 ± 95 | 3.4 ± 1.6 * | 208 ± 89 | 4.9 ± 2.8 *,† |
Lymphocytes | % | 80.3 ± 5.4 * | 14.4 ± 3.6 | 85 ± 6.4 * | 17.3 ± 4.3 | 77.3 ± 8.1 *,† |
Monocytes | % | 4.4 ± 1 * | 7.5 ± 0.6 | 2.7 ± 1 * | 10.4 ± 0.9 * | 2.1 ± 0.4 *,† |
Granulocytes | % | 15.3 ± 6 * | 78.2 ± 4 | 12.2 ± 5.9 * | 72.3 ± 4.9 | 20.6 ± 7.8 *,† |
Erythrocytes | [106/μL] | 8.1 ± 1.4 | 8.7 ± 0.6 | 6.9 ± 1 * | 8.8 ± 0.5 | 6.3 ± 1 *,† |
Hemoglobin | [g/dL] | 13.8 ± 0.7 * | 18.6 ± 1.3 | 14.2 ± 2.7 * | 18.6 ± 1.1 | 12.8 ± 1.8 *,† |
Hematocrit | % | 39.2 ± 1.68 * | 46.4 ± 2.5 | 33.5 ± 5 * | 47.4 ± 3.5 | 30.4 ± 4.2 *,† |
MCV | [fL] | 48.3 ± 0.9 * | 53.3 ± 2.6 | 48.5 ± 0.7 * | 54 ± 1.6 | 48.7 ± 4.2 *,† |
Platelets | [103/μL] | 482.0 ± 26.8 | 680.0 ± 123.0 | 971.0 ± 243.0 | 770.0 ± 97.0 | 1512 ± 356 *,†,‡ |
Group | |||||
---|---|---|---|---|---|
Unit | Control | 5-FU | ISC | ISC + 5-FU | |
ALT | U/L | 27.0 ± 11.5 | 17.4 ± 3.2 | 23.2 ± 6 | 17.6 ± 2.9 |
AST | U/L | 159.5 ± 55.1 | 95.5 ± 27.6 | 154.9 ± 66.9 | 80.9 ± 15.9 †,* |
Creatinine | μmol/L | 6.5 ± 1.8 | 5.6 ± 2.9 | 6.5 ± 1.1 | 6.4 ± 2.1 |
Urea | mmol/L | 6.0 ± 0.5 | 6.7 ± 1.4 | 5.9 ± 1 | 6.4 ± 1.4 |
Creatinine kinase [CK] | U/L | 1137.7 ± 772.3 | 983.6 ± 448.6 | 1428.2 ± 1018.3 | 785.3 ± 248.5 |
CK-MB [myocardial CK] | U/L | 394.0 ± 171.9 | 271.6 ± 60.5 | 378.2 ± 109.8 | 234.5 ± 52.7 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milczarek, M.; Cierpiał, T.; Kiełbasiński, P.; Małecka-Giełdowska, M.; Świtalska, M.; Wietrzyk, J.; Mazur, M.; Wiktorska, K. An Organofluorine Isoselenocyanate Analogue of Sulforaphane Affects Antimetabolite 5-Fluorouracil’s Anticancer Activity: A Perspective for New Combinatory Therapy in Triple-Negative Breast Cancer. Molecules 2023, 28, 5808. https://doi.org/10.3390/molecules28155808
Milczarek M, Cierpiał T, Kiełbasiński P, Małecka-Giełdowska M, Świtalska M, Wietrzyk J, Mazur M, Wiktorska K. An Organofluorine Isoselenocyanate Analogue of Sulforaphane Affects Antimetabolite 5-Fluorouracil’s Anticancer Activity: A Perspective for New Combinatory Therapy in Triple-Negative Breast Cancer. Molecules. 2023; 28(15):5808. https://doi.org/10.3390/molecules28155808
Chicago/Turabian StyleMilczarek, Małgorzata, Tomasz Cierpiał, Piotr Kiełbasiński, Milena Małecka-Giełdowska, Marta Świtalska, Joanna Wietrzyk, Maciej Mazur, and Katarzyna Wiktorska. 2023. "An Organofluorine Isoselenocyanate Analogue of Sulforaphane Affects Antimetabolite 5-Fluorouracil’s Anticancer Activity: A Perspective for New Combinatory Therapy in Triple-Negative Breast Cancer" Molecules 28, no. 15: 5808. https://doi.org/10.3390/molecules28155808
APA StyleMilczarek, M., Cierpiał, T., Kiełbasiński, P., Małecka-Giełdowska, M., Świtalska, M., Wietrzyk, J., Mazur, M., & Wiktorska, K. (2023). An Organofluorine Isoselenocyanate Analogue of Sulforaphane Affects Antimetabolite 5-Fluorouracil’s Anticancer Activity: A Perspective for New Combinatory Therapy in Triple-Negative Breast Cancer. Molecules, 28(15), 5808. https://doi.org/10.3390/molecules28155808