Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yields of Essential Oils
2.2. Chemical Composition
Piper marginatum | ||||||||
---|---|---|---|---|---|---|---|---|
(SDE) | (HD) | (SD) | ||||||
Constituents | * IRL | ** IRC | L-St-Nov | L-St-Mar | s-Mar | L-St-Nov | L-St-Mar | L-St-Nov |
(2E)-Hexenal | 846 | 846 | 0.2 | |||||
α-Pinene | 932 | 932 | 1.9 | 3.3 | 2.1 | 0.4 | ||
Camphene | 946 | 946 | 0.2 | 0.1 | ||||
Sabinene | 969 | 969 | 1.2 | 2.2 | 0.5 | |||
β-Pinene | 974 | 974 | 1.8 | 0.4 | 0.5 | 1.8 | 0.2 | |
Myrcene | 988 | 988 | 1.6 | |||||
δ-3-Carene | 1008 | 1001 | 0.3 | 0.2 | ||||
δ-2-Carene | 1001 | 1008 | 0.9 | |||||
Limonene | 1024 | 1024 | 0.1 | 0.2 | 0.2 | 0.1 | ||
(Z)-β-Ocimene | 1032 | 1032 | 1.3 | 1.1 | 0.7 | 0.8 | ||
(E)-β-Ocimene | 1044 | 1044 | 2.4 | 2.4 | 1.4 | 1.5 | ||
Terpinolene | 1086 | 1083 | 0.1 | |||||
Linalool | 1095 | 1095 | 1.9 | 2.6 | 0. 2 | 0.9 | 0.1 | |
Allo-ocimene | 1128 | 1125 | 0.8 | 0.7 | 0.6 | 0.4 | ||
(E)-Pinocarveol | 1135 | 1135 | 0.1 | 0.1 | 0.04 | |||
(E)-Verbenol | 1140 | 1140 | 0.1 | 0.1 | 0.1 | |||
Camphor | 1141 | 1141 | 0.2 | |||||
Isoborneol | 1155 | 1155 | 0.1 | 0.1 | 0.04 | |||
p-Mentha-1.5-dien-8-ol | 1166 | 1166 | 0.1 | 0.1 | ||||
Naphthalene | 1178 | 1178 | 0.1 | 0.1 | ||||
Methyl chavicol | 1195 | 1195 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | |
(Z)-Anethole | 1249 | 1249 | 6.8 | 2.1 | 0.3 | 0.6 | 1.4 | 0.5 |
(E)-Anethole | 1282 | 1282 | 1.1 | 2.9 | 2.6 | 3.3 | 5.4 | 2.8 |
Safrole | 1285 | 1285 | 0.2 | 0.2 | ||||
δ-Elemene | 1335 | 1335 | 0.7 | 2.2 | 0.4 | 1.5 | 2.4 | 1.4 |
α-Cubebene | 1345 | 1345 | 0.1 | |||||
α-Ylangene | 1373 | 1363 | 0.3 | 0.1 | 0.4 | 0.3 | 0.3 | |
α-Copaene | 1374 | 1374 | 0.7 | 1.1 | 4.9 | 1.1 | 1.5 | 0.8 |
β-Bourbonene | 1387 | 1387 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
β-Cubebene | 1387 | 1387 | 1.1 | 0.2 | 1 | |||
β-Elemene | 1389 | 1389 | 0.8 | 0.9 | 0.9 | |||
Methyl eugenol | 1403 | 1403 | 0.2 | 0.03 | 0.2 | 0.1 | ||
β-Caryophyllene | 1417 | 1413 | 2 | 3.8 | 3.2 | 2.8 | 3.8 | 2.4 |
γ-Elemene | 1434 | 1425 | 1.2 | 0.1 | 0.4 | |||
β-Copaene | 1430 | 1430 | 0.5 | 0.5 | ||||
α-Guayene | 1437 | 1431 | 0.1 | 0.1 | ||||
Aromadendrene | 1439 | 1440 | 0.1 | 0.1 | 0.1 | |||
Isoosmorhizole | 1466 | 1452 | 24.5 | 15.2 | 1.6 | 13.1 | 14.2 | 14.8 |
Croweacin | 1457 | 1457 | 3.2 | 1.1 | 0.8 | 2.3 | 1.2 | 2.3 |
trans-Cadina-1 (6), 4-diene | 1475 | 1467 | 0.2 | |||||
γ-Gurjunene | 1475 | 1475 | 0.1 | 0.2 | 0.1 | |||
γ-Muurolene | 1478 | 1478 | 0.8 | 0.2 | 0.2 | 0.5 | 0.4 | |
Germacrene D | 1484 | 1484 | 0.2 | 0.3 | 0.2 | 0.2 | ||
β-Selinene | 1489 | 1489 | 0.7 | 0.2 | 0.7 | 0.1 | ||
(E)-Methyl-isoeugenol | 1491 | 1491 | 0.2 | 0.2 | 0.2 | |||
δ-Selinene | 1492 | 1492 | 0.5 | 0.6 | ||||
(E)-Muurola-4 (14),5-diene | 1493 | 1493 | 0.2 | 0.2 | ||||
Bicyclogermacrene | 1500 | 1500 | 0.7 | 2.4 | 1 | 1.3 | 2.5 | 1.4 |
α-Muurolene | 1500 | 1500 | 0.5 | 0.04 | 1 | 0.6 | 1 | |
β-Dihydro agarofuran | 1504 | 1503 | 0.1 | 1 | 0.1 | 0.2 | ||
(E)-Isoosmorhizole | 1517 | 1504 | 32.9 | 19.4 | 29.8 | 22.1 | 23.3 | 24.1 |
Cubebol | 1514 | 1508 | 0.3 | 0.3 | ||||
γ-Cadinene | 1513 | 1509 | 0.8 | |||||
δ-Cadinene | 1522 | 1513 | 0.5 | 0.6 | 0.8 | 0.7 | ||
2.4-Dimethoxybenzaldehyde | 1526 | 1522 | 0.1 | 0.1 | ||||
3,4-(Methylenedioxy)propiophenone | 1545 | 1523 | 0.1 | |||||
Elemicin | 1555 | 1555 | 0.9 | 0.7 | 0.8 | 0.8 | ||
Germacrene B | 1559 | 1559 | 0.1 | |||||
(E)-Nerol idol | 1561 | 1561 | 0.5 | 0.04 | 0.2 | 0.5 | 0.2 | |
(E)-Isoelemicin | 1568 | 1568 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | |
Spathulenol | 1577 | 1569 | 0.9 | 1.9 | 2.6 | 1.1 | 1.4 | 1.8 |
Junenol | 1618 | 1618 | 0.1 | 0.4 | 0.1 | |||
(Z)-Asarone | 1616 | 1619 | 0.1 | 0.3 | 0.6 | 0.1 | 0.6 | |
isomer-2-Methoxy-4.5-methylenedioxypropiophenone | 1635 | 1625 | 11.6 | 13.9 | 1.6 | 12.9 | 12.4 | 14.3 |
Exalatacin | 1655 | 1640 | 0.3 | 0.5 | ||||
β-Eudesmol | 1649 | 1647 | 0.8 | 1 | 0.6 | 1 | 0.9 | |
Selin-11-en-4α-ol | 1658 | 1658 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | |
Intermedeol | 1665 | 1659 | 0.2 | 0.4 | ||||
(E)-Asarone | 1675 | 1675 | 1 | 1.4 | 1.8 | 1.9 | 1.3 | 1.9 |
2-Methoxy-4,5-(methylenedioxy)-propiophenone | 1713 | 1700 | 9.5 | 9 | 19.9 | 16.3 | 12.7 | 18.8 |
Monoterpene hydrocarbons | 3.4 | 10.9 | 13 | 7.8 | 5.1 | 0.1 | ||
Oxygenated monoterpenes | 0 | 0.4 | 0.3 | 0.3 | 0.18 | 0 | ||
Hydrocarbon sesquiterpenes | 4.9 | 14.7 | 12.24 | 12.1 | 14.1 | 11.5 | ||
Oxygenated sequiterpenes | 0.9 | 3.6 | 5.34 | 2.6 | 3.2 | 4 | ||
Arylpropanoids | 0 | 0 | 0 | 0.3 | 0 | 0.5 | ||
Phenylalkanoids | 21.1 | 22.9 | 21.5 | 29.2 | 25.1 | 33.1 | ||
Phenylpropanoids | 69.5 | 44.1 | 37.93 | 44.9 | 48.3 | 48.2 | ||
Others | 0 | 0.1 | 0.1 | 0 | 0 | 0 | ||
Total | 99.8 | 96.6 | 90.51 | 97.2 | 95.98 | 97.4 |
Multivariate Analysis
2.3. Antioxidant Activity
2.4. Preliminary Toxicity
2.5. Analysis of the Interactions of Major Compounds with AChE
2.5.1. Molecular Docking Analysis
2.5.2. Molecular Dynamics Analysis (MDA)
2.5.3. Protein—Ligand Interactions
3. Materials and Methods
3.1. Collection of Botanical Material
3.2. Determination of Residual Moisture
3.3. Essential Oil Extraction
3.3.1. Hydrodistillation
3.3.2. Distillation and Simultaneous Extraction
3.3.3. Steam Distillation
3.4. Identification of Chemical Constituents
3.5. Antioxidant Potential
3.6. Determination of Preliminary Toxicity in Artemia salina Leach
3.7. In Silico Analysis (Molecular Docking and Molecular Dynamics)
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Van Wyk, B.-E. A Review of African Medicinal and Aromatic Plants. In Medicinal and Aromatic Plants of the World; Neffati, M., Najjaa, H., Máthé, Á., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 3, pp. 19–60. ISBN 978-9-40241-119-5. [Google Scholar]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Santana de Oliveira, M.; da Cruz, J.N.; Almeida da Costa, W.; Silva, S.G.; Brito, M.d.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna Guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of Its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, O.O.; Cruz, J.N.; de Moraes, Â.A.B.; Franco, C.d.J.P.; Lima, R.R.; Dos Anjos, T.O.; Siqueira, G.M.; Do Nascimento, L.D.; Cascaes, M.M.; de Oliveira, M.S.; et al. Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. Molecules 2022, 27, 4373. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Cascaes, M.M.; Silva, S.G.; Cruz, J.N.; Santana de Oliveira, M.; Oliveira, J.; de Moraes, A.A.B.; da Costa, F.A.M.; da Costa, K.S.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. First Report on the Annona exsucca DC. Essential Oil and in Silico Identification of Potential Biological Targets of Its Major Compounds. Nat. Prod. Res. 2021, 35, 4009–4012. [Google Scholar] [CrossRef]
- Mesquita, K.d.S.M.; Feitosa, B.d.S.; Cruz, J.N.; Ferreira, O.O.; Franco, C.d.J.P.; Cascaes, M.M.; de Oliveira, M.S.; Andrade, E.H.d.A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link Var. circinnata (Piperaceae) in Artemia salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Dima, C.; Dima, S. Essential Oils in Foods: Extraction, Stabilization, and Toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Lija-Escaline, J.; Senthil-Nathan, S.; Thanigaivel, A.; Pradeepa, V.; Vasantha-Srinivasan, P.; Ponsankar, A.; Edwin, E.S.; Selin-Rani, S.; Abdel-Megeed, A. Physiological and Biochemical Effects of Botanical Extract from Piper nigrum Linn (Piperaceae) against the Dengue Vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol. Res. 2015, 114, 4239–4249. [Google Scholar] [CrossRef]
- Qasim Barkat, M.; Khalid Mahmood, H. Phytochemical and Antioxidant Screening of Zingiber Officinale, Piper Nigrum, Rutag Raveolanes and Carum Carvi and Their Effect on Gastrointestinal Tract Activity. Matrix Sci. Medica 2018, 2, 9–13. [Google Scholar] [CrossRef]
- Dey, P.; Goyary, D.; Chattopadhyay, P.; Kishor, S.; Karmakar, S.; Verma, A. Evaluation of Larvicidal Activity of Piper longum Leaf against the Dengue Vector, Aedes aegypti, Malarial Vector, Anopheles stephensi and Filariasis Vector, Culex quinquefasciatus. S. Afr. J. Bot. 2020, 132, 482–490. [Google Scholar] [CrossRef]
- Gonçalves, R.; dos Santos Ayres, V.F.; Magalhães, L.G.; Miller Crotti, A.E.; Corrêa, G.M.; Guimarães, A.C.; Takeara, R. Chemical Composition and Schistosomicidal Activity of Essential Oils of Two Piper Species from the Amazon Region. J. Essent. Oil-Bear. Plants 2019, 22, 811–820. [Google Scholar] [CrossRef]
- Khani, M.; Awang, R.M.; Omar, D. Bioactivity Effect of Piper nigrum L. and Jatropha curcas L. Extracts Against Corcyra Cephalonica [Stainton]. Agrotechnology 2012, 2, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Dutra, K.A.; Wanderley Teixeira, V.; Cruz, G.S.; Silva, C.T.S.; D’Assunção, C.G.; Ferreira, C.G.M.; Monteiro, A.L.B.; Agra Neto, A.C.; Lapa Neto, C.J.C.; Teixeira, A.A.C.; et al. Morphological and Immunohistochemical Study of the Midgut and Fat Body of Spodoptera Frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) Treated with Essential Oils of the Genus Piper. Biotech. Histochem. 2019, 94, 498–513. [Google Scholar] [CrossRef]
- Sequeda-castañeda, L.G.; Célis, C.; Gutiérrez, S.; Gamboa, F. Piper marginatum Jacq. (Piperaceae): Phytochemical, Therapeutic, Botanical Insecticidal and Phytosanitary Uses. Pharmacol. Online 2015, 3, 136–145. [Google Scholar]
- Almeida, C.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Roseo De Oliveira, M.; Rodrigues, I.A.; Bizzo, H.R.; Gama, P.E.; Alviano, D.S.; Alviano, C.S. Piper Essential Oils Inhibit Rhizopus Oryzae Growth, Biofilm Formation, and Rhizopuspepsin Activity. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5295619. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Rashid, M.; Mahmood, T.; Fatima, N. Efficient Regeneration and Antioxidant Potential in Regenerated Tissues of Piper nigrum L. Plant Cell Tissue Organ Cult. 2010, 102, 129–134. [Google Scholar] [CrossRef]
- Brú, J.; Guzman, J.D. Folk Medicine, Phytochemistry and Pharmacological Application of Piper marginatum. Rev. Bras. Farmacogn. 2016, 26, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Prakash, B.; Mishra, P.K.; Kedia, A.; Dubey, N.K. Antifungal, Antiaflatoxin and Antioxidant Potential of Chemically Characterized Boswellia Carterii Birdw Essential Oil and Its Invivo Practical Applicability in Preservation of Piper nigrum L. Fruits. LWT—Food Sci. Technol. 2014, 56, 240–247. [Google Scholar] [CrossRef]
- Jaramillo-Colorado, B.E.; Pino-Benitez, N.; González-Coloma, A. Volatile Composition and Biocidal (Antifeedant and Phytotoxic) Activity of the Essential Oils of Four Piperaceae Species from Choco-Colombia. Ind. Crops Prod. 2019, 138, 111463. [Google Scholar] [CrossRef]
- Huong, L.T.; Hung, N.H.; Dai, D.N.; Tai, T.A.; Hien, V.T.; Satyal, P.; Setzer, W.N. Chemical Compositions and Mosquito Larvicidal Activities of Essential Oils from Piper Species Growing Wild in Central Vietnam. Molecules 2019, 24, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rout, S.; Tambe, S.; Deshmukh, R.K.; Mali, S.; Cruz, J.; Srivastav, P.P.; Amin, P.D.; Gaikwad, K.K.; Andrade, E.H.d.A.; de Oliveira, M.S. Recent Trends in the Application of Essential Oils: The next Generation of Food Preservation and Food Packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- Andrade, E.H.A.; Carreira, L.M.M.; da Silva, M.H.L.; da Silva, J.D.; Bastos, C.N.; Sousa, P.J.C.; Guimarães, E.F.; Maia, J.G.S. Variability in Essential-Oil Composition of Piper marginatum Sensu Lato. Chem. Biodivers. 2008, 5, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Ayres, V.F.S.; Oliveira, M.R.; Baldin, E.L.L.; Corrêa, G.M.; Guimarães, A.C.; Takeara, R. Chemical Composition and Insecticidal Activity of the Essential Oils of Piper marginatum, Piper callosum and Vitex agnus-castus. An. Acad. Bras. Cienc. 2021, 93. [Google Scholar] [CrossRef]
- Autran, E.; Neves, I.; Dasilva, C.; Santos, G.; Camara, C.; Navarro, D. Chemical Composition, Oviposition Deterrent and Larvicidal Activities against Aedes aegypti of Essential Oils from Piper marginatum Jacq. (Piperaceae). Bioresour. Technol. 2009, 100, 2284–2288. [Google Scholar] [CrossRef]
- Peixoto, M.G.; Bacci, L.; Fitzgerald Blank, A.; Araújo, A.P.A.; Alves, P.B.; Silva, J.H.S.; Santos, A.A.; Oliveira, A.P.; da Costa, A.S.; de Fátima Arrigoni-Blank, M. Toxicity and Repellency of Essential Oils of Lippia Alba Chemotypes and Their Major Monoterpenes against Stored Grain Insects. Ind. Crops Prod. 2015, 71, 31–36. [Google Scholar] [CrossRef]
- Ntungwe, N.E.; Domínguez-Martín, E.M.; Roberto, A.; Tavares, J.; Isca, V.M.S.; Pereira, P.; Cebola, M.-J.; Rijo, P. Artemia Species: An Important Tool to Screen General Toxicity Samples. Curr. Pharm. Des. 2020, 26, 2892–2908. [Google Scholar] [CrossRef]
- Ribeiro, I.A.T.A.; Sá, J.L.F.; Lima, M.V.; Veras, S.T.S.; Aguiar, J.C.R.O.F.; Aires, A.L.; Albuquerque, M.C.P.A.; da Silva, M.V.; Melo, A.M.M.A.; Navarro, D.M.A.F.; et al. Toxic Effect of Croton rudolphianus Leaf Essential Oil against Biomphalaria glabrata, Schistosoma mansoni Cercariae and Artemia salina. Acta Trop. 2021, 223, 106102. [Google Scholar] [CrossRef]
- Rasyid, M.I.; Yuliani, H.; Triandita, N.; Angraeni, L.; Anggriawin, M. Toxicity Test of Laban Fruits (Vitex pinnata Linn) by Using Brine Shrimp Lethality Test (BSLT) Methode. IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012051. [Google Scholar] [CrossRef]
- Aksono, E.B.; Latifah, A.C.; Suwanti, L.T.; Haq, K.U.; Pertiwi, H. Clove Flower Extract (Syzygium aromaticum) Has Anticancer Potential Effect Analyzed by Molecular Docking and Brine Shrimp Lethality Test (BSLT). Vet. Med. Int. 2022, 2022, 5113742. [Google Scholar] [CrossRef]
- Lima, L.R.; Andrade, F.K.; Alves, D.R.; de Morais, S.M.; Vieira, R.S. Anti-Acetylcholinesterase and Toxicity against Artemia salina of Chitosan Microparticles Loaded with Essential Oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. Int. J. Biol. Macromol. 2021, 167, 1361–1370. [Google Scholar] [CrossRef]
- Cruz-Castillo, A.U.; Rodríguez-Valdez, L.M.; Correa-Basurto, J.; Nogueda-Torres, B.; Andrade-Ochoa, S.; Nevárez-Moorillón, G.V. Terpenic Constituents of Essential Oils with Larvicidal Activity against Aedes Aegypti: A QSAR and Docking Molecular Study. Molecules 2023, 28, 2454. [Google Scholar] [CrossRef]
- da Costa, L.S.; de Moraes, Â.A.B.; Cruz, J.N.; Mali, S.N.; Almeida, L.Q.; do Nascimento, L.D.; Ferreira, O.O.; Varela, E.L.P.; Percário, S.; de Oliveira, M.S.; et al. First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study. Antioxidants 2022, 11, 2410. [Google Scholar] [CrossRef]
- dos Santos, V.M.R.; DaCosta, J.B.N.; Sant’Anna, C.M.R.; Oliveira, M.C.C. Synthesis, Characterization, Molecular Modeling and Biological Activity Against Artemia salina of New Symmetrical Bisphosphoramidates. Phosphorus. Sulfur. Silicon Relat. Elem. 2004, 179, 173–184. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Swathy, K.; Shivakumar, M.S. Stability of Insecticidal Molecule Aucubin and Their Toxicity on Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus and Artemia salina. Int. J. Trop. Insect Sci. 2022, 42, 3403–3417. [Google Scholar] [CrossRef]
- dos Santos, V.M.R.; Sant’Anna, C.M.R.; Moya Borja, G.E.; Chaaban, A.; Côrtes, W.S.; DaCosta, J.B.N. New Bisphosphorothioates and Bisphosphoroamidates: Synthesis, Molecular Modeling and Determination of Insecticide and Toxicological Profile. Bioorg. Chem. 2007, 35, 68–81. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; Pereira da Silva, V.M.; Cantão Freitas, L.; Gomes Silva, S.; Nevez Cruz, J.; Aguiar Andrade, E.H. Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chem. Biodivers. 2021, 18, e2000982. [Google Scholar] [CrossRef]
- Palareti, G.; Legnani, C.; Cosmi, B.; Antonucci, E.; Erba, N.; Poli, D.; Testa, S.; Tosetto, A. Comparison between Different D-Dimer Cutoff Values to Assess the Individual Risk of Recurrent Venous Thromboembolism: Analysis of Results Obtained in the DULCIS Study. Int. J. Lab. Hematol. 2016, 38, 42–49. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Moraes, M.M.; da Silva, T.M.G.; da Silva, R.R.; Ramos, C.S.; da Camara, C.A.G. Circadian Variation of Essential Oil from Piper marginatum Jacq. Bol. Latinoam. Caribe Plantas Med. Aromat. 2014, 13, 270–277. [Google Scholar]
- Costa, J.G.M.; Santos, P.F.; Brito, S.A.; Rodrigues, F.F.G. Composição Química e Toxicidade de Óleos Essenciais de Espécies de Piper Frente a Larvas de Aedes aegypti L. (Diptera: Culicidae). Lat. Am. J. Pharm. 2010, 29, 2383. [Google Scholar]
- Santana, H.; Trindade, F.; Stabeli, R.; Silva, A.; Militão, J.; Facundo, V. Essential Oils of Leaves of Piper Species Display Larvicidal Activity against the Dengue Vector, Aedes aegypti (Diptera: Culicidae). Rev. Bras. Plantas Med. 2015, 17, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, F.B.; Lima, R.A.; Teixeira, L.F.; Silva, I.C.; Bay, M.B.; Azevedo, M.S.; Facundo, V.A. Antioxidant Activity and Characterization of the Essential Oil from the Roots of Piper marginatum Jacq. Ciência. Nat. 2016, 38, 1504. [Google Scholar] [CrossRef] [Green Version]
- Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal Activity of Piper Essential Oils from the Amazon Against the Fire Ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop. Entomol. 2012, 41, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Dutra, K.; Wanderley-Teixeira, V.; Guedes, C.; Cruz, G.; Navarro, D.; Monteiro, A.; Agra, A.; Lapa Neto, C.; Teixeira, Á. Toxicity of Essential Oils of Leaves of Plants from the Genus Piper with Influence on the Nutritional Parameters of Spodoptera Frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). J. Essent. Oil-Bear. Plants 2020, 23, 213–229. [Google Scholar] [CrossRef]
- Ribeiro, N.; Camara, C.; Ramos, C. Toxicity of Essential Oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chil. J. Agric. Res. 2016, 76, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.K.R.; Silva, N.N.S.; Santana, J.F.S.; Andrade, E.H.A.; Maia, J.G.S.; Setzer, W.N. Phenylpropanoid-Rich Essential Oils of Piper Species from the Amazon and Their Antifungal and Anti-Cholinesterase Activities. Nat. Prod. Commun. 2016, 11, 1907–1911. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Adams, R.P., Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1-93-263321-9. [Google Scholar]
- Stein, S.; Mirokhin, D.; Tchekhovskoi, D.; Mallard, G.; Mikaia, A.; Zaikin, V.; Sparkmanm, D. The NIST Mass Spectral Search Program for the Nist/Epa/Nih Mass Spectra Library; Standard Reference Data Program of the National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- Chaves, R.d.S.B.; Martins, R.L.; Rodrigues, A.B.L.; Rabelo, É.d.M.; Farias, A.L.F.; Brandão, L.B.; Santos, L.L.; Galardo, A.K.R.; de Almeida, S.S.M.d.S. Evaluation of Larvicidal Potential against Larvae of Aedes aegypti (Linnaeus, 1762) and of the Antimicrobial Activity of Essential Oil Obtained from the Leaves of Origanum majorana L. PLoS ONE 2020, 15, e0235740. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Do Nascimento, J.C.; David, J.M.; Barbosa, L.C.; De Paula, V.F.; Demuner, A.J.; David, J.P.; Conserva, L.M.; Ferreira, J.C.; Guimarães, E.F. Larvicidal Activities and Chemical Composition of Essential Oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag. Sci. 2013, 69, 1267–1271. [Google Scholar] [CrossRef]
- Madrid, A.; Espinoza, L.; Pavéz, C.; Carrasco, H.; Hidalgo, M.E. Antioxidant and Toxicity Activity In Vitro of Twelve Safrole Derivatives. J. Chil. Chem. Soc. 2014, 59, 2598–2601. [Google Scholar] [CrossRef] [Green Version]
- An, C.-Y.; Li, X.-M.; Luo, H.; Li, C.-S.; Wang, M.-H.; Xu, G.-M.; Wang, B.-G. 4-Phenyl-3,4-Dihydroquinolone Derivatives from Aspergillus Nidulans MA-143, an Endophytic Fungus Isolated from the Mangrove Plant Rhizophora Stylosa. J. Nat. Prod. 2013, 76, 1896–1901. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Neves da Cruz, J.; de Jesus Pereira Franco, C.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; de Aguiar Andrade, E.H. First Report on Yield and Chemical Composition of Essential Oil Extracted from Myrcia Eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.S.; Cruz, J.N.; Ferreira, O.O.; Pereira, D.S.; Pereira, N.S.; Oliveira, M.E.C.; Venturieri, G.C.; Guilhon, G.M.S.P.; Souza Filho, A.P.d.S.; Andrade, E.H.d.A. Chemical Composition of Volatile Compounds in Apis Mellifera Propolis from the Northeast Region of Pará State, Brazil. Molecules 2021, 26, 3462. [Google Scholar] [CrossRef]
- Franco, C.D.; Ferreira, O.O.; Cruz, J.N.; Varela, E.L.; de Moraes, Â.A.; Nascimento, L.D.; Cascaes, M.M.; Souza Filho, A.P.; Lima, R.R.; Percário, S.; et al. Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goteanus (Myrtaceae) Specimens, and in Silico Study. Molecules 2022, 27, 4678. [Google Scholar] [CrossRef]
- de Moraes, Â.A.B.; Ferreira, O.O.; da Costa, L.S.; Almeida, L.Q.; Varela, E.L.P.; Cascaes, M.M.; de Jesus Pereira Franco, C.; Percário, S.; do Nascimento, L.D.; de Oliveira, M.S.; et al. Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West Ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants 2022, 11, 2076. [Google Scholar] [CrossRef]
- Karakoti, H.; Mahawer, S.K.; Tewari, M.; Kumar, R.; Prakash, O.; de Oliveira, M.S.; Rawat, D.S. Phytochemical Profile, In Vitro Bioactivity Evaluation, In Silico Molecular Docking and ADMET Study of Essential Oils of Three Vitex Species Grown in Tarai Region of Uttarakhand. Antioxidants 2022, 11, 1911. [Google Scholar] [CrossRef]
- Song, W.; Xu, Z.; Gao, P.; Liu, X. Chemical Composition and In Vitro Antioxidant Activity and Anti-Acetylcholinesterase Activity of Essential Oils from Tadehagi triquetrum (L.) Ohashi. Molecules 2023, 28, 2734. [Google Scholar] [CrossRef]
- Assis, A.; Brito, V.; Bittencourt, M.; Silva, L.; Oliveira, F.; Oliveira, R. Essential Oils Composition of Four Piper Species from Brazil. J. Essent. Oil Res. 2013, 25, 203–209. [Google Scholar] [CrossRef]
- Cansian, R.L.; Vanin, A.B.; Orlando, T.; Piazza, S.P.; Puton, B.M.S.; Cardoso, R.I.; Gonçalves, I.L.; Honaiser, T.C.; Paroul, N.; Oliveira, D. Toxicity of Clove Essential Oil and Its Ester Eugenyl Acetate against Artemia salina. Braz. J. Biol. 2017, 77, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. Lapachol: An Overview. Arkivoc 2007, 2007, 145–171. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision 16.A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, Synthesis, Antimicrobial Activity and Computational Studies of Novel Azo Linked Substituted Benzimidazole, Benzoxazole and Benzothiazole Derivatives. Comput. Biol. Chem. 2019, 78, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.N.; Pandey, A. Synthesis of New Hydrazones Using a Biodegradable Catalyst, Their Biological Evaluations and Molecular Modeling Studies (Part-II). J. Comput. Biophys. Chem. 2022, 21, 857–882. [Google Scholar] [CrossRef]
- Chow, E.; Rendleman, C.A.; Bowers, K.J.; Dror, R.O.; Hughes, D.H.; Gullingsrud, J.; Sacerdoti, F.D.; Shaw, D.E. Desmond Performance on a Cluster of Multicore Processors. Simulation 2008, 2, 1–14. [Google Scholar]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies Using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef] [Green Version]
- Mali, S.N.; Pandey, A. Molecular Modeling Studies on 2,4-Disubstituted Imidazopyridines as Anti-Malarials: Atom-Based 3D-QSAR, Molecular Docking, Virtual Screening, In-Silico ADMET and Theoretical Analysis. J. Comput. Biophys. Chem. 2021, 20, 267–282. [Google Scholar] [CrossRef]
Piper marginatum | |||
---|---|---|---|
HD | SD | ||
L-St-Nov | L-St-Mar | L-St-Nov | |
Mass EO (g) | 0.59 | 0.66 | 0.53 |
* Yields (%) | 1.66 | 1.83 | 1.49 |
Moisture (%) | 11.1 | 9.0 | 11.1 |
Sample | Concentration (µg·mL−1) | Inhibition (%) |
---|---|---|
Trolox | 10 | 84.6 ± 1.8 |
5 | 53.4 ± 2.0 | |
2.5 | 29.8 ± 1.9 | |
1 | 12.2 ± 3.6 |
Sample (EO) | Inhibition | mg TE·mL−1 |
---|---|---|
Pm-SD-L-St-Nov | 31.2 ± 1.5 | 84.9 ± 4.0 |
Pm-HD-L-St-Nov | 49.8 ± 3.0 | 135.3 ± 8.2 |
Pm-HD-L-St-Mar | 46.7 ± 4.5 | 126.8 ± 12.3 |
Sample | Concentration (µg·mL−1) | Mortality (%) | R2 | LC50 (µg·mL−1) |
---|---|---|---|---|
Lapachol | 50 | 100 | (µg·mL−1) | |
25 | 66.7 | |||
10 | 3.3 | 0.93 | 21.2 ± 2.2 | |
5 | 0 | |||
Pm-SD-L-St-Nov | 50 | 100 | ||
25 | 86.6 | 1 | 17.47 ± 0.33 | |
10 | 10 | |||
5 | 0 | |||
Pm-HD-L-St-Nov | 50 | 100 | ||
25 | 83.3 | 1 | 17.33 ± 0.53 | |
10 | 16.6 | |||
5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feitosa, B.d.S.; Ferreira, O.O.; Mali, S.N.; Anand, A.; Cruz, J.N.; Franco, C.d.J.P.; Mahawer, S.K.; Kumar, R.; Cascaes, M.M.; Oliveira, M.S.d.; et al. Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study. Molecules 2023, 28, 5814. https://doi.org/10.3390/molecules28155814
Feitosa BdS, Ferreira OO, Mali SN, Anand A, Cruz JN, Franco CdJP, Mahawer SK, Kumar R, Cascaes MM, Oliveira MSd, et al. Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study. Molecules. 2023; 28(15):5814. https://doi.org/10.3390/molecules28155814
Chicago/Turabian StyleFeitosa, Bruna de Souza, Oberdan Oliveira Ferreira, Suraj N. Mali, Amit Anand, Jorddy Nevez Cruz, Celeste de Jesus Pereira Franco, Sonu Kumar Mahawer, Ravendra Kumar, Marcia Moraes Cascaes, Mozaniel Santana de Oliveira, and et al. 2023. "Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study" Molecules 28, no. 15: 5814. https://doi.org/10.3390/molecules28155814
APA StyleFeitosa, B. d. S., Ferreira, O. O., Mali, S. N., Anand, A., Cruz, J. N., Franco, C. d. J. P., Mahawer, S. K., Kumar, R., Cascaes, M. M., Oliveira, M. S. d., & Andrade, E. H. d. A. (2023). Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study. Molecules, 28(15), 5814. https://doi.org/10.3390/molecules28155814