Observation of Two-Step Spin Transition in Graphene Oxide-Based Hybrids with Iron(II) 4-amino-1,2,4-triazole Spin Crossover Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Synthetic Aspects
2.2. XPS Studies
2.3. Magnetic Measurements
2.4. Raman Studies
3. Experimental Section
3.1. Materials–Instrumentation–Physical Measurements
3.2. Preparation of Nanoparticles NP4, NP5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hayami, S.; Holmes, S.M.; Halcrow, M.A. Spin-state switches in molecular materials chemistry. J. Mater. Chem. C 2015, 3, 7775–7778. [Google Scholar] [CrossRef]
- Gutlich, P.; Gaspar, A.B.; Garcia, Y. Spin state switching in iron coordination compounds. Beilstein. J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bousseksou, A.; Molnar, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.S.; Oshio, H.; Real, J.A. Spin-Crossover Complexes. Eur. J. Inorg. Chem. 2013, 5–6, 577–580. [Google Scholar] [CrossRef]
- Lefter, C.; Davesne, V.; Salmon, L.; Molnár, G.; Demont, P.; Rotaru, A.; Bousseksou, A. Charge Transport and Electrical Properties of Spin Crossover Materials: Towards Nanoelectronic and Spintronic Devices. Magnetochemistry 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Aragones, A.C.; Aravena, D.; Valverde-Munoz, F.J.; Real, J.A.; Sanz, F.; Diez-Perez, I.; Ruiz, E. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices. J. Am. Chem. Soc. 2017, 139, 5768–5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prins, F.; Monrabal-Capilla, M.; Osorio, E.A.; Coronado, E.; van der Zant, H.S.J. Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Adv. Mater. 2011, 23, 1545–1549. [Google Scholar] [CrossRef]
- Zhang, X.; Palamarciuc, T.; Letard, J.F.; Rosa, P.; Lozada, E.V.; Torres, F.; Rosa, L.G.; Doudin, B.; Dowben, P.A. The spin state of a molecular adsorbate driven by the ferroelectric substrate polarization. Chem. Commun. 2014, 50, 2255–2257. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S.; Ruben, M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 2017, 346, 176–205. [Google Scholar] [CrossRef]
- Martinho, P.N.; Rajnak, C.; Ruben, M. Spin-Crossover Materials: Properties and Applications, 1st ed.; Halcrow, M.A., Ed.; John Wiley & Sons: Chichester, UK, 2013; p. 375. [Google Scholar]
- Salmon, L.; Catala, L. Spin-crossover nanoparticles and nanocomposite materials. Cr. Chim. 2018, 21, 1230–1269. [Google Scholar] [CrossRef]
- Coronado, E.; Galan-Mascaros, J.R.; Monrabal-Capilla, M.; Garcia-Martinez, J.; Pardo-Ibanez, P. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature. Adv. Mater. 2007, 19, 1359. [Google Scholar] [CrossRef]
- Bartual-Murgui, C.; Natividad, E.; Roubeau, O. Critical assessment of the nature and properties of Fe(II) triazole-based spin-crossover nanoparticles. J. Mater. Chem. C 2015, 3, 7916–7924. [Google Scholar] [CrossRef]
- Moulet, L.; Daro, N.; Etrillard, C.; Létard, J.-F.; Grosjean, A.; Guionneau, P. Rational Control of Spin-Crossover Particle Sizes: From Nano- to Micro-Rods of [Fe(Htrz)2(trz)](BF4). Magnetochemistry 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Marques, M.; de Larrea, M.L.G.S.; Coronado, E. Unravelling the chemical design of spin-crossover nanoparticles based on iron(II)-triazole coordination polymers: Towards a control of the spin transition. J. Mater. Chem. C 2015, 3, 7946–7953. [Google Scholar] [CrossRef] [Green Version]
- Galan-Mascaros, J.R.; Coronado, E.; Forment-Aliaga, A.; Monrabal-Capilla, M.; Pinilla-Cienfuegos, E.; Ceolin, M. Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles. Inorg. Chem. 2010, 49, 5706–5714. [Google Scholar] [CrossRef]
- Titos-Padilla, S.; Herrera, J.M.; Chen, X.W.; Delgado, J.J.; Colacio, E. Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angew. Chem. Int. Edit. 2011, 50, 3290–3293. [Google Scholar] [CrossRef]
- Herrera, J.M.; Titos-Padilla, S.; Pope, S.J.A.; Berlanga, I.; Zamora, F.; Delgado, J.J.; Kamenev, K.V.; Wang, X.; Prescimone, A.; Brechin, E.K.; et al. Studies on bifunctional Fe(II)-triazole spin crossover nanoparticles: Time-dependent luminescence, surface grafting and the effect of a silica shell and hydrostatic pressure on the magnetic properties. J. Mater. Chem. C 2015, 3, 7819–7829. [Google Scholar] [CrossRef] [Green Version]
- Rat, S.; Piedrahita-Bello, M.; Salmon, L.; Molnar, G.; Demont, P.; Bousseksou, A. Coupling Mechanical and Electrical Properties in Spin Crossover Polymer Composites. Adv. Mater. 2018, 30, 1705275. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita-Bello, M.; Ridier, K.; Mikolasek, M.; Molnar, G.; Nicolazzi, W.; Salmon, L.; Bousseksou, A. Drastic lattice softening in mixed triazole ligand iron(ii) spin crossover nanoparticles. Chem. Commun. 2019, 55, 4769–4772. [Google Scholar] [CrossRef]
- Torres-Cavanillas, R.; Lima-Moya, L.; Tichelaar, F.D.; Zandbergen, H.W.; Gimenez-Marques, M.; Coronado, E. Downsizing of robust Fe-triazole@SiO2 spin-crossover nanoparticles with ultrathin shells. Dalton Trans. 2019, 48, 15465–15469. [Google Scholar] [CrossRef]
- Gkolfi, P.; Tsivaka, D.; Tsougos, I.; Vassiou, K.; Malina, O.; Polaskova, M.; Polyzou, C.D.; Chasapis, C.T.; Tangoulis, V. A facile approach to prepare silica hybrid, spin-crossover water-soluble nanoparticles as potential candidates for thermally responsive MRI agents. Dalton Trans. 2021, 50, 13227. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Gkolfi, P.; Chasapis, C.T.; Bekiari, V.; Zianna, A.; Psomas, G.; Ondrej, M.; Tangoulis, V. Stimuli-responsive spin crossover nanoparticles for drug delivery and DNA-binding studies. Dalton Trans. 2022, 51, 12427–12431. [Google Scholar] [CrossRef] [PubMed]
- Forestier, T.; Kaiba, A.; Pechev, S.; Denux, D.; Guionneau, P.; Etrillard, C.; Daro, N.; Freysz, E.; Letard, J.F. Nanoparticles of [Fe(NH2-trz)3]Br2·3H2O (NH2-trz=2-Amino-1,2,4-triazole) Prepared by the Reverse Micelle Technique: Influence of Particle and Coherent Domain Sizes on Spin-Crossover Properties. Chem. Eur. J. 2009, 15, 6122–6130. [Google Scholar] [CrossRef]
- Forestier, T.; Mornet, S.; Daro, N.; Nishihara, T.; Mouri, S.; Tanaka, K.; Fouche, O.; Freysz, E.; Letard, J.F. Nanoparticles of iron(II) spin-crossover. Chem. Comm. 2008, 36, 4327–4329. [Google Scholar] [CrossRef]
- Rotaru, A.; Varret, F.; Gindulescu, A.; Linares, J.; Stancu, A.; Letard, J.F.; Forestier, T.; Etrillard, C. Size effect in spin-crossover systems investigated by FORC measurements, for surfacted [Fe(NH2-trz)(3)](Br)(2)center dot 3H(2)O nanoparticles: Reversible contributions and critical size. Eur. Phys. J. B 2011, 84, 439–449. [Google Scholar] [CrossRef]
- Lalioti, N.; Giannopoulou, E.; Charitos, A.; Parthenios, J.; Malina, O.; Polaskova, M.; Kalarakis, A.; Tangoulis, V. Observation of two-step spin transition in iron(ii) 4-amino-1,2,4-triazole based spin crossover nanoparticles. Dalton Trans. 2023, 52, 2937–2941. [Google Scholar] [CrossRef]
- Mandal, P.; Giri, R.P.; Murphy, B.M.; Ghosh, S.K. Self-Assembly of Graphene Oxide Nanoflakes in a Lipid Monolayer at the Air-Water Interface. Acs. Appl. Mater. Inter. 2021, 13, 57023–57035. [Google Scholar] [CrossRef] [PubMed]
- Sekimoto, Y.; Ohtani, R.; Nakamura, M.; Koinuma, M.; Lindoy, L.F.; Hayami, S. Tuneable pressure effects in graphene oxide layers. Sci. Rep. 2017, 7, 12159. [Google Scholar] [CrossRef] [Green Version]
- Qiu, D.; Ren, D.H.; Gu, L.; Sun, X.L.; Qu, T.T.; Gu, Z.G.; Li, Z.J. Spin crossover-graphene nanocomposites: Facile syntheses, characterization, and magnetic properties. Rsc. Adv. 2014, 4, 31323–31327. [Google Scholar] [CrossRef]
- Grosjean, A.; Daro, N.; Kauffmann, B.; Kaiba, A.; Letard, J.F.; Guionneau, P. The 1-D polymeric structure of the [Fe(NH2trz)3](NO3)2.nH2O (with n = 2) spin crossover compound proven by single crystal investigations. Chem. Commun. 2011, 47, 12382–12384. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Xu, Y.H.; Liu, Z.; Yang, W.R.; Liu, J.Q. A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC Adv. 2015, 5, 54275–54282. [Google Scholar] [CrossRef]
- Neville, S.M.; Leita, B.A.; Halder, G.J.; Kepert, C.J.; Moubaraki, B.; Letard, J.F.; Murray, K.S. Understanding the Two-Step Spin-Transition Phenomenon in Iron(II) 1D Chain Materials. Chem. Eur. J. 2008, 14, 10123–10133. [Google Scholar] [CrossRef] [PubMed]
- Dirtu, M.M.; Schmit, F.; Naik, A.D.; Rusu, I.; Rotaru, A.; Rackwitz, S.; Wolny, J.A.; Schunemann, V.; Spinu, L.; Garcia, Y. Two-step spin transition in a 1D Fe(II) 1,2,4-triazole chain compound. Chemistry 2015, 21, 5843–5855. [Google Scholar] [CrossRef] [PubMed]
- Brooker, S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 2015, 44, 2880–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulmaczewski, R.; Olguin, J.; Kitchen, J.A.; Feltham, H.L.C.; Jameson, G.N.L.; Tallon, J.L.; Brooker, S. Remarkable Scan Rate Dependence for a Highly Constrained Dinuclear Iron(II) Spin Crossover Complex with a Wide Thermal Hysteresis Loop. J. Am. Chem. Soc. 2014, 136, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Tobon, Y.A.; Kabalan, L.; Bonhommeau, S.; Daro, N.; Grosjean, A.; Guionneau, P.; Matar, S.; Letard, J.F.; Guillaume, F. Spin crossover complexes [Fe(NH(2)trz)(3)](X)(2)center dot nH(2)O investigated by means of polarized Raman scattering and DFT calculations. Phys. Chem. Chem. Phys. 2013, 15, 18128–18137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalioti, N.; Charitos, A.; Parthenios, J.; Malina, O.; Polaskova, M.; Petr, M.; Tangoulis, V. Observation of Two-Step Spin Transition in Graphene Oxide-Based Hybrids with Iron(II) 4-amino-1,2,4-triazole Spin Crossover Nanoparticles. Molecules 2023, 28, 5816. https://doi.org/10.3390/molecules28155816
Lalioti N, Charitos A, Parthenios J, Malina O, Polaskova M, Petr M, Tangoulis V. Observation of Two-Step Spin Transition in Graphene Oxide-Based Hybrids with Iron(II) 4-amino-1,2,4-triazole Spin Crossover Nanoparticles. Molecules. 2023; 28(15):5816. https://doi.org/10.3390/molecules28155816
Chicago/Turabian StyleLalioti, Nikolia, Alexander Charitos, John Parthenios, Ondrej Malina, Michaela Polaskova, Martin Petr, and Vassilis Tangoulis. 2023. "Observation of Two-Step Spin Transition in Graphene Oxide-Based Hybrids with Iron(II) 4-amino-1,2,4-triazole Spin Crossover Nanoparticles" Molecules 28, no. 15: 5816. https://doi.org/10.3390/molecules28155816
APA StyleLalioti, N., Charitos, A., Parthenios, J., Malina, O., Polaskova, M., Petr, M., & Tangoulis, V. (2023). Observation of Two-Step Spin Transition in Graphene Oxide-Based Hybrids with Iron(II) 4-amino-1,2,4-triazole Spin Crossover Nanoparticles. Molecules, 28(15), 5816. https://doi.org/10.3390/molecules28155816