Synthesis of Functionalized 3H-pyrrolo-[1,2,3-de] Quinoxalines via Gold-Catalyzed Intramolecular Hydroamination of Alkynes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Experimental Procedures
3.2.1. Synthetic Procedures for Starting Materials
General Procedure for the Preparation of Substituted 1-(3-Arylprop-2-yn-1-yl)-2-aryl-1H-indol-7-amine 1
- Typical Procedure for the Preparation of 5-substituted-7-nitro-2-phenyl-1H-indole 5
- b.
- Typical Procedure for the Preparation of Substituted 7-nitro-2-phenyl-1-(prop-2-yn-1-yl)-1H-indoles 6.
- c.
- Typical Procedure for the Preparation of Substituted 1-(3-arylprop-2-yn-1-yl)-7-nitro-2-phenyl-1H-indoles 7.
- d.
- Typical Procedure for the Synthesis of Substutited 1-(3-arylprop-2-yn-1-yl)-2-aryl-1H-indol-7-amine 1.
3.2.2. Synthetic Procedures for Final Products
Typical Procedure for the Preparation of Substituted 5-Aryl-3H-pyrrolo [1,2,3-de] Quinoxalines 2: Synthesis of 8-Chloro-2-(4-methoxybenzyl)-5-phenyl-3H-pyrrolo [1,2,3-de]quinoxaline 2c
3.3. Characterization Data of Synthesized Compounds
Characterization Data of Final Compounds 2a–i and 2k
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev. 2008, 108, 3795–3892. [Google Scholar] [CrossRef] [PubMed]
- Arcadi, A. Gold-Catalyzed Synthesis of Nitrogen Heterocyclic Compounds via Hydroamination Reactions. In Au-Catalyzed Synthesis and Functionalization of Heterocycles; Bandini, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 53–85. [Google Scholar]
- Widenhoefer, R.A.; Han, X. Gold-Catalyzed Hydroamination of C–C Multiple Bonds. Eur. J. Org. Chem. 2006, 2006, 4555–4563. [Google Scholar] [CrossRef]
- Hartwig, J.F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, CA, USA, 2010. [Google Scholar]
- Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A. Construction of the 1,5-Benzodiazepine Skeleton from o-Phenylendiamine and Propargylic Alcohols via a Domino Gold-Catalyzed Hydroamination/Cyclization Process. Org. Lett. 2016, 18, 3511–3513. [Google Scholar] [CrossRef] [PubMed]
- Cacchi, S.; Fabrizi, G.; Fochetti, A.; Ghirga, F.; Goggiamani, A.; Iazzetti, A. Stereo- and regioselective gold(i)-catalyzed hydroamination of 2-(arylethynyl)pyridines with anilines. Org. Biomol. Chem. 2019, 17, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Grinev, A.N.; Trofimkin, Y.I.; Lomanova, E.V.; Andreeva, N.I.; Mashkovskii, M.D. Synthesis and biological activity of pyrrolo [1,2,3-de]-quinoxaline derivatives. Pharm. Chem. J. 1978, 12, 895–898. [Google Scholar] [CrossRef]
- Nagata, R.; Tanno, N.; Kodo, T.; Ae, N.; Yamaguchi, H.; Nishimura, T.; Antoku, F.; Tatsuno, T.; Kato, T. Tricyclic Quinoxalinediones: 5,6-Dihydro-1H-pyrrolo [1,2,3-de]quinoxaline-2,3-diones and 6,7-Dihydro-1H,5H-pyrido [1,2,3-de]quinoxaline-2,3-diones as Potent Antagonists for the Glycine Binding Site of the NMDA Receptor. J. Med. Chem. 1994, 37, 3956–3968. [Google Scholar] [CrossRef] [PubMed]
- Campiani, G.; Aiello, F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armaroli, S.; Nacci, V.; Garofalo, A.; Greco, G.; Novellino, E.; et al. Quinoxalinylethylpyridylthioureas (QXPTs) as potent non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors. Further SAR studies and identification of a novel orally bioavailable hydrazine-based antiviral agent. J. Med. Chem. 2001, 44, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.-M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; et al. Synthesis, Antimalarial Activity, and Molecular Modeling of New Pyrrolo [1,2-a]quinoxalines, Bispyrrolo [1,2-a]quinoxalines, Bispyrido [3,2-e]pyrrolo [1,2-a]pyrazines, and Bispyrrolo [1,2-a]thieno [3,2-e]pyrazines. J. Med. Chem. 2004, 47, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; et al. New ferrocenic pyrrolo [1,2-a]quinoxaline derivatives: Synthesis, and in vitro antimalarial activity—Part II. Eur. J. Med. Chem. 2011, 46, 2310–2326. [Google Scholar] [CrossRef] [PubMed]
- Guillon, J.; Forfar, I.; Mamani-Matsuda, M.; Desplat, V.; Saliège, M.; Thiolat, D.; Massip, S.; Tabourier, A.; Léger, J.-M.; Dufaure, B.; et al. Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo [1,2-a]quinoxalines as antileishmanial agents. Bioorg. Med. Chem. 2007, 15, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Guillon, J.; Nim, S.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Thivet, E.; Marchivie, M.; Di Pietro, A.; Prasad, R.; Le Borgne, M. Synthesis of new piperazinyl-pyrrolo [1,2-a]quinoxaline derivatives as inhibitors of Candida albicans multidrug transporters by a Buchwald-Hartwig cross-coupling reaction. RSC Adv. 2020, 10, 2915–2931. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Aiello, F.; Grazia, O.D.; Brizzi, A.; Garofalo, A.; Neamati, N. Synthesis and antitumor activities of a series of novel quinoxalinhydrazides. Bioorg. Med. Chem. 2007, 15, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.P.; Bian, Z.; Shaw, S.; Zhao, B.; Goodwin, C.M.; Belmar, J.; Browning, C.F.; Vigil, D.; Friberg, A.; Camper, D.V.; et al. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J. Med. Chem. 2015, 58, 3794–3805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem. 2015, 97, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.H.; Baron, M.; Biffis, A. Gold-Catalyzed Intermolecular Alkyne Hydrofunctionalizations—Mechanistic Insights. Catalysts 2020, 10, 1210. [Google Scholar] [CrossRef]
- Calculated by HF, 6-31G** in Titan 1.0.1 2000; Wavefunction Inc.: Irvine, CA, USA, 2000.
- Richardson, A., Jr. The Chemistry of 7-Aminoindoline and Certain Pyrrolo- and Pyrido [1,2,3-de]quinoxalines. J. Org. Chem. 1965, 30, 2589–2593. [Google Scholar] [CrossRef]
Entry 1 | Catalysts (mmol%) | Solvent (mL) | Temperature (°C) | Time (h) | Yield 2a 2 (%) |
---|---|---|---|---|---|
1 | JP(MeCN)AuSb6 3 (2) | CH2Cl2 | 60 | 1 | 98 |
2 | JP(MeCN)AuSb6 3 (2) | CH2Cl2 | rt | 7 | 98 |
3 | PPh3AuCl/AgSbF6 (2/2) | CH2Cl2 | rt | 24 | 42 4 |
4 | PtCl2 (4) | EtOH | 80 | 24 | 83 5 |
5 | PdCl2(CH3CN)2 (5) | CH3CN | 80 | 2 | 36 |
6 | TsOH | EtOH | 80 | 2 | - 6 |
Entry 1 | 1 | R 1 | R 2 | Ar 1 | Ar 2 | 2 | Time (h) | Yield 2 (%) 2 |
---|---|---|---|---|---|---|---|---|
1 | 1a | Cl | H | Ph | Ph | 2a | 7 | 98 |
2 | 1b | Cl | H | Ph | 4-Cl-C6H4 | 2b | 1 | 86 |
3 | 1c | Cl | H | Ph | 4-OMe-C6H4 | 2c | 1.5 | 80 |
4 | 1d | Cl | H | Ph | 4-COMe-C6H4 | 2d | 1.5 | 85 |
5 | 1e | Cl | H | 4-OMe | 3-CF3-C6H4 | 2e | 4 | 80 |
6 | 1f | Cl | H | 4-OMe | 4-OMe-C6H4 | 2f | 18 | 80 |
7 | 1g | Me | H | Ph | 4-COMe-C6H4 | 2g | 24 | 90 |
8 | 1h | Me | H | 4-CO2Me | 4-Cl-C6H4 | 2h | 3 | 80 |
9 | 1i | Me | H | Ph | 4-Cl-C6H4 | 2i | 5 | 79 |
10 | 1j | Me | H | Ph | - | 2j | 1 | - 3 |
11 | 1k 4 | Me | 4-OMe-C6H4 | 4-COMe-C6H4 | Ph | 2k | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iazzetti, A.; Fabrizi, G.; Goggiamani, A.; Marrone, F.; Sferrazza, A.; Ullah, K. Synthesis of Functionalized 3H-pyrrolo-[1,2,3-de] Quinoxalines via Gold-Catalyzed Intramolecular Hydroamination of Alkynes. Molecules 2023, 28, 5831. https://doi.org/10.3390/molecules28155831
Iazzetti A, Fabrizi G, Goggiamani A, Marrone F, Sferrazza A, Ullah K. Synthesis of Functionalized 3H-pyrrolo-[1,2,3-de] Quinoxalines via Gold-Catalyzed Intramolecular Hydroamination of Alkynes. Molecules. 2023; 28(15):5831. https://doi.org/10.3390/molecules28155831
Chicago/Turabian StyleIazzetti, Antonia, Giancarlo Fabrizi, Antonella Goggiamani, Federico Marrone, Alessio Sferrazza, and Karim Ullah. 2023. "Synthesis of Functionalized 3H-pyrrolo-[1,2,3-de] Quinoxalines via Gold-Catalyzed Intramolecular Hydroamination of Alkynes" Molecules 28, no. 15: 5831. https://doi.org/10.3390/molecules28155831
APA StyleIazzetti, A., Fabrizi, G., Goggiamani, A., Marrone, F., Sferrazza, A., & Ullah, K. (2023). Synthesis of Functionalized 3H-pyrrolo-[1,2,3-de] Quinoxalines via Gold-Catalyzed Intramolecular Hydroamination of Alkynes. Molecules, 28(15), 5831. https://doi.org/10.3390/molecules28155831