Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Compositions and Yields of Extraction
2.2. Antioxidant Properties
2.2.1. Determination of DPPH and ABTS Assays
2.2.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.2.3. Ion Chelation Assay
2.3. Enzymatic Inhibition
2.3.1. Acetylcholinesterase Inhibition Assay
2.3.2. Tyrosinase Inhibition Assay
2.3.3. Hyaluronidase Inhibition Assay
2.4. Statistical Analysis and Correlation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extraction
3.4. Chemical Composition
3.4.1. Determination of Total Phenolic Content (TPC)
3.4.2. Determination of Total Flavonoid Content (TFC)
3.4.3. Determination of Total Phenolic Acid Content (TPAC)
3.5. Antioxidant Properties
3.5.1. ABTS Free-Radical-Scavenging Activity
3.5.2. DPPH Free-Radical-Scavenging Activity
3.5.3. Ferric-Ion-Reducing Antioxidant Power (FRAP) Assay
3.5.4. Iron (II) Ion Chelation Assay
3.6. Anti-Enzymatic Panel
3.6.1. Hyaluronidase Inhibition Assay
3.6.2. Tyrosinase Inhibition Assay
3.6.3. Acetylcholinesterase Inhibition Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wagner, H.; Nörr, H.; Winterhoff, H. Plant adaptogens. Phytomedicine 1994, 1, 63–76. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant adaptogens—History and future perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef]
- Liao, L.Y.; He, Y.F.; Li, L.; Meng, H.; Dong, Y.M.; Yi, F.; Xiao, P.G. A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin. Med. 2018, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Kokoska, L.; Janovska, D. Chemistry and pharmacology of Rhaponticum carthamoides: A review. Phytochemistry 2009, 70, 842–855. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017, 16, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Gerontakos, S.; Taylor, A.; Avdeeva, A.Y.; Shikova, V.A.; Pozharitskaya, O.N.; Casteleijn, D.; Wardle, J.; Shikov, A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. and Maxim.): A narrative review. J. Ethnopharmacol. 2021, 278, 114274. [Google Scholar] [CrossRef] [PubMed]
- Gębalski, J.; Graczyk, F.; Załuski, D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure–activity relationship. J. Enzyme Inhib. Med. Chem. 2022, 37, 1120–1195. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Sunil, K.; Vipin, K.; Monika, R.; Dinesh, K. Enzymes inhibitors from plants: An alternate approach to treat diabetes. Pharmacogn. Commun. 2012, 2, 18–33. [Google Scholar]
- Panossian, A.; Wagner, H. Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration. Phytother. Res. 2005, 19, 819–838. [Google Scholar] [CrossRef] [Green Version]
- Panossian, A.; Wikman, G. Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress—Protective activity. Pharmaceuticals 2010, 3, 188–224. [Google Scholar] [CrossRef]
- Özdemir, Z.; Bildziukevich, U.; Wimmerová, M.; Macůrková, A.; Lovecká, P.; Wimmer, Z. Plant adaptogens: Natural medicaments for 21st century? ChemistrySelect 2018, 3, 2196–2214. [Google Scholar] [CrossRef]
- Lim, H.B.; Lee, H.R. Safety and biological activity evaluation of Uncaria rhynchophylla ethanolic extract. Drug Chem Toxicol 2022, 45, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sherlekar, B.; Barik, R. Evaluation of antioxidant potential of Tinospora cordifolia and Tinospora sinensis. Int. J. Pharm. Sci. Res. 2010, 1, 122. [Google Scholar]
- Shin, M.R.; Kim, M.J.; Lee, J.A.; Roh, S.S. Effect of Uncaria rhynchophylla against thioacetamide-induced acute liver injury in rat. Can. J. Gastroenterol. Hepatol. 2021, 2021, 5581816. [Google Scholar] [CrossRef] [PubMed]
- Rafat, A.; Philip, K.; Muniandy, S. Antioxidant potential and content of phenolic compounds in ethanolic extracts of selected parts of Andrographis paniculata. J. Med. Plants Res. 2010, 4, 197–202. [Google Scholar]
- Azevedo, B.C.; Roxo, M.; Borges, C.M.; Peixoto, H.; Crevelin, E.J.; Bertoni, W.B.; Contini, H.T.S.; Lopes, A.A.; França, C.S.; Pereira, S.A.M.; et al. Antioxidant activity of an aqueous leaf extract from Uncaria tomentosa and its major alkaloids mitraphylline and isomitraphylline in Caenorhabditis elegans. Molecules 2019, 24, 3299. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, P.; Chauhan, A.K.; Singh, S.N. Sensory acceptability of value added cookies incorporated with Tinospora cordifolia (TC) stem powder; improvement in nutritional properties and antioxidant potential. J. Food Sci. Technol. 2020, 57, 2934–2940. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hwang, J.W.; Kim, S.E.; Kim, E.H.; Jeon, Y.J.; Moon, S.H.; Jeon, B.T.; Park, P.J. Antioxidant activity and protective effects of Uncaria rhynchophylla extracts on t-BHP-induced oxidative stress in Chang cells. Biotechnol. Bioprocess Eng. 2012, 17, 1213–1222. [Google Scholar] [CrossRef]
- Cheng, K.M. Antioxidant Properties of Traditional Chinese Medicinal Herbs (Lycium barbarum and Polygonum multiflorum) with Different Preparation Methods. Ph.D. Thesis, Universiti Tunku Abdul Rahman, Kampar, Malaysia, 2017. [Google Scholar]
- Tobwala, S.; Fan, W.; Hines, C.J.; Folk, W.R.; Ercal, N. Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures. BMC Complement Altern. Med. 2014, 14, 271. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.H.; Ryu, G.S.; Lee, E.S.; Kang, K.J.; Hwang, D.Y.; Hong, N.D.; Choi, B.W. Screening of the acetylcholinesterase inhibitors from medicinal plants. Korean J. Pharmacogn. 1997, 28, 167–173. [Google Scholar]
- Yang, Z.D.; Duan, D.Z.; Du, J.; Yang, M.J.; Li, S.; Yao, X.J. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor. Nat. Prod. Res. 2012, 26, 22–28. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kumar, S. In vitro anti-acetylcholinesterase activity of an aqueous extract of Unicaria tomentosa and in silico study of its active constituents. Bioinformation 2016, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.W.; Su, J.; Wu, X.D.; He, J.; Peng, L.Y.; Cheng, X.; Zhao, Q.S. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla. Nat. Prod. Res. 2015, 29, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Onoja, J.O.; Elufioye, T.O.; Sherwani, Z.A.; Ul-Haq, Z. Molecular docking study on columbin isolated from Tinospora cordifolia as a cholinesterase inhibitor. Trop. J. Pharm. Res. 2021, 20, 337–343. [Google Scholar] [CrossRef]
- Adib, M.; Islam, R.; Ahsan, M.; Rahman, A.; Hossain, M.; Rahman, M.M.; Alshehri, S.M.; Kazi, M.; Mazid, M.A. Cholinesterase inhibitory activity of tinosporide and 8-hydroxytinosporide iso-lated from Tinospora cordifolia: In vitro and in silico studies targeting management of Alz-heimer’s disease. Saudi J. Biol. Sci. 2021, 28, 3893–3900. [Google Scholar] [CrossRef] [PubMed]
- Onoja, O.J.; Elufioye, T.O.; Sherwani, Z.A.; Ul-Haq, Z. Molecular docking studies and anti-Alzheimer’s potential of isolated compounds from Tinospora cordifolia. J. Biol. Act. Prod. Nat. 2020, 10, 100–121. [Google Scholar]
- Santoro, V.; Parisi, V.; D’Ambola, M.; Sinisgalli, C.; Monne, M.; Milella, L.; Russo, R.; Severina, L.; De Tomassi, N. Chemical profiling of Astragalus membranaceus roots (fish.) bunge herbal preparation and evaluation of its bioactivity. Sage 2020, 15, 1934578X20924152. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Zhang, Y.; Tsao, R. On-line coupling pressurised liquid extraction with twodimensional counter current chromatography for isolation of natural acetylcholinesterase inhibitors from Astragalus membranaceus. Phytochem. Anal. 2020, 4, 640–653. [Google Scholar]
- Stępnik, K.; Kulula-Koch, W.; Plazinski, W.; Gawel, K.; Gaweł-Bęben, K.; Boguszewska-Czubara, A. Significance of astragaloside IV from the roots of Astragalus mongholicus as an acetylcholinesterase inhibitor—From the computational and biomimetic analyses to the in vitro and in vivo studies of safety. Int. J. Mol. Sci. 2023, 24, 9152. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumer, V.; Houghton, P.J. Screening of indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother. Res. 2007, 21, 1142–1145. [Google Scholar] [CrossRef]
- Kim, J.; Kima, J.H.; Jeung, E.S.; Park, I.S.; Choe, C.H.; Kwon, T.H.; Yu, K.Y.; Jeong, S.I. Inhibitory effects of stilbene glucoside isolated from the root of Polygonum multiflorum on tyrosinase activity and melanin biosynthesis. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 342–345. [Google Scholar] [CrossRef]
- Hamid, M.A.; Ramli, F.; Wahab, R. Antioxidant activity of andrographolide from Andrographis paniculata leaf and its extraction optimization by using accelerated solvent extraction: Antioxidant activity of andrographolide from Andrographis paniculata leaf. J. Trop. Life Sci. 2023, 13, 157–170. [Google Scholar]
- Kim, J.H.; Lee, E.S.; Lee, C.H. Melanin biosynthesis inhibitory effects of calycosin-7-O-β-d-glucoside isolated from astragalus (Astragalus membranaceus). Food Sci. Biotechnol. 2011, 20, 1481–1485. [Google Scholar] [CrossRef]
- Lee, Y.M.; Choi, S.I.; Lee, J.W.; Jung, S.M.; Park, S.M.; Heo, T.R. Isolation of hyaluronidase inhibitory component from the roots of Astraglus membranaceus Bunge (Astragali Radix). Food Sci. Biotechnol. 2005, 14, 263–267. [Google Scholar]
- Dong, Y.; Woo, Y.M.; Cha, J.H.; Cha, J.Y.; Lee, N.W.; Back, M.W.; Park, J.; Lee, S.H.; Ha, J.M.; Kim, A. The effect of inhibition of Uncaria rhynchophylla as an inhibitor of melanogenesis and an antioxidant in B16F10 melanoma cells. J. Life Sci. 2020, 30, 1033–1041. [Google Scholar]
- Kang, C.H.; Kwak, J.S.; So, J.S. Inhibition of nitric oxide production and hyaluronidase activities from the combined extracts of Platycodon grandiflorum, Astragalus membranaceus, and Schisandra chinensi. J. Korean Soc. Food Sci. Nutr. 2013, 42, 844–850. [Google Scholar] [CrossRef]
- Hsu, M.F.; Chiang, B.F. Stimulating effects of Bacillus subtilis natto-fermented Radix astragali on hyaluronic acid production in human skin cells. J. Ethnopharmacol. 2009, 125, 74–81. [Google Scholar] [CrossRef]
- Ma, X.Q.; Shi, Q.; Duan, J.A.; Dong, T.T. Chemical analysis of radix astragali (Huang qi) in China: A comparison with its adulterants and seasonal variations. J. Agric. Food Chem. 2002, 50, 61–66. [Google Scholar] [CrossRef]
- Yang, Y.; Chin, A.; Zhang, L.; Lu, J.; Wong, R.W.K. The Role of Traditional Chinese Medicines in Osteogenesis and Angiogenesis. J. Agric. Food Chem. 2013, 28, 1–8. [Google Scholar] [CrossRef]
- Nayak, A.G.; Kumar, N.; Shenoy, S.; Roche, M. Anti-snake venom and methanolic extract of Andrographis paniculata: A multipronged strategy to neutralize Naja naja venom acetylcholinesterase and hyaluronidase. 3 Biotech 2010, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, A.; Manikandan, A.; Rajini Raja, M.; Jayaraman, G. Andrographis paniculata leaf extracts as potential Naja naja anti-snake venom. World J. Pharmacol. 2015, 4, 1036–1050. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Zhu, M.Z.; Wu, W.; Jiao, L.L.; Yang, P.F.; Guo, M.Q. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules 2015, 20, 10553–10565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polish Pharmacopoeia VI; Polish Pharmaceutical Society: Warszawa, The Netherlands, 2002; p. 150.
- Wu, Y.; Yin, Z.; Qie, X.; Chen, Y.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Interaction of soy protein isolate hydrolysates with cyanidin-3-O-glucoside and its effect on the in vitro antioxidant capacity of the complexes under neutral condition. Molecules 2021, 26, 1721. [Google Scholar] [CrossRef] [PubMed]
- Naseer, S.; Iqbal, J.; Naseer, A.; Kanwal, S.; Hussain, I.; Tan, Y.; Aguilar-Marcelino, L.; Cossio-Bayugar, R.; Zajac, Z.; Bin Jardan, Y.A.; et al. Deciphering chemical profiling, pharmacological responses and potential bioactive constituents of Saussurea lappa Decne. Extracts through in vitro approaches. Saudi J. Biol. Sci. 2022, 29, 1355–1366. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Epifano, F.; Fiorito, S.; Álvarez-Suarez, J.M. Phytochemical analysis and biological investigation of Nepeta juncea Benth. different extracts. Plants 2020, 9, 646. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Li, Y.; Li, P.; Wang, H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Di Ferrante, N. Turbidimetric measurement of acid mucopoly-saccharides and hyaluronidase activity. J. Biol. Chem. 1956, 220, 303–306. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Dudek-Makuch, M.; Chanaj-Kaczmarek, J.; Czepulis, N.; Korybalska, K.; Rutkowski, R.; Łuczak, J.; Grabowska, K.; Bylka, W.; Witowski, J. Anti-inflammatory activity and phytochemical profile of Galinsoga Parviflora Cav. Molecules 2018, 23, 2133. [Google Scholar] [CrossRef] [Green Version]
- Tyrosinase Inhibitor Screening Kit (Colorimetric) MAK257. Available online: https://www.sigmaaldrich.cn/deepweb/assets/sigmaaldrich/product/documents/125/489/mak257bul.pdf (accessed on 6 August 2023).
- Acetylcholinesterase Inhibitor Screening Kit (MAK324). Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/370/429/mak324bul.pdf (accessed on 6 August 2023).
TPC (mg GAE/g) | TFC (mg QE/g) | TPAC (mg CAE/g) | Yield of Extraction | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mass (g) | (%) | |
Astragalus membranacus (AM) | 87.90 | 6.47 | 20.90 | 0.67 | 1.11 | 0.00 | 2.50 | 25.0 |
Angelica sinensis (AS) | 80.14 | 1.16 | 55.17 | 8.81 | 2.90 | 0.12 | 5.29 | 52.9 |
Uncaria tomentosa (UT) | 308.87 | 9.84 | 74.44 | 1.55 | 70.35 | 7.87 | 1.10 | 11.0 |
Sutherlandia frutescens (SF) | 168.23 | 7.11 | 79.37 | 20.44 | 5.76 | 0.29 | 3.30 | 33.0 |
Pfaffia paniculata (PP) | 235.82 | 8.80 | 32.77 | 8.56 | 14.07 | 0.97 | 1.33 | 13.3 |
Andrographis paniculata (AP) | 279.27 | 4.20 | 83.85 | 12.61 | 31.10 | 0.71 | 1.68 | 16.8 |
Rhaponticum carthamoides (RC) | 210.92 | 8.15 | 43.53 | 4.95 | 13.84 | 1.65 | 1.24 | 12.4 |
Tinospora cordifolia (TC) | 280.82 | 8.30 | 178.38 | 35.54 | 19.81 | 2.82 | 0.94 | 9.4 |
Uncaria rhynchophylla (UR) | 327.78 | 26.27 | 230.13 | 40.86 | 81.03 | 11.41 | 1.21 | 12.1 |
Polygonum multiflorum (PM) | 314.60 | 12.06 | 114.99 | 12.80 | 61.61 | 2.44 | 3.00 | 30.0 |
Activity | Extract Concentration | TPC | TFC | TPAC | |
---|---|---|---|---|---|
Antioxidant activity | ABTS | 10 | −0.66 | −0.81 | −0.61 |
1 | 0.93 | 0.62 | 0.96 | ||
0.1 | 0.94 | 0.62 | 0.92 | ||
DPPH | 10 | 0.53 | 0.53 | 0.54 | |
1 | 0.92 | 0.59 | 0.95 | ||
0.1 | 0.66 | 0.37 | 0.72 | ||
FRAP | 10 | 0.94 | 0.65 | 0.95 | |
1 | 0.98 | 0.75 | 0.95 | ||
0.1 | 0.95 | 0.68 | 0.94 | ||
CA | 10 | 0.71 | 0.86 | 0.65 | |
1 | −0.33 | 0.05 | −0.47 | ||
Enzymatic inhibition | AChE | 10 | 0.56 | 0.31 | 0.54 |
1 | 0.87 | 0.70 | 0.88 | ||
0.1 | 0.53 | 0.44 | 0.47 | ||
HYAL | 10 | 0.62 | 0.38 | 0.53 | |
1 | −0.25 | 0.04 | −0.26 | ||
0.1 | −0.64 | −0.64 | −0.54 | ||
TYR | 10 | 0.02 | −0.09 | 0.01 | |
1 | −0.48 | −0.66 | −0.40 | ||
0.1 | −0.61 | −0.42 | −0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gębalski, J.; Małkowska, M.; Graczyk, F.; Słomka, A.; Piskorska, E.; Gawenda-Kempczyńska, D.; Kondrzycka-Dąda, A.; Bogucka-Kocka, A.; Strzemski, M.; Sowa, I.; et al. Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa. Molecules 2023, 28, 6004. https://doi.org/10.3390/molecules28166004
Gębalski J, Małkowska M, Graczyk F, Słomka A, Piskorska E, Gawenda-Kempczyńska D, Kondrzycka-Dąda A, Bogucka-Kocka A, Strzemski M, Sowa I, et al. Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa. Molecules. 2023; 28(16):6004. https://doi.org/10.3390/molecules28166004
Chicago/Turabian StyleGębalski, Jakub, Milena Małkowska, Filip Graczyk, Artur Słomka, Elżbieta Piskorska, Dorota Gawenda-Kempczyńska, Aneta Kondrzycka-Dąda, Anna Bogucka-Kocka, Maciej Strzemski, Ireneusz Sowa, and et al. 2023. "Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa" Molecules 28, no. 16: 6004. https://doi.org/10.3390/molecules28166004
APA StyleGębalski, J., Małkowska, M., Graczyk, F., Słomka, A., Piskorska, E., Gawenda-Kempczyńska, D., Kondrzycka-Dąda, A., Bogucka-Kocka, A., Strzemski, M., Sowa, I., Wójciak, M., Grzyb, S., Krolik, K., Ptaszyńska, A. A., & Załuski, D. (2023). Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa. Molecules, 28(16), 6004. https://doi.org/10.3390/molecules28166004