The Spontaneous Vesicle–Micelle Transition in a Catanionic Surfactant System: A Chemical Trapping Study
Abstract
:1. Introduction
Logic of the CT Method for CTAB/SOS Aggregates
2. Results and Discussion
2.1. The Spontaneous Vesicle–Micelle Transition in CTAB/SOS Aqueous Solutions
2.2. Interfacial Molarity Changes during the Vesicle–Micelle Transition
2.3. Discussion on the Interfacial Molarities and the Vesicle–Micelle Transition in CTAB/SOS Solutions
3. Materials and Methods
3.1. Materials
3.2. Dynamic Light Scattering (DLS) Measurements
3.3. Transmission Electron Microscopy (TEM) Measurements
3.4. Steady-State Fluorescence Measurements
3.5. Zeta-Potential Measurements
3.6. Chemical Trapping Experiments in CTAB/SOS Aqueous Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Romsted, L.S. Introduction to Surfactant Self-Assembly. In Encyclopedia of Supramolecular Chemistry: From Molecules to Nanomaterials; Gale, P., Steed, J., Eds.; John Wiley & Sons: New York, NY, USA, 2012; pp. 181–203. [Google Scholar]
- Menger, F.M. Supramolecular Chemistry And Self-assembly Special Feature: Supramolecular chemistry and self-assembly. Proc. Natl. Acad. Sci. USA 2002, 99, 4818–4822. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Ghosh, S.; Ray, A.; Pramanik, N. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophys. Chem. 2020, 265, 106429. [Google Scholar] [CrossRef] [PubMed]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Kaler, E.W.; Murthy, A.K.; Rodriguez, B.E.; Zasadzinski, J.A.N. Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants. Science 1989, 245, 1371–1374. [Google Scholar] [CrossRef]
- Jung, H.T.; Coldren, B.; Zasadzinski, J.A.; Iampietro, D.J.; Kaler, E.W. The origins of stability of spontaneous vesicles. Proc. Natl. Acad. Sci. USA 2001, 98, 1353–1357. [Google Scholar] [CrossRef]
- Kawasaki, H.; Imahayashi, R.; Maeda, H. Effects of hydrophobic counterions on the phase behavior of tetradecyldimethylhydroxylammonium chloride in aqueous solutions. Langmuir 2002, 18, 8358–8363. [Google Scholar] [CrossRef]
- Li, S.-J.; Lai, L.; Mei, P.; Li, Y.; Cheng, L.; Ren, Z.-H.; Liu, Y. Equilibrium and dynamic surface properties of cationic/anionic surfactant mixtures based on bisquaternary ammonium salt. J. Mol. Liq. 2018, 254, 248–254. [Google Scholar] [CrossRef]
- Yatcilla, M.T.; Herrington, K.L.; Brasher, L.L.; Kaler, E.W.; Chiruvolu, S.; Zasadzinski, J.A. Phase Behavior of Aqueous Mixtures of Cetyltrimethylammonium Bromide (CTAB) and Sodium Octyl Sulfate (SOS). Phys. Chem. 1996, 100, 5874–5879. [Google Scholar] [CrossRef]
- Silva, O.F.; de Rossi, R.H.; Correa, N.M.; Silber, J.J.; Falcone, R.D. Spontaneous catanionic vesicles formed by the interaction between an anionic beta-cyclodextrins derivative and a cationic surfactant. RSC Adv. 2018, 8, 12535–12539. [Google Scholar] [CrossRef] [PubMed]
- Tondre, C.; Caillet, C. Properties of the amphiphilic films in mixed cationic/anionic vesicles: A comprehensive view from a literature analysis. Adv. Colloid Interface Sci. 2001, 93, 115–134. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghatak, C.; Banerjee, C.; Mandal, S.; Kuchlyan, J.; Sarkar, N. Spontaneous Transition of Micelle-Vesicle-Micelle in a Mixture of Cationic Surfactant and Anionic Surfactant-like Ionic Liquid: A Pure Nonlipid Small Unilamellar Vesicular Template Used for Solvent and Rotational Relaxation Study. Langmuir 2013, 29, 10066–10076. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Zhao, J.; Wei, X. Wormlike micelles formed by mixed cationic and anionic gemini surfactants in aqueous solution. J. Colloid Interface Sci. 2011, 356, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Kaler, E.W.; Herrington, K.L.; Murthy, A.K.; Zasadzinski, J.A.N. Phase behavior and structures of mixtures of anionic and cationic surfactants. Phys. Chem. 1992, 96, 6698–6707. [Google Scholar] [CrossRef]
- Fendler, J.H. Membrane Mimetic Chemistry Systems that mimic aspects of biomembranes hold promise for controlling the rates and stereochemistry of reactions, enhancing solar energy conversion, and targeting drug delivery. Chem. Eng. News Arch. 1984, 62, 25–38. [Google Scholar] [CrossRef]
- Costa, C.; Oliveira, I.S.; Silva, J.P.N.; Silva, S.G.; Botelho, C.; do Vale, M.L.C.; Real Oliveira, M.; Gomes, A.C.; Marques, E.F. Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. J. Colloid Interface Sci. 2021, 584, 34–44. [Google Scholar] [CrossRef]
- Rajput, S.M.; Kumar, S.; Aswal, V.K.; El Seoud, O.A.; Malek, N.I.; Kailasa, S.K. Drug-Induced Micelle-to-Vesicle Transition of a Cationic Gemini Surfactant: Potential Applications in Drug Delivery. Chemphyschem 2018, 19, 865–872. [Google Scholar] [PubMed]
- Tian, B.; Tao, X.; Ren, T.; Weng, Y.; Lin, X.; Zhang, Y.; Tang, X. Polypeptide-based vesicles: Formation, properties and application for drug delivery. J. Mater. Chem. 2012, 22, 17404–17414. [Google Scholar]
- Zayka, P.; Parr, B.; Robichaud, H.; Hickey, S.; Topping, A.; Holt, E.; Watts, D.B.E.; Soto, N.; Stein, D.C.; DeShong, P.; et al. Evaluating methods to create protein functionalized catanionic vesicles. Soft Matter 2023, 19, 1429–1439. [Google Scholar] [CrossRef]
- Zhang, F.; Yao, Q.; Chen, X.; Zhou, H.; Zhou, M.; Li, Y.; Cheng, H. In-depth study of anticancer drug diffusion through a cross-linked -pH-responsive polymeric vesicle membrane. Drug Deliv. 2023, 30, 2162626. [Google Scholar] [CrossRef]
- Bramer, T.; Dew, N.; Edsman, K. Pharmaceutical applications for catanionic mixtures. J. Pharm. Pharmacol. 2007, 59, 1319–1334. [Google Scholar] [CrossRef]
- Cano-Sarabia, M.; Angelova, A.; Ventosa, N.; Lesieur, S.; Veciana, J. Cholesterol induced CTAB micelle-to-vesicle phase transitions. J. Colloid Interface Sci. 2010, 350, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Thapa, U.; Dey, J.; Kumar, S.; Hassan, P.A.; Aswal, V.K.; Ismail, K. Tetraalkylammonium ion induced micelle-to-vesicle transition in aqueous sodium dioctylsulfosuccinate solutions. Soft Matter 2013, 9, 11225–11232. [Google Scholar] [CrossRef]
- Yao, K.; Sun, L.; Ding, X.; Wang, Y.; Liu, T.; Liu, C.; Tan, J.; Zhao, L.; Xu, B.; Romsted, L. Simultaneous determination of interfacial molarities of an alcohol, bromide ion, and water during an alcohol induced microstructural transition: The difference between medium and long chain alcohols. Soft Matter 2020, 16, 5148–5156. [Google Scholar] [CrossRef] [PubMed]
- Romsted, L.S. Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? The evidence from chemical trapping. Langmuir 2007, 23, 414–424. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Gao, Y.; Zhang, Y.; Zhao, L.; Xu, B.; Romsted, L.S. Effects of interfacial specific cations and water molarities on AOT micelle-to-vesicle transitions by chemical trapping: The specific ion-pair/hydration model. Phys. Chem. Chem. Phys. 2019, 21, 8633–8644. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Romsted, L.S.; Menger, F. Specific ion pairing and interfacial hydration as controlling factors in gemini micelle morphology. Chemical trapping studies. J. Am. Chem. Soc. 2006, 128, 492–501. [Google Scholar] [CrossRef]
- Guttman, S.; Ocko, B.M.; Deutsch, M.; Sloutskin, E. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Curr. Opin. Colloid Interface Sci. 2016, 22, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.B.; Zhou, M.; Qiao, W.H.; Luo, L.M. Spontaneous Vesicle Formation in Mixtures of Quaternary Ammonium Compounds with Carbamate and Sodium Dodecylbenzene Sulfonate. J. Surfactants Deterg. 2015, 18, 171–178. [Google Scholar] [CrossRef]
- Xu, H.F.; Du, N.; Song, Y.W.; Song, S.; Hou, W.G. Microviscosity, encapsulation, and permeability of 2-ketooctanoic acid vesicle membranes. Soft Matter 2017, 13, 3514–3520. [Google Scholar] [CrossRef]
- Segota, S.; Heimer, S.; Tezak, D. New catanionic mixtures of dodecyldimethylammonium bromide/sodium dodecylbenzenesulphonate/water I. Surface properties of dispersed particles. Colloid Surf. A Physicochem. Eng. Asp. 2006, 274, 91–99, Erratum in Colloid Surf. A Physicochem. Eng. Asp. 2006, 280, 245. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Loughlin, J.A.; Romsted, L.S.; Yao, J. Arenediazonium Salts: New Probes of the Interfacial Compositions of Association Colloids. 1. Basic Approach, Methods, and Illustrative Applications. Am. Chem. Soc. 1993, 115, 8351–8361. [Google Scholar] [CrossRef]
- Dar, A.A.; Romsted, L.S.; Nazir, N.; Zhang, Y.; Gao, X.; Gu, Q.; Liu, C. A novel combined chemical kinetic and trapping method for probing the relationships between chemical reactivity and interfacial H(2)O, Br(-) and H(+) ion molarities in CTAB/C(12)E(6) mixed micelles. Phys. Chem. Chem. Phys. 2017, 19, 23747–23761. [Google Scholar] [CrossRef]
- Gong, J.; Yao, K.; Sun, Q.; Sun, Y.; Sun, L.; Liu, C.; Xu, B.; Tan, J.; Zhao, L.; Xu, B. Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study. Molecules 2022, 27, 4333. [Google Scholar] [CrossRef]
- Sun, L.; Gong, J.; Xu, B.; Wang, Y.; Ding, X.; Zhang, Y.; Liu, C.; Zhao, L.; Xu, B. Ion-Specific Effects on Vesicle-to-Micelle Transitions of an Amino Acid Surfactant Probed by Chemical Trapping. Langmuir 2022, 38, 6295–6304. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Q.; Sun, L.; Chen, Z.; Jiang, R.; Gong, J.; Zhang, Y.; Liu, C.; Zhao, L.; Xu, B. Tetraalkylammonium counterion effects on lauroyl β-alanine: A chemical trapping study. Colloids Surf. A—Physicochem. Eng. Asp. 2023, 675, 132010. [Google Scholar] [CrossRef]
- Roy, S.; Mohanty, A.; Dey, J. Microviscosity of bilayer membranes of some N-acylamino acid surfactants determined by fluorescence probe method. Chem. Phys. Lett. 2005, 414, 23–27. [Google Scholar] [CrossRef]
- Engberg, O.; Nurmi, H.; Nyholm, T.K.M.; Slotte, J.P. Effects of Cholesterol and Saturated Sphingolipids on Acyl Chain Order in 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Bilayers-A Comparative Study with Phase-Selective Fluorophores. Langmuir 2015, 31, 4255–4263. [Google Scholar] [CrossRef]
- Shinitzky, M.; Barenholz, Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem. 1974, 249, 2652–2657. [Google Scholar] [CrossRef] [PubMed]
- Herrington, K.L.; Kaler, E.W.; Miller, D.D.; Zasadzinski, J.A.; Chiruvolu, S. Phase Behavior of Aqueous Mixtures of Dodecyltrimethylammonium Bromide (DTAB) and Sodium Dodecyl Sulfate (SDS). Phys. Chem. 1993, 97, 13792–13802. [Google Scholar] [CrossRef]
- Annunziata, O.; Costantino, L.; D’Errico, G.; Paduano, L.; Vitagliano, V. Transport properties for aqueous sodium sulfonate surfactants-2. Intradiffusion measurements: Influence of the obstruction effect on the monomer and micelle mobilities. J. Colloid. Interface Sci. 1999, 216, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, F.; Luan, Y.; Cao, W.; Ji, X.; Zhao, L.; Zhang, L.; Li, Z. Formation of drug/surfactant catanionic vesicles and their application in sustained drug release. Int. J. Pharm. 2012, 436, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Uchiyama, H.; Yoshino, N.; Nishiyama, K.; Abe, M. Spontaneous Vesicle Formation from Aqueous Solutions of Didodecyldimethylammonium Bromide and Sodium Dodecyl sulfate Mixtures. Langmuir 1995, 11, 2380–2384. [Google Scholar] [CrossRef]
[CTAB] + [ SOS] | Peak Areas (102 mAU·s) | Observed Yields (%) | Normalized Yields (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(mM) | 16-ArOH | 16-ArOSOct | 16-ArBr | 16-ArOH | 16-ArOSOct | 16-ArBr | Total | 16-ArOHN | 16-ArOSOctN | 16-ArBrN |
20 | 34.75 | 10.37 | 0.11 | 77.4 | 15.8 | 2.0 | 95.1 | 81.3 | 16.6 | 2.1 |
20 | 33.80 | 10.76 | 0.11 | 75.2 | 16.4 | 2.0 | 93.5 | 80.4 | 17.5 | 2.1 |
50 | 29.21 | 9.16 | 0.15 | 70.2 | 15.1 | 2.2 | 87.4 | 80.2 | 17.3 | 2.5 |
50 | 29.51 | 9.26 | 0.16 | 70.9 | 15.3 | 2.2 | 88.4 | 80.2 | 17.3 | 2.5 |
80 | 30.53 | 10.39 | 0.19 | 73.4 | 17.1 | 2.2 | 92.8 | 79.1 | 18.5 | 2.4 |
80 | 30.60 | 10.31 | 0.18 | 73.6 | 17.0 | 2.2 | 92.8 | 79.3 | 18.3 | 2.4 |
100 | 30.52 | 11.01 | 0.19 | 73.4 | 18.2 | 2.2 | 93.8 | 78.3 | 19.4 | 2.4 |
100 | 30.50 | 10.86 | 0.19 | 73.3 | 17.9 | 2.2 | 93.5 | 78.4 | 19.2 | 2.4 |
200 | 29.22 | 11.50 | 0.31 | 70.2 | 19.0 | 2.4 | 91.5 | 76.7 | 20.7 | 2.6 |
200 | 29.14 | 11.31 | 0.29 | 70.0 | 18.7 | 2.3 | 91.0 | 76.9 | 20.5 | 2.6 |
500 | 28.88 | 13.00 | 0.75 | 69.3 | 21.5 | 2.9 | 93.7 | 74.0 | 22.9 | 3.1 |
500 | 28.90 | 13.01 | 0.74 | 69.4 | 21.5 | 2.9 | 93.7 | 74.0 | 22.9 | 3.1 |
[NaBr] + [ SOS] | Peak Areas (102 mAU·s) | Observed Yields (%) | Normalized Yields (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(mM) | 16-ArOH | 16-ArOSOct | 16-ArBr | 16-ArOH | 16-ArOSOct | 16-ArBr | Total | 16-ArOHN | 16-ArOSOctN | 16-ArBrN |
200 | 29.95 | 6.24 | 0.13 | 80.1 | 11.5 | 2.4 | 94.0 | 85.3 | 12.2 | 2.5 |
200 | 30.26 | 6.25 | 0.13 | 81.0 | 11.5 | 2.4 | 94.8 | 85.4 | 12.1 | 2.5 |
200 | 30.41 | 6.26 | 0.14 | 81.4 | 11.5 | 2.4 | 95.3 | 85.4 | 12.1 | 2.5 |
300 | 30.19 | 5.95 | 0.23 | 80.8 | 10.9 | 2.5 | 94.3 | 85.7 | 11.6 | 2.7 |
300 | 30.27 | 5.95 | 0.23 | 81.0 | 10.9 | 2.5 | 94.5 | 85.8 | 11.6 | 2.7 |
300 | 30.41 | 5.96 | 0.22 | 81.4 | 10.9 | 2.5 | 94.9 | 85.8 | 11.5 | 2.6 |
400 | 29.78 | 6.54 | 0.40 | 79.7 | 12.0 | 2.8 | 94.4 | 84.4 | 12.7 | 2.9 |
400 | 29.85 | 6.55 | 0.37 | 79.9 | 12.0 | 2.7 | 94.6 | 84.4 | 12.7 | 2.9 |
400 | 29.87 | 6.55 | 0.40 | 79.9 | 12.0 | 2.7 | 94.7 | 84.4 | 12.7 | 2.9 |
500 | 29.88 | 5.81 | 0.34 | 79.9 | 10.7 | 2.7 | 93.3 | 85.7 | 11.4 | 2.9 |
500 | 29.88 | 5.82 | 0.35 | 79.9 | 10.7 | 2.7 | 93.3 | 85.7 | 11.4 | 2.9 |
500 | 29.98 | 5.83 | 0.34 | 80.2 | 10.7 | 2.7 | 93.6 | 85.7 | 11.4 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Gong, J.; Sun, Y.; Song, Y.; Liu, C.; Xu, B. The Spontaneous Vesicle–Micelle Transition in a Catanionic Surfactant System: A Chemical Trapping Study. Molecules 2023, 28, 6062. https://doi.org/10.3390/molecules28166062
Sun Q, Gong J, Sun Y, Song Y, Liu C, Xu B. The Spontaneous Vesicle–Micelle Transition in a Catanionic Surfactant System: A Chemical Trapping Study. Molecules. 2023; 28(16):6062. https://doi.org/10.3390/molecules28166062
Chicago/Turabian StyleSun, Qihan, Jiani Gong, Yujia Sun, Yao Song, Changyao Liu, and Baocai Xu. 2023. "The Spontaneous Vesicle–Micelle Transition in a Catanionic Surfactant System: A Chemical Trapping Study" Molecules 28, no. 16: 6062. https://doi.org/10.3390/molecules28166062
APA StyleSun, Q., Gong, J., Sun, Y., Song, Y., Liu, C., & Xu, B. (2023). The Spontaneous Vesicle–Micelle Transition in a Catanionic Surfactant System: A Chemical Trapping Study. Molecules, 28(16), 6062. https://doi.org/10.3390/molecules28166062