Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Molar Ratio R at the Macroscopic Scale: Phase Behavior
2.2. Effect of Molar Ratio R at the Microscopic Scale: Structures of Aggregates
2.2.1. Microscopy Observation
2.2.2. NMR Analysis
2.2.3. SAXS Analysis
2.3. Effect of the Molar Ratio R at the Molecular Scale: Ionization State
2.4. Effect of Temperature
2.5. Self-Assembly Mechanism
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation and Phase State Observation
3.3. Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebicki, J.; Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 1973, 243, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Cistola, D.P.; Hamilton, J.A.; Jackson, D.; Small, D.M. Ionization and phase behavior of fatty acids in water: Application of the Gibbs phase rule. Biochemistry 1988, 27, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Morigaki, K.; Walde, P. Fatty acid vesicles. Curr. Opin. Colloid Interface Sci. 2007, 12, 75–80. [Google Scholar] [CrossRef]
- Namani, T.; Ishikawa, T.; Morigaki, K.; Walde, P. Vesicles from docosahexaenoic acid. Colloids Surf. B 2007, 54, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, X.; Zhong, Z.; Song, A.; Hao, J. Influence of counterions on lauric acid vesicles and theoretical consideration of vesicle stability. J. Phys. Chem. B 2012, 117, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Budin, I.; Prwyes, N.; Zhang, N.; Szostak, J.W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 2014, 107, 1582–1590. [Google Scholar] [CrossRef]
- Arnould, A.; Perez, A.A.; Gaillard, C.; Douliez, J.-P.; Cousin, F.; Santiago, L.G.; Zemb, T.; Anton, M.; Fameau, A.-L. Self-assembly of myristic acid in the presence of choline hydroxide: Effect of molar ratio and temperature. J. Colloid Interface Sci. 2015, 445, 285–293. [Google Scholar] [CrossRef]
- Adamala, K.P.; Engelhart, A.E.; Szostak, J.W. Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun. 2016, 7, 11041. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y.; Fan, P.; Jiang, L.; Zhuang, W.; Han, Y.; Zhang, H. Self-assembled vesicles formed by C-18 unsaturated fatty acids and sodium dodecyl sulfate as a drug delivery system. Colloids Surf. A 2019, 568, 66–74. [Google Scholar] [CrossRef]
- Martin, N.; Douliez, J.P. Fatty acid vesicles and coacervates as model prebiotic protocells. Chemsystemschem 2021, 3, e2100024. [Google Scholar] [CrossRef]
- Almeida, M.; Dudzinski, D.; Amiel, C.; Guigner, J.-M.; Prevost, S.; Le Coeur, C.; Cousin, F. Aqueous binary mixtures of stearic acid and its hydroxylated counterpart 12-hydroxystearic acid: Cascade of morphological transitions at room temperature. Molecules 2023, 28, 4336. [Google Scholar] [CrossRef]
- Kundu, N.; Mondal, D.; Sarkar, N. Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: Unveiling the role of fatty acids as a model protocell membrane. Biophys. Rev. 2020, 12, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Arnould, A.; Cousin, F.; Chabas, L.; Fameau, A.-L. Impact of the molar ratio and the nature of the counter-ion on the self-assembly of myristic acid. J. Colloid Interface Sci. 2018, 510, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Dudzinski, D.; Rousseau, B.; Amiel, C.; Prévost, S.; Cousin, F.; Le Coeur, C. Aqueous binary mixtures of stearic acid and its hydroxylated counterpart 12-hydroxystearic acid: Fine tuning of the lamellar/micelle threshold temperature transition and of the micelle shape. Molecules 2023, 28, 6317. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chu, Z.; Sun, H.; Li, Z.; Feng, Y. “Green” anionic wormlike micelles induced by choline. RSC Adv. 2012, 2, 3396–3402. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, H.; Zhong, Y.; Jiang, L.; Xu, M.; Zhu, X.; Hao, J. Bilayers at high pH in the fatty acid soap systems and the applications for the formation of foams and emulsions. J. Phys. Chem. B 2015, 119, 10760–10767. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, H.; Song, A.; Hao, J. Bilayers and wormlike micelles at high pH in fatty acid soap systems. J. Colloid Interface Sci. 2016, 465, 304–310. [Google Scholar] [CrossRef]
- Xu, H.; Liang, X.; Zhang, Y.; Gao, M.; Du, N.; Hou, W. An aqueous two-phase system formed in single-component solution of α-ketooctanoic acid. RSC Adv. 2021, 11, 34245–34249. [Google Scholar] [CrossRef]
- Liu, H.; Meng, X.; Li, L.; Hu, X.; Fang, Y.; Xia, Y. Synergistic effect on antioxidant activity of vitamin C provided with acidic vesiculation of hybrid fatty acids. J. Funct. Foods 2021, 85, 104647. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Mancuso, A.; Fresta, M.; Torella, D.; De Gaetano, F.; Ventura, C.A.; Paolino, D. Topical unsaturated fatty acid vesicles improve antioxidant activity of ammonium glycyrrhizinate. Pharmaceutics 2021, 13, 548. [Google Scholar] [CrossRef]
- Guo, X.; Yang, J. Preparation of oleic acid-carboxymethylcellulose sodium composite vesicle and its application in encapsulating nicotinamide. Polym. Int. 2021, 70, 1604–1611. [Google Scholar] [CrossRef]
- Yue, W.; Li, X.; Jing, J.; Qi, J.; Dai, S.; Lu, H.; Huang, Z. The green CO2-controllable fatty acid-based deep eutectic solvents for sustainable oil separation. J. Mol. Liq. 2023, 378, 121590. [Google Scholar] [CrossRef]
- Han, H.; Yin, W.; Yang, B.; Wang, D.; Yao, J.; Zhu, Z. Adsorption behavior of sodium oleate on iron minerals and its effect on flotation kinetics. Colloids Surf. A 2022, 647, 129108. [Google Scholar] [CrossRef]
- Klein, R.; Touraud, D.; Kunz, W. Choline carboxylate surfactants: Biocompatible and highly soluble in water. Green Chem. 2008, 10, 433–435. [Google Scholar] [CrossRef]
- Bhadani, A.; Kafle, A.; Ogura, T.; Akamatsu, M.; Sakai, K.; Sakai, H.; Abe, M. Current perspective of sustainable surfactants based on renewable building blocks. Curr. Opin. Colloid Interface Sci. 2020, 45, 124–135. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Gang, H.-Z.; Zhou, L.; Liu, J.-F.; Mu, B.-Z.; Yang, S.-Z. A high yield method for the direct amidation of long-chain fatty acids. Int. J. Chem. Kinet. 2020, 52, 99–108. [Google Scholar] [CrossRef]
- Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzywicki, T. Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 1999, 283, 816–819. [Google Scholar] [CrossRef]
- Dubois, M.; Deme, B.; Gulik-Krzywicki, T.; Dedieu, J.C.; Vautrin, C.; Desert, S.; Perez, E.; Zemb, T. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 2001, 411, 672–675. [Google Scholar] [CrossRef]
- Zhang, J.; Pi, B.; Wang, X.; Yang, Z.; Lv, Q.; Lin, M. Formation of polyhedral vesicle gels from catanionic mixtures of hydrogenated and perfluorinated surfactants: Effect of fluoro-carbon alkyl chain lengths. Soft Matter 2018, 14, 8231–8238. [Google Scholar] [CrossRef]
- Song, A.X.; Dong, S.L.; Jia, X.F.; Hao, J.C.; Liu, W.M.; Liu, T.B. An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew. Chem. Int. Ed. 2005, 44, 4018–4021. [Google Scholar] [CrossRef]
- Fameau, A.-L.; Zemb, T. Self-assembly of fatty acids in the presence of amines and cationic components. Adv. Colloid Interface Sci. 2014, 207, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.P. Self-assembly of hollow cones in a bola-amphiphile/hexadiamine salt solution. J. Am. Chem. Soc. 2005, 127, 15694–15695. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.P.; Gaillard, C.; Navailles, L.; Nallet, F. Novel lipid system forming hollow microtubes at high yields and concentration. Langmuir 2006, 22, 2942–2945. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.-P.; Navailles, L.; Nallet, F. Self-assembly of fatty acid-alkylboladiamine salts. Langmuir 2006, 22, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Novales, B.; Navailles, L.; Axelos, M.; Nallet, F.; Douliez, J.P. Self-assembly of fatty acids and hydroxyl derivative salts. Langmuir 2008, 24, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Chen, X.; Li, Z. Formation of pyrrolidinium fatty acid soap and its lyotropic liquid crystalline phase behavior. Colloids Surf., A 2013, 426, 55–62. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, X.; Zhao, O.; Liu, S.; Liu, C.; Wang, J.; Huang, J. The evolution of self-assemblies in the mixed system of oleic acid–diethylenetriamine based on the transformation of electrostatic interactions and hydrogen bonds. Soft Matter 2014, 10, 8023–8030. [Google Scholar] [CrossRef]
- Zana, R. Partial phase behavior and micellar properties of tetrabutylammonium salts of fatty acids: Unusual solubility in water and formation of unexpectedly small micelles. Langmuir 2004, 20, 5666–5668. [Google Scholar] [CrossRef]
- Klein, R.; Kellermeier, M.; Drechsler, M.; Touraud, D.; Kunz, W. Solubilisation of stearic acid by the organic base choline hydroxide. Colloids Surf. A 2009, 338, 129–134. [Google Scholar] [CrossRef]
- Klein, R.; Tiddy, G.J.T.; Maurer, E.; Touraud, D.; Esquena, J.; Tache, O.; Kunz, W. Aqueous phase behaviour of choline carboxylate surfactants—Exceptional variety and extent of cubic phases. Soft Matter 2011, 7, 6973–6983. [Google Scholar] [CrossRef]
- Crespo, E.A.; Silva, L.P.; Martins, M.A.R.; Fernandez, L.; Ortega, J.; Ferreira, O.; Sadowski, G.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Characterization and modeling of the liquid phase of deep eutectic solvents based on fatty acids/alcohols and choline chloride. Ind. Eng. Chem. Res. 2017, 56, 12192–12202. [Google Scholar] [CrossRef]
- Ali, M.K.; Moshikur, R.M.; Wakabayashi, R.; Tahara, Y.; Moniruzzaman, M.; Kamiya, N.; Goto, M. Synthesis and characterization of choline-fatty-acid-based ionic liquids: A new biocompatible surfactant. J. Colloid Interface Sci. 2019, 551, 72–80. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Fameau, A.-L.; Houinsou-Houssou, B.; Ventureira, J.L.; Navailles, L.; Nallet, F.; Novales, B.; Douliez, J.-P. Self-assembly, foaming, and emulsifying properties of sodium alkyl carboxylate/guanidine hydrochloride aqueous mixtures. Langmuir 2011, 27, 4505–4513. [Google Scholar] [CrossRef]
- Firouzi, A.; Schaefer, D.J.; Tolbert, S.H.; Stucky, G.D.; Chmelka, B.F. Magnetic-field-induced orientational ordering of alkaline lyotropic silicate−surfactant liquid crystals. J. Am. Chem. Soc. 1997, 119, 9466–9477. [Google Scholar] [CrossRef]
- Yethiraj, A.; Capitani, D.; Burlinson, N.E.; Burnell, E.E. An NMR study of translational diffusion and structural anisotropy in magnetically alignable nonionic surfactant mesophases. Langmuir 2005, 21, 3311–3321. [Google Scholar] [CrossRef]
- Xu, W.; Song, A.; Dong, S.; Chen, J.; Hao, J. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions. Langmuir 2013, 29, 12380–12388. [Google Scholar] [CrossRef]
- Song, S.; Zheng, Q.; Song, A.; Hao, J. Self-assembled aggregates originated from the balance of hydrogen-bonding, electrostatic, and hydrophobic interactions. Langmuir 2012, 28, 219–226. [Google Scholar] [CrossRef]
- Khan, A.; Fontell, K.; Lindblom, G.; Lindman, B. Liquid crystallinity in a calcium surfactant system. Phase equilibriums and phase structures in the system calcium octyl sulfate/decan-1-ol/water. J. Phys. Chem. 1982, 86, 4266–4271. [Google Scholar] [CrossRef]
- Shi, L.; Wei, Y.; Sun, N.; Zheng, L. First observation of rich lamellar structures formed by a single-tailed amphiphilic ionic liquid in aqueous solutions. Chem. Commun. 2013, 49, 11388–11390. [Google Scholar] [CrossRef]
- Douliez, J.-P.; Houssou, B.H.; Fameau, A.L.; Navailles, L.; Nallet, F.; Grélard, A.; Dufourc, E.J.; Gaillard, C. Self-assembly of bilayer vesicles made of saturated long chain fatty acids. Langmuir 2016, 32, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Apel, C.L.; Deamer, D.W.; Mautner, M.N. Self-assembled vesicles of monocarboxylic acids and alcohols: Conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta 2002, 1559, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fameau, A.-L.; Cousin, F.; Navailles, L.; Nallet, F.; Boue, F.; Douliez, J.-P. Multiscale structural characterizations of fatty acid multilayered tubes with a temperature-tunable diameter. J. Phys. Chem. B 2011, 115, 9033–9039. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.-P.; Pontoire, B.; Gaillard, C. Lipid tubes with a temperature-tunable diameter. ChemPhysChem 2006, 7, 2071–2073. [Google Scholar] [CrossRef]
- Braun, L.; Engelhardt, N.; Engert, S.C.; Lichterfeld-Weber, N.; Oetter, G.; Raths, H.C.; Tropsch, J.; Kunz, W.; Kellermeier, M. Alkylether derivatives of choline as cationic surfactants for the design of soluble catanionic systems at ambient conditions. J. Mol. Liq. 2023, 370, 121033. [Google Scholar] [CrossRef]
- Vautrin, C.; Zemb, T.; Schneider, M.; Tanaka, M. Balance of pH and ionic strength Influences on chain melting transition in catanionic vesicles. J. Phys. Chem. B 2004, 108, 7986–7991. [Google Scholar] [CrossRef]
- Fameau, A.L.; Cousin, F.; Saint-Jalmes, A. Morphological transition in fatty acid self-assemblies: A process driven by the interplay between the chain-melting and surface-melting process of the hydrogen bonds. Langmuir 2017, 33, 12943–12951. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Elsevier: London, UK, 2010. [Google Scholar]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Kanicky, J.R.; Shah, D.O. Effect of premicellar aggregation on the pKa of fatty acid soap solutions. Langmuir 2003, 19, 2034–2038. [Google Scholar] [CrossRef]
- Xu, H.; Du, N.; Song, Y.; Song, S.; Hou, W. Vesicles of 2-ketooctanoic acid in water. Soft Matter 2017, 13, 2246–2252. [Google Scholar] [CrossRef]
- Aussenac, F.; Lavigne, B.; Dufourc, E.J. Toward bicelle stability with ether-linked phospholipids: temperature, composition, and hydration diagrams by 2H and 31P solid-state NMR. Langmuir 2005, 21, 7129–7135. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liang, X.; Lu, S.; Gao, M.; Wang, S.; Li, Y. Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide. Molecules 2023, 28, 7463. https://doi.org/10.3390/molecules28227463
Xu H, Liang X, Lu S, Gao M, Wang S, Li Y. Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide. Molecules. 2023; 28(22):7463. https://doi.org/10.3390/molecules28227463
Chicago/Turabian StyleXu, Huifang, Xin Liang, Song Lu, Meihua Gao, Sijia Wang, and Yuanyuan Li. 2023. "Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide" Molecules 28, no. 22: 7463. https://doi.org/10.3390/molecules28227463
APA StyleXu, H., Liang, X., Lu, S., Gao, M., Wang, S., & Li, Y. (2023). Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide. Molecules, 28(22), 7463. https://doi.org/10.3390/molecules28227463