Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1
Abstract
:1. Introduction
2. Results
2.1. Gene Cloning and Analysis of PpBGal42A
2.2. Expression and Purification of Recombinant PpBGal42A
2.3. Characterization of Recombinant PpBGal42A
2.4. Substrate Specificity of PpBGal42A
2.5. Hydrolysis of Lactose
2.6. PpBGal42A and Pectinase Display Synergistic Activity in Degrading Citrus Pectin
3. Discussion
4. Materials and Methods
4.1. Strains and Reagents
4.2. Sequence Analysis and Modeling of PpBGal42A
4.3. Construction of Plasmids and Strains
4.4. Expression and Purification of Recombinant PpBGal42A
4.5. Characterization of Recombinant PpBGal42A
4.6. Substrate Specificity
4.7. Hydrolysis of Lactose
4.8. Synergistic Action of PpBGal42A with Pectinase with Citrus Pectin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, R.; Oh, D.K. Galacto-oligosaccharide production using microbial β-galactosidase: Current state and perspectives. Appl. Microbiol. Biot. 2010, 85, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Usvalampi, A.; Maaheimo, H.; Tossavainen, O.; Frey, A.D. Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures. Glycoconj. J. 2018, 35, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Satar, R. Recombinant β-galactosidases-Past, present and future: A minireview. J. Mol. Catal. B-Enzym. 2012, 81, 1–6. [Google Scholar] [CrossRef]
- Oliveira, C.; Guimaraes, P.M.; Domingues, L. Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol. Adv. 2011, 29, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.S.; Buter, N.; Stumpf, C.; Wickens, M. Analyzing mRNA-protein complexes using a yeast three-hybrid system. Methods 2002, 26, 123–141. [Google Scholar] [CrossRef]
- Andreani, E.S.; Karboune, S. Comparison of enzymatic and microwave-assisted alkaline extraction approaches for the generation of oligosaccharides from American Cranberry (Vaccinium macrocarpon) Pomace. J. Food Sci. 2020, 85, 2443–2451. [Google Scholar] [CrossRef]
- Arijit, N.; Subhoshmita, M.; Sudip, C.; Chiranjib, B.; Ranjana, C. Production, purification, characterization, immobilization, and application of β-galactosidase: A review. Asia-Pac. J. Chem. Eng. 2014, 9, 330–348. [Google Scholar]
- Bauer, S.; Vasu, P.; Persson, S.; Mort, A.J.; Somerville, C.R. Development and application of a suite of polysaccharide-degrading enzymes or analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 2006, 103, 11417–11422. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Z.F.; Zeng, X.X.; Weng, P.F.; Zhang, X.; Wang, C.Y. A novel cold-adapted phospho-beta-galactosidase from Bacillus velezensis and its potential application for lactose hydrolysis in milk. Int. J. Biol. Macromol. 2021, 166, 760–770. [Google Scholar] [CrossRef]
- Mistry, R.H.; Liu, F.; Borewicz, K.; Lohuis, M.A.M.; Smidt, H.; Verkade, H.J.; Tietge, U.J.F. Long-Term β-galacto-oligosaccharides Supplementation Decreases the Development of Obesity and Insulin Resistance in Mice Fed a Western-Type Diet. Mol. Nutr. Food Res. 2020, 64, e1900922. [Google Scholar] [CrossRef]
- Viborg, A.H.; Katayama, T.; Arakawa, T.; Hachem, M.A.; Leggio, L.L.; Kitaoka, M.; Svensson, B.; Fushinobu, S. Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42. J. Biol. Chem. 2017, 292, 21092–21101. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Hyun, Y.J.; Kim, D.H. Cloning and characterization of α-L-arabinofuranosidase and bifunctional α-L-arabinopyranosidase/β-D-galactopyranosidase from Bifidobacterium longum H-1. J. Appl. Microbiol. 2011, 111, 1097–1107. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, J.M.; Chun, S.; Park, H.Y.; Taek, W. Enzymatic Biotransformation of Ginsenoside Rb2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens. J. Microbiol. Biotechnol. 2020, 30, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Eda, M.; Ishimaru, M.; Tada, T.; Sakamoto, T.; Gross, K.C. Enzymatic activity and substrate specificity of the recombinant tomato β-galactosidase 1. J. Plant Physiol. 2014, 171, 1454–1460. [Google Scholar] [CrossRef]
- An, G.; Hidaka, K.; Siminovitch, L. Expression of bacterial β-galactosidase in animal cells. Mol. Cell. Biol. 1982, 2, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Guo, L.; Wang, K.; Liu, Y.; Xiao, M. β-galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnol. Adv. 2019, 39, 107465. [Google Scholar] [CrossRef]
- Shin, H.Y.; Park, S.Y.; Sung, J.H.; Kim, D.H. Purification and characterization of α-L-arabinopyranosidase and α-L-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol. 2003, 69, 7116–7123. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.H.; Wang, C.; Jin, Y.; Wang, T.R.; Kim, Y.J.; Yang, D.C. Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3. Antonie Van Leeuwenhoek 2013, 104, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, S.; Wang, M.; Cao, R.; Zhang, R.; Zhan, R.; Wang, K. A novel glycoside hydrolase family 42 enzyme with bifunctional beta-galactosidase and α-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation. Int. J. Biol. Macromol. 2019, 140, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Tabaccloni, S. Ecology and biotechnological potential of Paenibacillus polymyxa: A minireview. Indian J. Microbiol. 2009, 49, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, X.Y.; Zhao, Y.; Zhang, H.; Zhou, Y.F.; Gao, J. A Novel PL9 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Its Application in Pectin Degradation. Int. J. Mol. Sci. 2019, 20, 3060. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Y.; Zhang, X.; Li, Y.; Zhou, Y.; Gao, J. Screening of a Novel Polysaccharide Lyase Family 10 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression and Characterization. Molecules 2018, 23, 2774. [Google Scholar] [CrossRef] [PubMed]
- Maksimainen, M.; Hakulinen, N.; Rouvinen, J. Crystal structure of β-galactosidase from Bacillus circulans sp. alkalophilus in complex with galactose. FEBS J. 2012, 279, 1788–1798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Fan, Y.T. Crystal structure analysis of the cold-adamped beta-galactosidase from Rahnella sp. R3. Protein Expr. Purif. 2015, 115, 158–164. [Google Scholar]
- Solomon, H.V.; Tabachnikov, O.; Feinberg, H.; Govada, L.; Chayen, N.E.; Shoham, Y.; Shoham, G. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013, 69, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Viborg, A.H.; Fredslund, F.; Katayama, T.; Nielsen, S.K.; Svensson, B.; Kitaoka, M.; Lo, L.L.; Abou, H.M. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium. Mol. Microbiol. 2014, 94, 1024–1040. [Google Scholar] [CrossRef] [PubMed]
- Solomon, H.V.; Tabachnikov, O.; Lansky, S.; Salama, R.; Feinberg, H.; Shoham, Y.; Shoham, G. Structure-function relationships in Gan42B, an intracellular GH42 betagalactosidase from Geobacillus stearothermophilus. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 2433–2448. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Jelen, P. Lactose hydrolysis in milk as affected by neutralizers used for the preparation of crude β-galactosidase extracts from Lactobacillus bulgaricus 11842. Innov. Food Sci. Emerg. Technol. 2002, 3, 175–184. [Google Scholar] [CrossRef]
- Li, N.; Liu, Y.; Wang, C.; Weng, P.; Wu, Z.; Zhu, Y. Overexpression and characterization of a novel GH4 galactosidase with β-galactosidase activity from Bacillus velezensis SW5. J. Dairy Sci. 2021, 104, 9465–9477. [Google Scholar] [CrossRef] [PubMed]
- Mulualem, D.M.; Agbavwe, C.; Ogilvie, L.A.; Jones, B.V.; Kilcoyne, M.; Byrne, C.; Boyd, A. Metagenomic identification, purification and characterisation of the Bifidobacterium adolescentis BgaC β-galactosidase. Appl. Microbiol. Biotechnol. 2021, 105, 1063–1078. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef]
- Viborg, A.H.; Katayama, T.; Abou, H.M.; Andersen, M.C.; Nishimoto, M.; Clausen, M.H.; Urashima, T.; Svensson, B.; Kitaoka, M. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 2014, 24, 208–216. [Google Scholar] [CrossRef]
- Hinz, S.W.; van den Brock, L.A.; Beldman, G.; Vincken, J.P.; Voragen, A.G. Beta-galactosidase from Bifidobacterium adolescentis DSM20083 prefers β(1,4)-galactosides over lactose. Appl. Microbiol. Biotechnol. 2004, 66, 276–284. [Google Scholar] [CrossRef]
- Dekker, P.; Koenders, D.; Bruins, M.J. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef]
- Nivetha, A.; Mohanasrinivasan, V. Mini review on role of β-galactosidase in lactose intolerance. Mater. Sci. Eng. 2017, 263, 022046. [Google Scholar]
- Husain, Q. β galactosidases and their potential applications: A review. Crit. Rev. Biotechnol. 2010, 30, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, A.; Murashima, K.; Doi, R.H. Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J. Bacteriol. 2002, 184, 6859–6865. [Google Scholar] [CrossRef]
- Tabachnikov, O.; Shoham, Y. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J. 2013, 280, 950–964. [Google Scholar] [CrossRef]
- Bhanja, S.K.; Rout, D.; Patra, P.; Nandan, C.K.; Behera, B.; Maiti, T.K.; Islam, S.S. Structural studies of an immunoenhancing glucan of an ectomycorrhizal fungus Ramaria botrytis. Carbohydr. Res. 2013, 374, 59–66. [Google Scholar] [CrossRef]
- Ling, N.X.; Pettolino, F.; Liao, M.L.; Bacic, A. Preparation of a new chromogenic substrate to assay for β-galactanases that hydrolyse type II arabino-3,6-galactans. Carbohydr. Res. 2009, 344, 1941–1946. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Gouet, P.; Robert, X. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, 320–324. [Google Scholar]
- Aemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, L.; Feng, Z.; Wang, H.; Mayo, K.H.; Zhou, Y.; Tai, G. Preparation of individual galactan oligomers, their prebiotic effects, and use in estimating galactan chain length in pectin-derived polysaccharides. Carbohydr. Polym. 2018, 199, 526–533. [Google Scholar] [CrossRef]
- McCleary, B.V.; McGeough, P. A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of Endo-1,4-β-xylanase. Appl. Biochem. Biotechnol. 2015, 177, 1152–1163. [Google Scholar] [CrossRef] [PubMed]
Metal Ions or Chemicals | 5 mM | 50 mM |
---|---|---|
Relative Activity (%) | Relative Activity (%) | |
None | 100 ± 2.1 | |
NaCl | 114.9 ± 6.7 | 90.2 ± 5.2 |
KCl | 114.9 ± 5.4 | 83.0 ± 3.1 |
LiCl | 108.8 ± 8.1 | 79.9 ± 9.2 |
CaCl2 | 110.2 ± 9.1 | 82.7 ± 3.5 |
MgCl2 | 87.7 ± 10.9 | 58.4 ± 5.8 |
BaCl2 | 90.2 ± 7.1 | 40.1 ± 4.6 |
MnCl2 | - | - |
FeSO4 | 9.8 ± 0.1 | - |
HgCl2 | - | - |
CuCl2 | - | - |
NiCl2 | 54.9 ± 3.8 | - |
ZnCl2 | 1.3 ± 2.2 | - |
EDTA | 92.2 ± 8.9 | 68.3 ± 3.4 |
DTT | 98.0 ± 10.1 | 74.4 ± 5.1 |
Substrate | Specific Activities (%) |
---|---|
pNP-β-D-galactopyranoside (pNPG) | 100.0 |
pNP-α-D-galactopyranoside | <0.1 |
pNP-α-L-arabinopyranoside | 56.7 |
pNP-α-L-arabinofuranoside | <0.1 |
pNP-α-D-glucopyranoside | <0.1 |
pNP-β-D-glucopyranoside | <0.1 |
pNP-α-D-mannopyranoside | <0.1 |
pNP-β-D-mannopyranoside | <0.1 |
pNP-α-D-xylopyranoside | <0.1 |
pNP-β-D-xylopyranoside | <0.1 |
pNP-α-L-fucopyranoside | <0.1 |
pNP-α-L-rhamnopyranoside | <0.1 |
Yield of Relaesing Sugar, μg | |
---|---|
pectin + pectinase | 579.1 ± 5.8 |
pectin + PpBGal42A | 3.5 ± 0.3 |
pectin + pectinase + PpBGal42A | 641.9 ± 6.2 |
Organism (Enzyme) | Family | Optimal Reaction Temperature (°C) | Thermal Stability Range (°C) | Optimal pH | Thermal Stability pH | Hydrolysis Property | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (min/h) | Residual Activity (%) | pH (min/h) | Residual Activity (%) | Activity for pNP | Activity for Disaccharides/Rb2 | Activity for Polysaccharides | Hydrolysis of Lactose | |||||
Paenibacillus polymyxa KF-1 (PpBGal42A) | 42 | 30 | 20–30 (6 h) | 90% | 6.0 | 7–8 (12 h) | 95% | pNPG, pNPA | β-1,3-galactobiose, β-1,4-galactobiose, β-1,6-galactobiose, Rb2 | AGP-I, potato galactan, dGA | 82% (24 h) | This study |
Bacillus sp. KW1 (BaBgal42A) | 42 | 45 | 30–45 (12 h) | 75% | 6.5 | 6.0–7.5 (12 h) | 65% | pNPG, oNPG, pNPA, pNPF | NR | Galactan, arabinan, wheat arabinoxylan | 80% (32 h) | [19] |
Bififidobacterium longum H-1 (Apy-H1) | 3 | 48 | NR | NR | 6.8 | NR | NR | pNPG, pNPA | NR | NR | NR | [12] |
Clostridium cellulovorans (BgaA) | 42 | 30–40 | 50 (20 min) | 0 | 6.0 | 6.0–8.0 | NR | pNPG, pNPA, pNPF | NR | Arabinogalactan (larch wood) | NR | [34] |
Geobacillus (Gan42B) | 42 | 53 | NR | NR | 6.0 | NR | NR | pNPG, pNPA, pNPF | β-1,4-galactobiose, Rb2 | β-1,4-galacto-oligosaccharides | 0 | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Wang, Y.; Zhou, A.; He, S.; Mao, Z.; Cao, T.; Wang, N.; Yuan, Y. Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1. Molecules 2023, 28, 7464. https://doi.org/10.3390/molecules28227464
Cui J, Wang Y, Zhou A, He S, Mao Z, Cao T, Wang N, Yuan Y. Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1. Molecules. 2023; 28(22):7464. https://doi.org/10.3390/molecules28227464
Chicago/Turabian StyleCui, Jing, Yibing Wang, Andong Zhou, Shuhui He, Zihan Mao, Ting Cao, Nan Wang, and Ye Yuan. 2023. "Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1" Molecules 28, no. 22: 7464. https://doi.org/10.3390/molecules28227464
APA StyleCui, J., Wang, Y., Zhou, A., He, S., Mao, Z., Cao, T., Wang, N., & Yuan, Y. (2023). Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1. Molecules, 28(22), 7464. https://doi.org/10.3390/molecules28227464