Emerging Developments in Separation Techniques and Analysis of Chiral Pharmaceuticals
Abstract
:1. Introduction
1.1. Importance of Chiral Separation
1.2. CE for Chiral Drugs Analysis
Chiral Drug Separations for CE
1.3. HPLC for Chiral Drugs Analysis
HPLC for Chiral Drug Separations
1.4. Nonsteroidal Anti-Inflammatory Drug (NSAID)
1.4.1. Ibuprofen
1.4.2. Ketoprofen
1.5. Pseudoephedrine Hydrochloride
1.6. Microfluidics System
1.7. Monolithic Column
2. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Toyo’oka, T.; Ishibashi, M.; Terao, T. Fluorescent Chiral Derivatization Reagents for Carboxylic Acid Enantiomers in High-Performance Liquid Chromatography. Analyst 1992, 117, 727–733. [Google Scholar] [CrossRef]
- Aydoğan, C.; Erdoğan, İ.Y.; El-Rassi, Z. Hydrophobic AEROSIL®R972 Fumed Silica Nanoparticles Incorporated Monolithic Nano-Columns for Small Molecule and Protein Separation by Nano-Liquid Chromatography. Molecules 2022, 27, 2306. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Ikai, T. Chiral HPLC for Efficient Resolution of Enantiomers. Chem. Soc. Rev. 2008, 37, 2593–2608. [Google Scholar] [CrossRef] [PubMed]
- Xiang, P.; Yang, Y.; Zhao, Z.; Chen, M.; Liu, S. Ultrafast Gradient Separation with Narrow Open Tubular Liquid Chromatography. Anal. Chem. 2019, 91, 10738–10743. [Google Scholar] [CrossRef] [PubMed]
- Abushoffa, A.M.; Fillet, M.; Hubert, P.; Crommen, J. Prediction of Selectivity for Enantiomeric Separations of Uncharged Compounds by Capillary Electrophoresis Involving Dual Cyclodextrin Systems. J. Chromatogr. A 2002, 948, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Michishita, T.; Franco, P.; Zhang, T. New Approaches of LC-MS Compatible Method Development on A1-Acid Glycoprotein-Based Stationary Phase for Resolution of Enantiomers by HPLC. J. Sep. Sci. 2010, 33, 3627–3637. [Google Scholar] [CrossRef]
- Aydoǧan, C.; Rigano, F.; Krčmová, L.K.; Chung, D.S.; MacKa, M.; Mondello, L. Miniaturized LC in Molecular Omics. Anal. Chem. 2020, 92, 11485–11497. [Google Scholar] [CrossRef]
- Liu, L.-B.; Zheng, Z.X.; Lin, J.M. Application of Dimethyl-β-Cyclodextrin as a Chiral Selector in Capillary Electrophoresis for Enantiomer Separation of Ephedrine and Related Compounds in Some Drugs. Biomed. Chromatogr. 2005, 19, 447–453. [Google Scholar] [CrossRef]
- Cui, X.; Liang, C.; Gong, F.; Wang, R.; Ni, C.; Wu, Y.; Chen, G.; Zhang, Y. Simultaneous Chiral Analysis of Amphetamine-type Stimulants and Ephedrine by Capillary Electrophoresis Coupled to Time-of-flight Mass Spectrometry. Chirality 2018, 30, 1079–1087. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, J.; Li, L.; Tang, Z. Nanoporous Materials for Chiral Resolution. Coord. Chem. Rev. 2020, 425, 213481. [Google Scholar] [CrossRef]
- Zou, J.; Zhao, G.Q.; Zhao, G.L.; Yu, J.G. Fast and Sensitive Recognition of Enantiomers by Electrochemical Chiral Analysis: Recent Advances and Future Perspectives. Coord. Chem. Rev. 2022, 471, 214732. [Google Scholar] [CrossRef]
- Chankvetadze, B. Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography: An Overview. Methods Mol. Biol. 2019, 1985, 93–126. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.E.; El Gohary, N.A.; Aboushady, D.; Samir, L.; Karim, S.E.A.; Herz, M.; Salman, B.I.; Al-Harrasi, A.; Hanafi, R.; El Deeb, S. Recent Advances in Chiral Selectors Immobilization and Chiral Mobile Phase Additives in Liquid Chromatographic Enantio-Separations: A Review. J. Chromatogr. A 2023, 1706, 464214. [Google Scholar] [CrossRef] [PubMed]
- Hühnerfuss, H.; Shah, M.R. Enantioselective Chromatography—A Powerful Tool for the Discrimination of Biotic and Abiotic Transformation Processes of Chiral Environmental Pollutants. J. Chromatogr. A 2009, 1216, 481–502. [Google Scholar] [CrossRef]
- Ai, Y.; Zhang, F.; Wang, C.; Xie, R.; Liang, Q. Recent Progress in Lab-on-a-Chip for Pharmaceutical Analysis and Pharmacological/Toxicological Test. TrAC Trends Anal. Chem. 2019, 117, 215–230. [Google Scholar] [CrossRef]
- Ramos-Payan, M.; Maspoch, S.; Llobera, A. An Effective Microfluidic Based Liquid-Phase Microextraction Device (ΜLPME) for Extraction of Non-Steroidal Anti-Inflammatory Drugs from Biological and Environmental Samples. Anal. Chim. Acta 2016, 946, 56–63. [Google Scholar] [CrossRef]
- Baharfar, M.; Yamini, Y.; Seidi, S.; Karami, M. Quantitative Analysis of Clonidine and Ephedrine by a Microfluidic System: On-Chip Electromembrane Extraction Followed by High Performance Liquid Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1068–1069, 313–321. [Google Scholar] [CrossRef]
- Wang, B.; He, J.; Bianchi, V.; Shamsi, S.A. Combined Use of Chiral Ionic Liquid and Cyclodextrin for MEKC: Part I. Simultaneous Enantioseparation of Anionic Profens. Electrophoresis 2009, 30, 2812–2819. [Google Scholar] [CrossRef]
- Busby, M.B.; Lim, P.; Vigh, G. Synthesis, Analytical Characterization and Use of Octakis(2,3-Di-O-Methyl-6-O-Sulfo)-γ-Cyclodextrin, a Novel, Single-Isomer, Chiral Resolving Agent in Low-PH Background Electrolytes. Electrophoresis 2003, 24, 351–362. [Google Scholar] [CrossRef]
- Rousseau, A.; Pedrini, M.; Chiap, P.; Ivanyi, R.; Crommen, J.; Fillet, M.; Servais, A.C. Determination of Flurbiprofen Enantiomers in Plasma Using a Single-Isomer Amino Cyclodextrin Derivative in Nonaqueous Capillary Electrophoresis. Electrophoresis 2008, 29, 3641–3648. [Google Scholar] [CrossRef]
- Liu, S.; Peng, J.; Zhang, H.; Li, X.; Liu, Z.; Kang, X.; Wu, M.; Wu, R. Preparation of Organic-Silica Hybrid Monolithic Columns via Crosslinking of Functionalized Mesoporous Carbon Nanoparticles for Capillary Liquid Chromatography. J. Chromatogr. A 2017, 1498, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H.; Ku, W.W. Chiral Stationary Phases for the Gas-Liquid Chromatographic Separation of Enantiomers. J. Chromatogr. A 1983, 271, 309–323. [Google Scholar] [CrossRef]
- Wilson, S.R.; Vehus, T.; Berg, H.S.; Lundanes, E. Nano-LC in Proteomics: Recent Advances and Approaches. Bioanalysis 2015, 7, 1799–1815. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.R.; Olsen, C.; Lundanes, E. Nano Liquid Chromatography Columns. Analyst 2019, 144, 7090–7104. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, V.; Giuffrida, A.; Grasso, G.; Maccarrone, G.; Messina, M. Simultaneous Separation of Different Enantiomeric Pairs in Capillary Electrophoresis by Mixing Different Hemispherodextrins, a Very Versatile Class of Receptors. J. Chromatogr. A 2002, 979, 137–145. [Google Scholar] [CrossRef]
- Ma, X.; Cao, J.; Yu, J.; Cai, L. Evaluation of an Ionic Liquid Chiral Selector Based on Sulfobutylether-β-Cyclodextrin in Capillary Electrophoresis. J. Mol. Liq. 2022, 362, 119782. [Google Scholar] [CrossRef]
- Chen, B.; You, H.; Fang, L.; Lin, T.; Xu, P.; Chu, C.; Tong, S. Enantioseparation of Five Racemic N-Alkyl Drugs by Reverse Phase HPLC Using Sulfobutylether-β-Cyclodextrin as a Chiral Mobile Phase Additive. J. Sep. Sci. 2022, 45, 1847–1855. [Google Scholar] [CrossRef]
- Bentley, R. Diastereoisomerism, Contact Points, and Chiral Selectivity: A Four-Site Saga. Arch. Biochem. Biophys. 2003, 414, 1–12. [Google Scholar] [CrossRef]
- Sharma, N.; Baldi, A. Exploring Versatile Applications of Cyclodextrins: An Overview. Drug Deliv. 2016, 23, 739–757. [Google Scholar] [CrossRef]
- Lubomirsky, E.; Khodabandeh, A.; Preis, J.; Susewind, M.; Hofe, T.; Hilder, E.F.; Arrua, R.D. Polymeric Stationary Phases for Size Exclusion Chromatography: A Review. Anal. Chim. Acta 2021, 1151, 338244. [Google Scholar] [CrossRef]
- Tsarenko, E.; Schubert, U.S.; Nischang, I. Nanoparticle Formulation Composition Analysis by Liquid Chromatography on Reversed-Phase Monolithic Silica. Anal. Chem. 2022, 95, 565–569. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Yang, C.; Qin, F.; Zhang, B. Segmented Microfluidics-Based Packing Technology for Chromatographic Columns. Anal. Chem. 2021, 93, 8450–8458. [Google Scholar] [CrossRef] [PubMed]
- Główka, F.; Karaźniewicz, M. Enantioselective CE Method for Pharmacokinetic Studies on Ibuprofen and Its Chiral Metabolites with Reference to Genetic Polymorphism. Electrophoresis 2007, 28, 2726–2737. [Google Scholar] [CrossRef] [PubMed]
- Główka, F.K.; Karaźniewicz, M. Resolution of Indobufen Enantiomers by Capillary Zone Electrophoresis Pharmacokinetic Studies of Human Serum. J. Chromatogr. A 2004, 1032, 219–225. [Google Scholar] [CrossRef]
- Magnusson, J.; Wan, H.; Blomberg, L.G. Illustration of a Single and Versatile Scheme for Reversing Enantiomeric Elution Order and Facilitating Enantiomeric Impurity Determination in Capillary Electrophoresis. Electrophoresis 2002, 23, 3013–3019. [Google Scholar] [CrossRef] [PubMed]
- Matthijs, N.; Van Hemelryck, S.; Maftouh, M.; Massart, D.L.; Vander Heyden, Y. Electrophoretic Separation Strategy for Chiral Pharmaceuticals Using Highly-Sulfated and Neutral Cyclodextrins Based Dual Selector Systems. Anal. Chim. Acta 2004, 525, 247–263. [Google Scholar] [CrossRef]
- Sun, J.; Ma, S.; Liu, B.; Yu, J.; Guo, X. A Fully Derivatized 4-Chlorophenylcarbamate-β-Cyclodextrin Bonded Chiral Stationary Phase for Enhanced Enantioseparation in HPLC. Talanta 2019, 204, 817–825. [Google Scholar] [CrossRef]
- François, Y.; Varenne, A.; Juillerat, E.; Villemin, D.; Gareil, P. Evaluation of Chiral Ionic Liquids as Additives to Cyclodextrins for Enantiomeric Separations by Capillary Electrophoresis. J. Chromatogr. A 2007, 1155, 134–141. [Google Scholar] [CrossRef]
- Lambert, A.; Ballon, J.-M.; Nicolas, A. Enantioseparation of Flobufen with Cyclodextrins Studied by Capillary Electrophoresis and NMR. Pharm. Res. 2001, 18, 886–893. [Google Scholar] [CrossRef]
- Quek, N.M.; Law, W.S.; Lau, H.F.; Zhao, J.H.; Hauser, P.C.; Li, S.F.Y. Determination of Pharmaceuticals Classified as Emerging Pollutants Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Electrophoresis 2008, 29, 3701–3709. [Google Scholar] [CrossRef]
- Vieira, A.T.; Assunção, R.M.N.; Faria, A.M. Stationary Phase Based on Cellulose Dodecanoate Physically Immobilized on Silica Particles for High-Performance Liquid Chromatography. J. Chromatogr. A 2018, 1572, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Vigh, G. Synthesis, Analytical Characterization and Initial Capillary Electrophoretic Use in Acidic Background Electrolytes of a New, Single-Isomer Chiral Resolving Agent: Hexakis (2,3-Di-O-Acetyl-6-O-Sulfo)-α-Cyclodextrin. Electrophoresis 2003, 24, 2487–2498. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Vigh, G. Single-Isomer Sulfated α-Cyclodextrins for Capillary Electrophoresis: Hexakis(2,3-Di-O-Methyl-6-O-Sulfo)-α -Cyclodextrin, Synthesis, Analytical Characterization, and Initial Screening Tests. Electrophoresis 2004, 25, 2657–2670. [Google Scholar] [CrossRef]
- Li, S.; Vigh, G. Single-Isomer Sulfated α-Cyclodextrins for Capillary Electrophoresis. Part 2. Hexakis(6-O-Sulfo)-α-Cyclodextrin: Synthesis, Analytical Characterization, and Initial Screening Tests. Electrophoresis 2004, 25, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Vigh, G. Capillary Electrophoretic Separation of Enantiomers in a High-PH Background Electrolyte by Means of the Single-Isomer Chiral Resolving Agent Octa(6-O-Sulfo)-γ-Cyclodextrin. J. Chromatogr. A 2003, 987, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhu, C.; Hao, A. Evaluation of Newly Synthesized Derivative of Cyclodextrin for the Capillary Electrophoretic Separation. J. Chromatogr. A 2004, 1059, 181–189. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, M.; Qi, X.; Zhu, C.; Hao, A. Capillary Zone Electrophoretic Chiral Discrimination Using 6-O-(2-Hydroxy-3-Trimethylammonioprophyl)-β-Cyclodextrin as a Chiral Selector. Electrophoresis 2006, 27, 872–879. [Google Scholar] [CrossRef]
- Hamoudová, R.; Pospíšilová, M. Determination of Ibuprofen and Flurbiprofen in Pharmaceuticals by Capillary Zone Electrophoresis. J. Pharm. Biomed. Anal. 2006, 41, 1463–1467. [Google Scholar] [CrossRef]
- Rousseau, A.; Chiap, P.; Ivanyi, R.; Crommen, J.; Fillet, M.; Servais, A.C. Validation of a Nonaqueous Capillary Electrophoretic Method for the Enantiomeric Purity Determination of R-Flurbiprofen Using a Single-Isomer Amino Cyclodextrin Derivative. J. Chromatogr. A 2008, 1204, 219–225. [Google Scholar] [CrossRef]
- Guo, C.; Xiao, Y. Negatively Charged Cyclodextrins: Synthesis and Applications in Chiral Analysis-A Review. Carbohydr. Polym. 2021, 256, 117517. [Google Scholar] [CrossRef]
- Ghanem, A.; Hoenen, H.; Aboul-Enein, H.Y. Application and Comparison of Immobilized and Coated Amylose Tris-(3,5-Dimethylphenylcarbamate) Chiral Stationary Phases for the Enantioselective Separation of β-Blockers Enantiomers by Liquid Chromatography. Talanta 2006, 68, 602–609. [Google Scholar] [CrossRef]
- Wang, T.; Wenslow, R.M. Effects of Alcohol Mobile-Phase Modifiers on the Structure and Chiral Selectivity of Amylose Tris(3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. J. Chromatogr. A 2003, 1015, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.K.; Valentova, J.; Hutt, A.J. Chromatographic Separation and Enantiomeric Resolution of Flurbiprofen and Its Major Metabolites. Chromatographia 2002, 55, 135–142. [Google Scholar] [CrossRef]
- Mallik, R.; Hage, D.S. Development of an Affinity Silica Monolith Containing Human Serum Albumin for Chiral Separations. J. Pharm. Biomed. Anal. 2008, 46, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, A.; Aboul-Enein, M.N.; El-Azzouny, A.; El-Behairy, M.F. Solvent Versatility of Immobilized Amylose and Cellulose-Based Chiral Stationary Phases in Enantioselective LC Separation and Monitoring of Bio-Catalyzed Resolutions of Acidic Drugs in Non-Standard Organic Solvents. Chromatographia 2009, 70, 349–363. [Google Scholar] [CrossRef]
- Xu, D.; Shao, H.; Lai, L.; Sánchez-López, E.; Marina, M.L.; Jiang, Z. Single-Step Fabrication of a Teicoplanin Functionalized Organic-Silica Hybrid Monolith for Enantioseparation by Nano-Liquid Chromatography. J. Chromatogr. Open 2021, 1, 100008. [Google Scholar] [CrossRef]
- Nieuwland, P.J.; Koch, K.; Van Harskamp, N.; Wehrens, R.; Van Hest, J.C.M.; Rutjes, F.P.J.T. Flash Chemistry Extensively Optimized: High-Temperature Swern-Moffatt Oxidation in an Automated Microreactor Platform. Chem. Asian J. 2010, 5, 799–805. [Google Scholar] [CrossRef]
- Gong, Y.; Lee, H.K. Application of Cyclam-Capped β-Cyclodextrin-Bonded Silica Particles as a Chiral Stationary Phase in Capillary Electrochromatography for Enantiomeric Separations. Anal. Chem. 2003, 75, 1348–1354. [Google Scholar] [CrossRef]
- Phinney, K.W.; Ihara, T.; Sander, L.C. Determination of Ephedrine Alkaloid Stereoisomers in Dietary Supplements by Capillary Electrophoresis. J. Chromatogr. A 2005, 1077, 90–97. [Google Scholar] [CrossRef]
- Budanova, N.; Shapovalova, E.; Lopatin, S.; Varlamov, V.; Shpigun, O. Heptakis(6-Amino-6-Deoxy)-β-Cyclodextrin as a Chiral Selector for the Separation of Anionic Analyte Enantiomers by Capillary Electrophoresis. Electrophoresis 2004, 25, 2795–2800. [Google Scholar] [CrossRef]
- Darvishnejad, F.; Raoof, J.B.; Ghani, M. In-Situ Synthesis of Nanocubic Cobalt Oxide @ Graphene Oxide Nanocomposite Reinforced Hollow Fiber-Solid Phase Microextraction for Enrichment of Non-Steroidal Anti-Inflammatory Drugs from Human Urine Prior to Their Quantification via High-Performance Liquid Chromatography-Ultraviolet Detection. J. Chromatogr. A 2021, 1641, 461984. [Google Scholar] [CrossRef]
- Sun, X.X.; Sun, L.Z.; Aboul-Enein, H.Y. Chiral Derivatization Reagents for Drug Enantioseparation by High-Performance Liquid Chromatography Based upon Pre-Column Derivatization and Formation of Diastereomers: Enantioselectivity and Related Structure. Biomed. Chromatogr. 2001, 15, 116–132. [Google Scholar] [CrossRef]
- Bonato, P.S.; Del Lama, M.P.F.M.; De Carvalho, R. Enantioselective Determination of Ibuprofen in Plasma by High-Performance Liquid Chromatography–Electrospray Mass Spectrometry. J. Chromatogr. B 2003, 796, 413–420. [Google Scholar] [CrossRef]
- Ghanem, A.; Wang, C. Enantioselective Separation of Racemates Using CHIRALPAK IG Amylose-Based Chiral Stationary Phase under Normal Standard, Non-Standard and Reversed Phase High Performance Liquid Chromatography. J. Chromatogr. A 2018, 1532, 89–97. [Google Scholar] [CrossRef]
- Fanali, S.; D’Orazio, G.; Rocco, A. Use of Tert-Butylbenzoylated Tartardiamide Chiral Stationary Phase for the Enantiomeric Resolution of Acidic Compounds by Nano-Liquid Chromatography. J. Sep. Sci. 2006, 29, 1423–1431. [Google Scholar] [CrossRef]
- Vermeulen, B.; Remon, J.P. Validation of a High-Performance Liquid Chromatographic Method for the Determination of Ibuprofen Enantiomers in Plasma of Broiler Chickens. J. Chromatogr. B Biomed. Sci. Appl. 2000, 749, 243–251. [Google Scholar] [CrossRef]
- Needham, S.R.; Brown, P.R.; Duff, K.; Bell, D. Optimized Stationary Phases for the High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometric Analysis of Basic Pharmaceuticals. J. Chromatogr. A 2000, 869, 159–170. [Google Scholar] [CrossRef]
- Taschwer, M.; Seidl, Y.; Mohr, S.; Schmid, M.G. Chiral Separation of Cathinone and Amphetamine Derivatives by HPLC/UV Using Sulfated β-Cyclodextrin as Chiral Mobile Phase Additive. Chirality 2014, 26, 411–418. [Google Scholar] [CrossRef]
- Peng, Y.; He, Q.S.; Cai, J. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive. Int. J. Anal. Chem. 2016, 2016, 1231386. [Google Scholar] [CrossRef]
- Djajić, N.; Krmar, J.; Rmandić, M.; Rašević, M.; Otašević, B.; Zečević, M.; Malenović, A.; Protić, A. Modified Aqueous Mobile Phases: A Way to Improve Retention Behavior of Active Pharmaceutical Compounds and Their Impurities in Liquid Chromatography. J. Chromatogr. Open 2022, 2, 100023. [Google Scholar] [CrossRef]
- Ruiz-Ángel, M.J.; Carda-Broch, S.; García-Álvarez-Coque, M.C. Ionic Liquids as Mobile Phase Additives and Immobilized on Stationary Phases in Liquid Chromatography. Ion. Liq. Anal. Chem. New Insights Recent. Dev. 2021, 203–234. [Google Scholar] [CrossRef]
- Hermansson, J.; Eriksson, M. Direct Liquid Chromatographic Resolution of Acidic Drugs Using a Chiral A1-Acid Glycoprotein Column (Enantiopac®). J. Liq. Chromatogr. 1986, 9, 621–639. [Google Scholar] [CrossRef]
- Tiggelaar, R.M.; Benito-López, F.; Hermes, D.C.; Rathgen, H.; Egberink, R.J.M.; Mugele, F.G.; Reinhoudt, D.N.; van den Berg, A.; Verboom, W.; Gardeniers, H.J.G.E. Fabrication, Mechanical Testing and Application of High-Pressure Glass Microreactor Chips. Chem. Eng. J. 2007, 131, 163–170. [Google Scholar] [CrossRef]
- Si Ahmed, K.; Tazerouti, F.; Badjah-Hadj-Ahmed, A.Y.; Meklati, B.Y. Application of Native and Hydroxypropyl-Substituted β-Cyclodextrin Bonded Silica Gel as Stationary Phases for High Performance Liquid Chromatography. Chromatographia 2005, 62, 571–579. [Google Scholar] [CrossRef]
- Aboul-Enein, H.Y. Chiral Separation of Some Non-Steroidal Anti-Inflammatory Drugs on Tartardiamide DMB Chiral Stationary Phase by HPLC. J. Sep. Sci. 2003, 26, 521–524. [Google Scholar] [CrossRef]
- Ghanem, A.; Aboul-Enein, M.N.; El-Azzouny, A.; El-Behairy, M.F. Lipase-Mediated Enantioselective Kinetic Resolution of Racemic Acidic Drugs in Non-Standard Organic Solvents: Direct Chiral Liquid Chromatography Monitoring and Accurate Determination of the Enantiomeric Excesses. J. Chromatogr. A 2010, 1217, 1063–1074. [Google Scholar] [CrossRef]
- Guo, J.; Xiao, Y.; Lin, Y.; Zhang, Q.; Chang, Y.; Crommen, J.; Jiang, Z. Influence of the Linking Spacer Length and Type on the Enantioseparation Ability of β-Cyclodextrin Functionalized Monoliths. Talanta 2016, 152, 259–268. [Google Scholar] [CrossRef]
- Ye, J.; Yu, W.; Chen, G.; Shen, Z.; Zeng, S. Enantiomeric Separation of 2-Arylpropionic Acid Nonsteroidal Anti-Inflammatory Drugs by HPLC with Hydroxypropyl-β-Cyclodextrin as Chiral Mobile Phase Additive. Biomed. Chromatogr. 2010, 24, 799–807. [Google Scholar] [CrossRef]
- Péhourcq, F.; Matoga, M.; Jarry, C.; Bannwarth, B. HPLC Microdetermination of Flurbiprofen Enantiomers in Plasma with a Glycopeptide-Type Chiral Stationary Phase Column. Biomed. Chromatogr. 2004, 18, 330–334. [Google Scholar] [CrossRef]
- Bayer, M.; Hänsel, C.; Mosandl, A. Enantiomer Separation on Monolithic Silica HPLC Columns Using Chemically Bonded Methylated and Methylated/Acetylated 6-O-tert-butyldimethylsilylated β-cyclodextrin. J. Sep. Sci. 2006, 29, 1561–1570. [Google Scholar] [CrossRef]
- Euerby, M.R.; Petersson, P. Chromatographic Classification and Comparison of Commercially Available Reversed-Phase Liquid Chromatographic Columns Containing Polar Embedded Groups/Amino Endcappings Using Principal Component Analysis. J. Chromatogr. A 2005, 1088, 1–15. [Google Scholar] [CrossRef]
- Bosáková, Z.; Cuřínová, E.; Tesařová, E. Comparison of Vancomycin-Based Stationary Phases with Different Chiral Selector Coverage for Enantioselective Separation of Selected Drugs in High-Performance Liquid Chromatography. J. Chromatogr. A 2005, 1088, 94–103. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Yoshida, H.; Hayama, T.; Yoshitake, M.; Itoyama, M.; Todoroki, K.; Yamaguchi, M.; Nohta, H. Fluorous Derivatization and Fluorous-Phase Separation for Fluorometric Determination of Naproxen and Felbinac in Human Plasma. J. Pharm. Biomed. Anal. 2011, 55, 176–180. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, H.; Zhang, Y. Chiral Separation of Ketoprofen on an Achiral C8 Column by HPLC Using Norvancomycin as Chiral Mobile Phase Additives. J. Pharm. Biomed. Anal. 2006, 41, 310–314. [Google Scholar] [CrossRef]
- Healy, L.O.; Murrihy, J.P.; Tan, A.; Cocker, D.; Mcenery, M.; Glennon, J.D. Enantiomeric Separation of R,S-Naproxen by Conventional and Nano-Liquid Chromatography with Methyl-b-Cyclodextrin as a Mobile Phase Additive. J. Chromatogr. A 2001, 924, 459–464. [Google Scholar] [CrossRef]
- Al-Kindy, S.; Santa, T.; Fukushima, T.; Homma, H.; Imai, K. 1-(5-Dimethylamino-1-Naphthalenesulphonyl)-(S)-3-Aminopyrrolidine (DNS-Apy) as a Fluorescence Chiral Labelling Reagent for Carboxylic Acid Enantiomers. Biomed. Chromatogr. 1997, 11, 137–142. [Google Scholar] [CrossRef]
- Svec, F. Recent Developments in the Field of Monolithic Stationary Phases for Capillary Electrochromatography. J. Sep. Sci. 2005, 28, 729–745. [Google Scholar] [CrossRef]
- Sliwka-Kaszynska, M.; Karaszewski, S. Preparation and HPLC Evaluation of a New 1,3-Alternate 25,27-Bis-[p-Chlorobenzyloxy]-26,28-Bis-[3-Propyloxy]-Calix[4]Arene Silica Bonded Stationary Phase. J. Sep. Sci. 2008, 31, 926–934. [Google Scholar] [CrossRef]
- Kuczyńska, J.; Nieradko-Iwanicka, B. Comparison of the Effects of Ketoprofen and Ketoprofen Lysine Salt on the Wistar Rats’ Nervous System, Kidneys and Liver after Ethyl Alcohol Intoxication. Biomed. Pharmacother. 2023, 161, 114456. [Google Scholar] [CrossRef]
- Orman, E.; Assumang, A.; Oppong-Kyekyeku, J.; Onilimor, P.J.; Peprah, P.K.; Adu, J.K.; Bekoe, S.O.; Asare-Nkansah, S. Chromatographic Method Development for the Simultaneous Assay of Pseudoephedrine Hydrochloride and Chlorphenamine Maleate in Oral Dosage Formulations. Sci. Afr. 2022, 15, e01109. [Google Scholar] [CrossRef]
- El-Didamony, A.M.; Gouda, A.A. A Novel Spectrofluorimetric Method for the Assay of Pseudoephedrine Hydrochloride in Pharmaceutical Formulations via Derivatization with 4-Chloro-7-Nitrobenzofurazan. Luminescence 2011, 26, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhang, Y.; Zhang, Q.; Zhou, J.; Ding, T.; Feng, J. Advancing Point-of-Care Microbial Pathogens Detection by Material-Functionalized Microfluidic Systems. Trends Food Sci. Technol. 2023, 135, 115–130. [Google Scholar] [CrossRef]
- Perrin, D.; Frémaux, C.; Scheer, A. Assay Development and Screening of a Serine/Threonine Kinase in an on-Chip Mode Using Caliper Nanofluidics Technology. J. Biomol. Screen. 2006, 11, 359–368. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.Y. Micro Total Analysis System (μ-TAS) in Biotechnology. Appl. Microbiol. Biotechnol. 2004, 64, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Graß, B.; Weber, G.; Neyer, A.; Schilling, M.; Hergenroder, R. Micro-Structured Analytical Instrumentation for the Analysis of Liquids. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1575–1583. [Google Scholar] [CrossRef]
- Fanelli, F.; Parisi, G.; Degennaro, L.; Luisi, R. Contribution of Microreactor Technology and Flow Chemistry to the Development of Green and Sustainable Synthesis. Beilstein J. Org. Chem. 2017, 13, 520–542. [Google Scholar] [CrossRef]
- Haswell, S.J.; Middleton, R.J.; O’Sullivan, B.; Skelton, V.; Watts, P.; Styring, P. The Application of Micro Reactors to Synthetic Chemistry. Chem. Commun. 2001, 391–398. [Google Scholar] [CrossRef]
- Geyer, K.; Codée, J.D.C.; Seeberger, P.H. Microreactors as Tools for Synthetic Chemists-The Chemists’ Round-Bottomed Flask of the 21st Century? Chem. A Eur. J. 2006, 12, 8434–8442. [Google Scholar] [CrossRef]
- Peakman, A.; Hodgson, Z.; Merk, B. Advanced Micro-Reactor Concepts. Prog. Nucl. Energy 2018, 107, 61–70. [Google Scholar] [CrossRef]
- Aoki, N.; Mae, K. Effects of Channel Geometry on Mixing Performance of Micromixers Using Collision of Fluid Segments. Chem. Eng. J. 2006, 118, 189–197. [Google Scholar] [CrossRef]
- Chambers, R.D.; Holling, D.; Spink, R.C.H.; Sandford, G. Elemental Fluorine: Part 13. Gas-Liquid Thin Film Microreactors for Selective Direct Fluorination. Lab Chip 2001, 1, 132–137. [Google Scholar] [CrossRef]
- Watts, P.; Haswell, S.J. Microfluidic Combinatorial Chemistry. Curr. Opin. Chem. Biol. 2003, 7, 380–387. [Google Scholar] [CrossRef]
- Wilson, N.G.; McCreedy, T. On-Chip Catalysis Using a Lithographically Fabricated Glass Microreactor-The Dehydration of Alcohols Using Sulfated Zirconia. Chem. Commun. 2000, 733–734. [Google Scholar] [CrossRef]
- Hisamoto, H.; Saito, T.; Tokeshi, M.; Hibara, A.; Kitamori, T. Fast and High Conversion Phase-Transfer Synthesis Exploiting the Liquid–Liquid Interface Formed in a Microchannel Chip. Chem. Commun. 2001, 1, 2662–2663. [Google Scholar] [CrossRef]
- Wiles, C.; Watts, P.; Haswell, S.J.; Pombo-Villar, E. The Aldol Reaction of Silyl Enol Ethers within a Micro Reactor. Lab Chip 2001, 1, 100–101. [Google Scholar] [CrossRef]
- Ku, K.; Frey, C.; Arad, M.; Ghafourifar, G. Development of Novel Enzyme Immobilization Methods Employing Formaldehyde or Triethoxysilylbutyraldehyde to Fabricate Immobilized Enzyme Microreactors for Peptide Mapping. Anal. Methods 2022, 14, 4053–4063. [Google Scholar] [CrossRef]
- Shen, J.; Zhao, Y.; Chen, G.; Yuan, Q. Investigation of Nitration Processes of Iso-Octanol with Mixed Acid in a Microreactor. Chin. J. Chem. Eng. 2009, 17, 412–418. [Google Scholar] [CrossRef]
- Pennemann, H.; Kolb, G. Review: Microstructured Reactors as Efficient Tool for the Operation of Selective Oxidation Reactions. Catal. Today 2016, 278, 3–21. [Google Scholar] [CrossRef]
- Spennacchio, M.; Colella, M.; Andresini, M.; Dibenedetto, R.S.; Graziano, E.; Aramini, A.; Degennaro, L.; Luisi, R. Unlocking Geminal Fluorohaloalkanes in Nucleophilic Fluoroalkylation Chemistry: Generation and Trapping of Lithiumfluorocarbenoids Enabled by Flow Microreactors. Chem. Commun. 2022, 59, 1373–1376. [Google Scholar] [CrossRef]
- Natho, P.; Luisi, R. Flow Chemistry as Green Technology for the Genesis and Use of Organometallic Reagents in the Synthesis of Key Building Blocks and APIs—An Update. Tetrahedron Green. Chem. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, J.-L.; Yu, W.-Q.; Xiong, B.-Q.; Tang, K.-W.; Zhong, L.-J. Visible-Light-Promoted Decarboxylative Alkylation/Cyclization of Vinylcycloalkanes. J. Org. Chem. 2023, 88, 8563–8575. [Google Scholar] [CrossRef] [PubMed]
- Sohora, M.; Sović, I.; Spahić, Z.; Kontrec, D.; Jurin, M. Photochemistry of Phthalimidoadamantane Dipeptides: Effect of Amino Acid Side Chain on Photocyclization. Photochem. Photobiol. Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Kadi, M.E.A.; Boukhalkhal, A.L.; Loubar, K.; Awad, S.; Lasbet, Y.; Derradji, M.; Tazerout, M. Chaotic Transport in Three-Dimensional Reactors Operating in Open Flows for Continuous Biodiesel Production from Rapeseed Oil: Numerical and Experimental Comparative Study. Waste Biomass Valoriz. 2023, 14, 2285–2298. [Google Scholar] [CrossRef]
- Ayad, A.I. Development of Continuous Flow Nano catalysis: Scale-up of Biomass Valorization. Ph.D. Thesis, Université de Technologie de Compiègne, Compiègne, France, 2021. [Google Scholar]
- Sun, P.; Sun, J.; Yao, J.; Zhang, L.; Xu, N. Continuous Production of Biodiesel from High Acid Value Oils in Microstructured Reactor by Acid-Catalyzed Reactions. Chem. Eng. J. 2010, 162, 364–370. [Google Scholar] [CrossRef]
- Nagaki, A.; Takizawa, E.; Yoshida, J.I. Generation and Reactions of Oxiranyllithiums by Use of a Flow Microreactor System. Chem. A Eur. J. 2010, 16, 14149–14158. [Google Scholar] [CrossRef] [PubMed]
- Hayer, F.; Bakhtiary-Davijany, H.; Myrstad, R.; Holmen, A.; Pfeifer, P.; Venvik, H.J. Synthesis of Dimethyl Ether from Syngas in a Microchannel Reactor-Simulation and Experimental Study. Chem. Eng. J. 2011, 167, 610–615. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, Y.; Jiao, F.; Chen, G.; Yuan, Q. The Intensification of Rapid Reactions for Multiphase Systems in a Microchannel Reactor by Packing Microparticles. AIChE J. 2011, 57, 1409–1418. [Google Scholar] [CrossRef]
- Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Soga, N.; Tanaka, N. Designing Monolithic Double-Pore Silica for High-Speed Liquid Chromatography. J. Chromatogr. A 1998, 797, 133–137. [Google Scholar] [CrossRef]
- Schmidt, A.H. Fast HPLC for Quality Control of Harpagophytum Procumbens by Using a Monolithic Silica Column: Method Transfer from Conventional Particle-Based Silica Column. J. Chromatogr. A 2005, 1073, 377–381. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Yamamoto, C.; Kamigaito, M.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-Performance Liquid Chromatographic Enantioseparations on Capillary Columns Containing Monolithic Silica Modified with Amylose Tris(3,5-Dimethylphenylcarbamate). J. Chromatogr. A 2006, 1110, 46–52. [Google Scholar] [CrossRef]
- Bao, W.; Zhang, C.; Yang, M.; Nan, D.; Liu, T.; Guo, X.; Fang, L. Preparation and Modeling Study of Novel Carboxymethyl-β-Cyclodextrin Silica Hybrid Monolithic Column for Enantioseparations in Capillary Electrochromatography. Microchem. J. 2021, 170, 106719. [Google Scholar] [CrossRef]
- Li, Y.; Song, C.; Zhang, L.; Zhang, W.; Fu, H. Fabrication and Evaluation of Chiral Monolithic Column Modified by β-Cyclodextrin Derivatives. Talanta 2010, 80, 1378–1384. [Google Scholar] [CrossRef]
- Dietze, C.; Schulze, S.; Ohla, S.; Gilmore, K.; Seeberger, P.H.; Belder, D. Integrated On-Chip Mass Spectrometry Reaction Monitoring in Microfluidic Devices Containing Porous Polymer Monolithic Columns. Analyst 2016, 141, 5412–5416. [Google Scholar] [CrossRef]
Chiral Selector | Description |
---|---|
TM-β-CD | Trimethyl-β-cyclodextrin |
DM-β-CD | Dimethyl-β-cyclodextrin |
HP-β-CD | 2-hydroxypropyl-β-cyclodextrin |
PMMA-β-CD | Permethyl-6-monoamino-6-monodeoxy-β-CD |
HxDAS | Hexakis(2,3-diacetyl-6-O-sulfo)-α-cyclodextrin |
HXS | Hexakis(6-O-sulfo)-α-CD |
HxDMS | Hexakis(2,3-di-O-methyl-6-O-sulfo)-αcyclodextrin |
ODMS | Octakis(2,3-di-O-methyl-6-O-sulfo)-γ-CD |
OS | Octakis(6-O-sulfo)-γ-cyclodextrin |
HMs | Hemispherodextrins |
QA-β-CD | Quaternary ammonium-β-CD |
2-AHP-β-CD | 6-monodeoxy-6-mono(2-hydroxy)propylamino-β-cyclodextrin |
6-HPTMA-β-CD | 6-O-(2-hydroxy-3-trimethylammoniopropyl)-β-CD |
PA-β-CD | 6-monodeoxy-6-mono(2-hydroxy)pro- pylamino-β-cyclodextrin |
EA-β-CD | 6-monodeoxy-6-mono(2-hydroxy)ethylamino-β-cyclodextrin |
IPA-β-CD | 6-monodeoxy-6-mono(2-hydroxy)propylamino-β-cyclodextrin |
HS-β-CD | Heptakis-6-sulfato-β-cyclodextrin |
SO3-β-CD | Sulfated-β-cyclodextrin |
Drug | Matrix | Chiral Selector | Analytical Data: LOQ, (Rs) | Detector | Ref. |
---|---|---|---|---|---|
KTP | Standard solutions | TM-β-CD | 0.002 mg/L, (3.77) | UV | [37] |
KTP | Human serum | TM-β-CD | 0.1 mg/L, (4.32) | UV | [47] |
IBP, FBP, KTP, NPX | Human serum | TM-β-CD | 0.25–1.0 μg/mL, (1.88–3.70) | UV | [34] |
IBP | Human serum, urine | TM-β-CD | Serum:(2.19), urine (2.25) | UV | [56] |
IBP, IBP-OH, IBP-COOH | Human serum, plasma | TM-β-CD | 0.11 mg/L in plasma, 1.0–1.1 mg/L in urine, (1.04–2.26) | UV | [40] |
KTP | Human plasma, urine, synovial fluid | TM-β-CD | Plasma:0.25 mg/L (3.87), synovial fluid: 0.50 mg/L (4.29) | diode array | [41] |
INDB | Human serum | TM-β-CD | 0.2 g/mL, (1.5) | UV | [42] |
FNP, FL, IBP, KTP | Standard solutions | HS-β-CD TM-β-CD | HS-β-CD: (1.3–1.4) HS-β-CD: - TM-β-CD: (2.9–6.1) | UV | [5] |
IBU | Standard solutions | HS-β-CD, TM-β-CD | HS-β-CD: (0.7), HS-β-CD+ TM-β-CD: (3.3) | UV | [44] |
16 basics, 8 acids, 1 neutral | Standard solutions | HPCD, TMCD, DMCD, HSCD | Neutral CD: (0.00–4.05), HSCD: (0.00–19.40) | UV | [32] |
IBP, FNP, FL, SUP, INP, KTP, P, IP, TIPA, NPX | Standard solutions | TM-β-CD, CM-β-CD | TM-β-CD: (1.0–4.4), TMβC-M-β-CD: (1.5–8.0) | UV | [44] |
CAP, NPX, SUP, KTP | Standard solutions | TM-β-CD DM-β-CD | (0–1.26) | UV | [45] |
FL | Standard solutions | β-CD, HPβ-CD DM-β-CD TM-β-CD | DM-β-CD (0.0) TM-β-CD (1.32) | UV | [46] |
IBP, NPX | Standard solutions | HP-β-CD TM-β-CD γ-CD | 61–1676 mg/L Urine: 1.0 mg/L (4.06) | C4D | [47] |
IBP, FNP, INP, S UP, KTP | Standard solutions | L-UCLB- TM-β-CD | L-UCLB-TM-β-CD (2.0–2.4) | diode array | [30] |
FNP, KTP, IBPF L | Standard solutions | PMMA-β-CD HS-β-CD | PMMA-β-CD:(1.64–2), PMMA-β-CD HS-β-CD: (4.4–12.5) | UV | [57] |
IBP, FNP, KTP, NPX | Standard solutions | HxDAS | (0–3.1) | UV | [49] |
CAP, NPX, FNP, KTP, IBU, FLB | Standard solutions | HXS | - | UV | [42] |
IBP, FL, FNP, KTP | Standard solutions | HxDMS | (0–1.3) | UV | [58] |
IBP, NPX, FNP, K TP | Standard solutions | ODMS | (0.0–3.1) | UV | [30] |
IBP, FL, FNP, KT P | Standard solutions | OS | (0.5–1) | UV | [59] |
FL, IBP, INP, KTP, SUP, THP | Standard solutions | HMs | - | UV | [35] |
IBP, KTP, FL, NPX, WAF, OXN | Standard solutions | DM-β-CD HP-β-CD 2-AHP-β-CD | DM-β-CD & HP-β-CD (0), DM-β-CD FLP (0.38), IBP (0.86), 2-AHP-β-CD: (0.79) | UV | [60] |
NPX, IBP, INP, K TP, FL | Standard solutions | 6-HPTMA-β-CD QA-β-CD | 6-HPTMA-β-CD: 9 Mm (1.43–2.20) QA-β-CD: 9 mM (0.00) | UV | [61] |
FNP, FL, IBP, IN P, KTP, SUP, TIP A, WAF | Standard solutions | EA-β-CD, IPA-β-CD PA-β-CD | EA-β-CD: (2.2–7.3) IPA-β-CD: (<0.7–7.7) | UV | [48] |
FL | Standard solutions | IPA-β-CD | 0.1%,(4.8) | diode array | [62] |
FL | Human plasma | PA-β-CD | 0.2 mg/mL (4.8), Dual CD, (0.00–40.00) | diode array | [25] |
IBP | Human plasma | HS-β-CD | 0.2 mg/L | UV | [6] |
NPX& MNPX | Standard solutions | HP-β-CD, SO3-β-CD | 6.8 × 10−4 g/L | UV | [63] |
KTP, INP | Standard solutions | MCCD-HPS, DCCD-HPS | KTP (1.22) INP (5.33) | diode array | [64] |
EPD | Standard solutions | DM-β-CD | 70–161 ng/mL | UV | [7] |
EPD | Standard solutions | DM-β-CD HP-β-CD S-β-CD | - | UV | [65] |
IBP, FNP, KTP | Urine, standard solutions | β-CD | Urine: 18–38 standard solutions: 1.7–10 | UV | [54] |
IBP, FL | Standard solutions | α-CD | IBP: 0.5 mg/L FL: 0.1 mg/L | UV | [55] |
Drug | Chiral/Achiral Reagent | Type of Chiral Selector | Analytical Data: LOQ, (Rs) | Detector | Ref. |
---|---|---|---|---|---|
IBP | Chiralpak-RH | CSP | 0.12 g/mL | MS | [63] |
KTP, IBP, FN P, FL, WAF, NPX, CAP | Chiralpak-IA, Chiralpak-AD | CSP | IA: (1.9–3.1) AD: (1.6–6.68) | UV | [51] |
IBP, WAF, NPX | Native β-CD 2-HP-β-CD | CSP | Native β-CD (0–1.3) 2-HP-β-CD (0) | UV | [74] |
FL | Chiral-AGP | CSP | (1.50) | UV | [6] |
NPX, IBP, CAP, KTP | CHITBB | CSP | (0.54–2.40) | UV | [65] |
FL, FL-OH, FL-MOH | Chiralpak-AD | CSP | (1.67, 3.67, 3.44) | UV | [53] |
IBP, WAF | HSA | CSP | (1.8–2.4) | UV | [54] |
KTP, IBP, FNP, FL, CAP | Chiralpak IA Chiralpak IB | CSP | Chiralpak IA (0.83–4.5) Chiralpak IB (0.86–3.18) | UV | [55] |
KTP, FL, PIP, TIPA | Nartardiamide DMB | CSP | (0.16–2.75) | UV | [75] |
CAP, FNP, FL, IBP, INP, NPX | Chiralpak IB | CSP | (1.2–4.0) | UV | [76] |
IBP, EPD, PEPD, INPN PX, CAP, SUP, | 20-O-allyl-β-cyclodextrin, TB-β-CD | CSP | 3 µM, (2.97) 11 µM, (0.76) | UV | [87] |
KTP, IBP, FNP, FL | HP-β-CD | CMPA | (1.3–2.5) | UV | [78] |
IBP | CalixBz-Cl | CSP | - | UV | [88] |
FL | ChirobioticV | CSP | 0.5 μg/mL | UV | [79] |
KTP | Chirex 3005, Kromasil CHI-II | CSP | Chirex 3005 UV (1.210) Kromasil CHI-II (7.204) | [79] | |
IBP | α-acid glycoprotein | CSP | R: 1.16, S: 1.37 | UV | [66] |
IBP, CPF, NPX, KPF, | ME-/MEAC-β-CD | CSP | α = 1.0 | UV | [80] |
FL, INPF | Chirobiotic: V&V2 | CSP | (0.00–1.57) | UV | [82] |
NPX | Native fluorescent Carboxylic acid | Fluophase RP column | <11 fmol | FLD | [83] |
KTP | Norvancomycin | CMPA | R: 0.86 ng S: 0.78 ng | UV | [84] |
NPX | Methy-β-cyclodextrin | CMPA | (1.69) | UV | [85] |
KTP, IBP | DNS-Apy | PCD | Sub-pmol | FLD | [86] |
Reaction | Chip Material | Solvent | Conversion (%) | Ref. |
---|---|---|---|---|
Fluorination | Ni or Cu | Nitrogen gas | 90–99 | [101] |
Oxidation | Al | None | 75–99 | [102] |
Dehydration | Glass/PDMS | EtOH | 85–95 | [103] |
Phase transfer | Glass | EtOAc | 100 | [104] |
Aldo | Glass | Tetrahydrofruan | 100 | [105] |
Peptide synthesis | Glass | Dimethyl formamide | 100 | [106] |
Nitrations | Channel stainless-steel microreactor | HNO3 | 97.2 | [107] |
Azidations | Stainless-steel tube reactor | Tetrahydrofura | 94 | [108] |
Fluorinations | PTFE tube reactor | Diethylamino sulfur | 40–100 | [109] |
Grignard reactions | PTFE tube reactor | - | 96 | [110] |
Photochemistry | Microstructured reactor | - | 97 | [111] |
Automated reaction screening | Borosilicate glass microreactor | - | 96 | [112] |
Esterfication, tranesterfication | Stainless-steel microchannel | Methanol/H2SO4 | 90, 99.5 | [113] |
Generation and reaction of Oxiranyllithiums | Stainless-steel T-shaped micromixer | THF | 97–100 | [114] |
Synthesized of dimethyl ether from syngas | Stainless-steel micropacked reactor | Al2O3 | 80–100 | [115] |
Nitration of o-nitrotoluene | Stainless steel T-shaped microchannel | Sulfuric acid | 94 | [116] |
Steam reforming of methane over Ni catalyst | Microchannel | Ni catalyst | 98 | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sulaimi, S.; Kushwah, R.; Abdullah Alsibani, M.; El Jery, A.; Aldrdery, M.; Ashraf, G.A. Emerging Developments in Separation Techniques and Analysis of Chiral Pharmaceuticals. Molecules 2023, 28, 6175. https://doi.org/10.3390/molecules28176175
Al-Sulaimi S, Kushwah R, Abdullah Alsibani M, El Jery A, Aldrdery M, Ashraf GA. Emerging Developments in Separation Techniques and Analysis of Chiral Pharmaceuticals. Molecules. 2023; 28(17):6175. https://doi.org/10.3390/molecules28176175
Chicago/Turabian StyleAl-Sulaimi, Sulaiman, Reveka Kushwah, Mohammed Abdullah Alsibani, Atef El Jery, Moutaz Aldrdery, and Ghulam Abbas Ashraf. 2023. "Emerging Developments in Separation Techniques and Analysis of Chiral Pharmaceuticals" Molecules 28, no. 17: 6175. https://doi.org/10.3390/molecules28176175
APA StyleAl-Sulaimi, S., Kushwah, R., Abdullah Alsibani, M., El Jery, A., Aldrdery, M., & Ashraf, G. A. (2023). Emerging Developments in Separation Techniques and Analysis of Chiral Pharmaceuticals. Molecules, 28(17), 6175. https://doi.org/10.3390/molecules28176175