Designing Efficient Metal-Free Dye-Sensitized Solar Cells: A Detailed Computational Study
Abstract
:1. Introduction
2. Theoretical Background
Computational Details
3. Results and Discussion
3.1. Energetics and Distribution of Frontier Molecular Orbitals
3.2. Absorption Properties
3.3. Electron Injection, Dye Regeneration, Open-Circuit Voltage, and Light Harvesting Efficiency
3.3.1. Electron Injection and Dye Regeneration
3.3.2. Open Circuit Voltage
3.3.3. Light Harvesting Efficiency (LHE)
3.4. Adsorbed Dyes on the Model of Titanium Hydroxide
3.4.1. Optimized Geometry
3.4.2. Frontier Molecular Orbitals (FMOs) of All Studied Dyes Adsorbed onto Ti(OH)3H2O
3.4.3. Absorption Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hailu, Y.M.; Nguyen, M.T.; Jiang, J.C. Effects of the terminal donor unit in dyes with D–D–π–A architecture on the regeneration mechanism in DSSCs: A computational study. Phys. Chem. Chem. Phys. 2018, 20, 23564–23577. [Google Scholar] [CrossRef] [PubMed]
- Nachimuthu, S.; Chen, W.-C.; Leggesse, E.G.; Jiang, J.-C. First principles study of organic sensitizers for dye sensitized solar cells: Effects of anchoring groups on optoelectronic properties and dye aggregation. Phys. Chem. Chem. Phys. 2016, 18, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Martsinovich, N.; Troisi, A. Theoretical studies of dye-sensitised solar cells: From electronic structure to elementary processes. Energy Environ. 2011, 11, 4473–4495. [Google Scholar] [CrossRef]
- Liang, M.; Chen, J. Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 2013, 8, 3453–3488. [Google Scholar] [CrossRef]
- Anselmi, C.; Mosconi, E.; Pastore, M.; Ronca, E.; De Angelis, F. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: Interplay of theory and experiment. Phys. Chem. Chem. Phys. 2012, 14, 15963–15974. [Google Scholar] [CrossRef]
- Chen, W.-C.; Nachimuthu, S.; Jiang, J.-C. Revealing the influence of cyano in anchoring groups of organic dyes on adsorption stability and photovoltaic properties for dye-sensitized solar cells. Sci. Rep. 2017, 7, 4979. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef]
- Tsai, H.-H.G.; Hu, J.-C.; Tan, C.-J.; Sheng, Y.-C.; Chiu, C.-C. First-principle characterization of the adsorption configurations of cyanoacrylic dyes on TiO2 film for dye-sensitized solar cells. J. Phys. Chem. A 2016, 120, 8813–8822. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, W.; Jiao, Y.; Wang, J.; Shan, X.; Li, H.; Lu, X.; Meng, S. Precise identification and manipulation of adsorption geometry of donor− π–acceptor dye on nanocrystalline TiO2 films for improved photovoltaics. ACS Appl. Mater. Interfaces 2014, 6, 22359–22369. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Banfield. Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles. Chem. Mater. 2005, 17, 3421–3425. [Google Scholar] [CrossRef]
- Thomas, A.G.; Jackman, M.J.; Wagstaffe, M.; Radtke, H.; Syres, K.; Adell, J.; Le, A.; Martsinovich, N. Adsorption studies of p-aminobenzoic acid on the anatase TiO2 (101) surface. Langmuir 2014, 30, 12306–12314. [Google Scholar] [CrossRef] [PubMed]
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-sensitized solar cells. Nat. Photonics 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 2012, 5, 6057–6060. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Li, X.; Tian, H.; Zhu, W.-H. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: A record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc. 2015, 137, 14055–14058. [Google Scholar] [CrossRef]
- Joly, D.; Pelleja, L.; Narbey, S.; Oswald, F.; Chiron, J.; Clifford, J.N.; Palomares, E.; Demadrille, R. Clifford, Emilio Palomares, and Renaud Demadrille. A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability. Sci. Rep. 2014, 4, 4033. [Google Scholar] [CrossRef]
- Yasuo, C.; Ashraful, I.; Yuki, W.; Ryoichi, K.; Naoki, K.; Liyuan, H. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Jpn. J. Appl. Phys. 2006, 45, 25. [Google Scholar]
- Estrella, L.L.; Lee, S.H.; Kim, D.H. New semi-rigid triphenylamine donor moiety for D-π-A sensitizer: Theoretical and experimental investigations for DSSCs. Dye. Pigment. 2019, 165, 1–10. [Google Scholar] [CrossRef]
- Hailu, Y.M.; Shie, W.-R.; Nachimuthu, S.; Jiang, J.-C. New insights into organic dye regeneration mechanism in dye-sensitized solar cells: A theoretical study. ACS Sustain. Chem. Eng. 2017, 5, 8619–8629. [Google Scholar] [CrossRef]
- Hailu, Y.M.; Pham-Ho, M.P.; Nguyen, M.T.; Jiang, J.-C. Silole and selenophene-based D-π-A dyes in dye-sensitized solar cells: Insights from optoelectronic and regeneration properties. Dye. Pigment. 2020, 176, 108243. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef]
- Wan, Z.; Jia, C.; Wang, Y.; Yao, X. A strategy to boost the efficiency of rhodanine electron acceptor for organic dye: From nonconjugation to conjugation. ACS Appl. Mater. Interfaces 2017, 9, 25225–25231. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Kim, U.-Y.; Kim, B.-M.; Kim, W.-H.; Roh, D.-H.; Kim, J.S.; Kwon, T.-H. Molecular design strategy toward robust organic dyes in thin-film photoanodes. ACS Appl. Energy Mater. 2019, 2, 4674–4682. [Google Scholar] [CrossRef]
- Ferdowsi, P.; Saygili, Y.; Jazaeri, F.; Edvinsson, T.; Mokhtari, J.; Zakeeruddin, S.M.; Liu, Y.; Gra, M.; Hagfeldt, A. Molecular engineering of simple metal-free organic dyes derived from triphenylamine for dye-sensitized solar cell applications. ChemSusChem 2020, 13, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J.; Pellet, N.; Giordano, F.; Zakeeruddin, S.M.; Moser, J.E.; Freitag, M.; et al. 11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials. Nat. Commun. 2017, 8, 15390. [Google Scholar] [CrossRef] [PubMed]
- Saygili, Y.; So, M.; Pellet, N.; Giordano, F.; Cao, Y.; Mun, A.B.; Zakeeruddin, S.M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.J. Copper bipyridyl redox mediators for dye-sensitized solar cells with high photovoltage. J. Am. Chem. Soc. 2016, 138, 15087–15096. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J. Phys. Chem. C 2008, 112, 11023–11033. [Google Scholar] [CrossRef]
- Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv. Funct. Mater. 2005, 15, 246–252. [Google Scholar] [CrossRef]
- Srinivas, K.; Yesudas, K.; Bhanuprakash, K.; Rao, V.J.; Giribabu, L. A combined experimental and computational investigation of anthracene based sensitizers for DSSC: Comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J. Phys. Chem. C 2009, 113, 20117–20126. [Google Scholar] [CrossRef]
- Roy, J.K.; Kar, S.; Leszczynski, J. Electronic structure and optical properties of designed photo-efficient indoline-based dye-sensitizers with D–A− π–A framework. J. Phys. Chem. C 2019, 123, 3309–3320. [Google Scholar] [CrossRef]
- Roy, J.K.; Kar, S.; Leszczynski, J. Revealing the photophysical mechanism of N, N′-Diphenyl-aniline based sensitizers with the D–D− π–A framework: Theoretical insights. ACS Sustain. Chem. Eng. 2020, 8, 13328–13341. [Google Scholar] [CrossRef]
- Qu, S.; Yin, J.; Li, H.; He, T. New D-π-A dyes for efficient dye-sensitized solar cells. Sci. China Chem. 2012, 55, 677–697. [Google Scholar] [CrossRef]
- Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N.A.; Ai, X.; Lian, T.; Yanagida, S. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem. Mater. 2004, 16, 1806–1812. [Google Scholar] [CrossRef]
- Mahmood, A. Triphenylamine based dyes for dye sensitized solar cells: A review. Sol. Energy 2016, 123, 127–144. [Google Scholar] [CrossRef]
- Lin, J.T.; Chen, P.C.; Yen, Y.S.; Hsu, Y.C.; Chou, H.H.; Yeh, M.C.P. Organic dyes containing furan moiety for high-performance dye-sensitized solar cells. Org. Lett. 2009, 11, 97–100. [Google Scholar]
- Li, W.; Ren, W.; Chen, Z.; Lu, T.F.; Deng, L.; Tang, J.; Zhang, X.; Wang, L.; Bai, F.Q. Theoretical design of porphyrin dyes with electron-deficit heterocycles towards near-IR light sensitization in dye-sensitized solar cells. Solar Energy 2019, 188, 742–749. [Google Scholar] [CrossRef]
- Compañy, A.D.; Simonetti, S. DFT study of the chemical reaction and physical properties of ibuprofen sodium. Tetrahedron 2022, 120, 132899. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Song, C.; Zhang, H. Rigid fused p-spacers in D–π–A type molecules for dye-sensitized solar cells: A computational investigation. J. Mater. Chem. C 2017, 5, 11454–11465. [Google Scholar] [CrossRef]
- Chenab, K.K.; Sohrabi, B.; Meymian, M.Z.; Mousavi, S.V. Naphthoquinone derivative-based dye for dye-sensitized solar cells: Experimental and computational aspects. Mater. Res. Express 2019, 6, 085537. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Song, P.; Ma, F. An experimental and theoretical investigation of the electronic structures and photoelectrical properties of ethyl red and carminic acid for DSSC application. Materials 2016, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhao, S.; Zhai, Y.; Xu, M.; Li, M.; Zhang, X. Opticalelectronic performance and mechanism investigation of dihydroindolocarbazole-based organic dyes for DSSCs. Results Phys. 2021, 23, 103939. [Google Scholar] [CrossRef]
- Manzoor, T.; Asmi, S.; Niaz, S.; Hussain, A. Pandith: Computational studies on optoelectronic and charge transfer properties of some perylene-based donor-π-acceptor systems for dye sensitized solar cell applications. Int. J. Quantum Chem. 2017, 117, 25332. [Google Scholar] [CrossRef]
- Karuppusamy, M.; Choutipalli, V.S.K.; Vijay, D.; Subramanian, V. Rational design of novel N-doped polyaromatic hydrocarbons as donors for the perylene based dye-sensitized solar cells. J. Chem. Sci. 2020, 132, 20. [Google Scholar] [CrossRef]
- Abdellah, I.M.; El-Shafei, A. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies. J. Photochem. Photobiol. A Chem. 2020, 387, 112133. [Google Scholar] [CrossRef]
- Soroush, M.; Lau, K.K.S. Insights into dye-sensitized solar cells from macroscopic-scale first-principles mathematical modeling. In Dye-Sensitized Solar Cells; Academic Press: Cambridge, MA, USA, 2019; pp. 83–119. [Google Scholar]
- Fatima, R.; Shehzad, R.A.; Rasool, A.; Yaseen, M.; Iqbal, S.; Saif, M.J.; Iqbal, J. Exploring the potential of tetraazaacene derivatives as photovoltaic materials with enhanced photovoltaic parameters. Int. J. Quantum Chem. 2022, 122, e26817. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian Inc: Wallingford, CT, USA, 2009. [Google Scholar]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822, Erratum in Phys. Rev. B 1986, 34, 7406. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Vincenzo, B. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Marques, M.A.L.; Nogueira, F.M.S.; Gross, E.K.U.; Rubio, A. Fundamentals of Time-Dependent Density Functional Theory; Springer: Berlin/Heidelberg, Germany, 2012; Volume 837, p. 592. [Google Scholar]
- Adamo, C.; Vincenzo, B. Toward reliable adiabatic connection models free from adjustable parameters. Chem. Phys. Lett. 1997, 274, 242–250. [Google Scholar] [CrossRef]
- Park, H.; Bae, E.; Lee, J.-J.; Park, J.; Choi, W. Effect of the Anchoring Group in Ru−Bipyridyl Sensitizers on the Photoelectrochemical Behavior of Dye-Sensitized TiO2 Electrodes: Carboxylate versus Phosphonate Linkages. J. Phys. Chem. B 2006, 110, 8740–8749. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-Sensitized Solar Cells Strike Back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- DeVries, M.J.; Pellin, M.J.; Hupp, J.T. Dye-sensitized solar cells: Driving-force effects on electron recombination dynamics with cobalt-based shuttles. Langmuir 2010, 26, 9082–9087. [Google Scholar] [CrossRef]
- Yang, W.; Pazoki, M.; Eriksson, A.I.K.; Hao, Y.; Boschloo, G. A key discovery at the TiO2/dye/electrolyte interface: Slow local charge compensation and a reversible electric field. Phys. Chem. Chem. Phys. 2015, 17, 16744–16751. [Google Scholar] [CrossRef] [PubMed]
- Kubo, W.; Sakamoto, A.; Kitamura, T.; Wada, Y.; Yanagida, S. Dye-sensitized solar cells: Improvement of spectral response by tandem structure. J. Photochem. Photobiol. A Chem. 2004, 164, 33–39. [Google Scholar] [CrossRef]
- Lee, K.E.; Gomez, M.A.; Elouatik, S.; Demopoulos, G.P. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 2010, 26, 9575–9583. [Google Scholar] [CrossRef]
- Santhanamoorthi, N.; Chien-Min, L.; Jyh-Chiang, J. Molecular design of porphyrins for dye-sensitized solar cells: A DFT/TDDFT study. J. Phys. Chem. Lett. 2013, 4, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.M.; Jolley, K.W.; Wagner, P.; Wagner, K.; Walsh, P.J.; Gordon, K.C.; Schmidt-Mende, L.; Nazeeruddin, M.K.; Wang, Q.; Grätzel, M.; et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 11760–11762. [Google Scholar] [CrossRef]
- Ma, R.; Guo, P.; Cui, H.; Zhang, X.; Nazeeruddin, M.K.; Grätzel, M. Substituent effect on the meso-substituted porphyrins: Theoretical screening of sensitizer candidates for dye-sensitized solar cells. J. Phys. Chem. A 2009, 113, 10119–10124. [Google Scholar] [CrossRef]
- Namuangruk, S.; Jungsuttiwong, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Jansang, B.; Ehara, M. Coumarin-based donor–π–acceptor organic dyes for a dye-sensitized solar cell: Photophysical properties and electron injection mechanism. Theor. Chem. Acc. 2015, 135, 14. [Google Scholar] [CrossRef]
- Wazzan, N.A. A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole/benzothiadiazole/phthalimide units (A2) as organic photosensitizers with D–A2–π–A1 configuration for solar cell applications. J. Comput. Electron. 2019, 18, 375–395. [Google Scholar] [CrossRef]
- Pastore, M.; De Angelis, F. Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: Adsorption modes, electronic structure and implication for electron injection/recombination. Phys. Chem. Chem. Phys. 2012, 14, 920–928. [Google Scholar] [CrossRef]
- Hilal, R.; Aziz, S.G.; Osman, O.I.; Bredas, J.L. Time dependent—Density functional theory characterization of organic dyes for dye-sensitized solar cells. Mol. Simul. 2017, 43, 1523–1531. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Huang, C.; Zheng, J.; Cheng, H.; Tian, S. Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative. Synth. Met. 2000, 114, 201–207. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.B.; Sun, S.L.; Geng, Y.; Wu, Y.; Su, Z.M. Density functional theory characterization and design of high-performance diarylamine-fuorene dyes with diferent π spacers for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 568–576. [Google Scholar] [CrossRef]
- Yella, A.; Humphry-Baker, R.; Curchod, B.F.E.; Astani, N.A.; Teuscher, J.; Polander, L.E.; Mathew, S.; Moser, J.; Tavernelli, I.; Rothlisberger, U.; et al. Molecular engineering of a fuorene donor for dye-sensitized solar cells. Chem. Mater. 2013, 25, 2733–2739. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Yu, H.; Li, F.; Fan, L.; Sun, W.; Liu, Y.; Koh, Z.Y.; Pan, J.; Yim, W.; et al. A benzothiazole-cyclopentadithiophene bridged D–A–π–A sensitizer with enhanced light absorption for high efciency dye-sensitized solar cells. Chem. Commun. 2014, 50, 3965–3968. [Google Scholar] [CrossRef] [PubMed]
Dyes | EHOMO (eV) | ELUMO (eV) | Energy Gap (Eg) (eV) | IP (eV) | EA (eV) |
---|---|---|---|---|---|
A0 | −6.40 | −1.87 | 4.53 | 6.40 | 1.87 |
A1 | −5.94 | −1.80 | 4.13 | 5.94 | 1.8 |
A2 | −6.12 | −1.84 | 4.28 | 6.12 | 1.84 |
A3 | −6.05 | −1.86 | 4.19 | 6.05 | 1.86 |
A4 | −6.47 | −1.90 | 4.57 | 6.47 | 1.90 |
A5 | −6.50 | −1.90 | 4.60 | 6.50 | 1.90 |
B0 | −6.42 | −2.33 | 4.09 | 6.42 | 2.33 |
B1 | −5.98 | −2.28 | 3.70 | 5.98 | 2.28 |
B2 | −6.15 | −2.31 | 3.84 | 6.15 | 2.31 |
B3 | −6.07 | −2.32 | 3.75 | 6.07 | 2.32 |
B4 | −6.49 | −2.36 | 4.12 | 6.49 | 2.36 |
B5 | −6.52 | −2.36 | 4.15 | 6.52 | 2.36 |
Dyes | Excitation Wavelength | Oscillator Strength (f) | |
---|---|---|---|
Energy (eV) | |||
A0 | 2.68 | 461.91 | 1.16 |
A1 | 2.51 | 492.13 | 1.23 |
A2 | 2.60 | 475.59 | 1.25 |
A3 | 2.60 | 476.17 | 1.24 |
A4 | 2.72 | 454.29 | 1.23 |
A5 | 2.74 | 452.49 | 1.21 |
B0 | 2.33 | 531.93 | 1.32 |
B1 | 2.16 | 571.40 | 1.42 |
B2 | 2.25 | 549.74 | 1.40 |
B3 | 2.25 | 549.27 | 1.39 |
B4 | 2.37 | 521.73 | 1.38 |
B5 | 2.38 | 519.50 | 1.36 |
Dyes | ΔGinj | ΔGreg | VOC | LHE |
---|---|---|---|---|
A0 | −0.28 | 1.6 | 2.13 | 0.931 |
A1 | −0.58 | 1.14 | 2.20 | 0.941 |
A2 | −0.49 | 1.32 | 2.16 | 0.944 |
A3 | −0.55 | 1.25 | 2.14 | 0.943 |
A4 | −0.26 | 1.67 | 2.10 | 0.941 |
A5 | −0.24 | 1.7 | 2.10 | 0.938 |
B0 | 0.09 | 1.62 | 1.67 | 0.952 |
B1 | −0.19 | 1.18 | 1.72 | 0.970 |
B2 | −0.11 | 1.35 | 1.69 | 0.960 |
B3 | −0.19 | 1.27 | 1.68 | 0.959 |
B4 | 0.11 | 1.69 | 1.64 | 0.958 |
B5 | 0.13 | 1.72 | 1.64 | 0.957 |
Dyes | EHOMO (eV) | ELUMO (eV) | Energy Gap (Eg) (eV) |
---|---|---|---|
A0 | −6.40 | −1.89 | 4.51 |
A1 | −5.95 | −1.83 | 4.12 |
A2 | −6.12 | −1.87 | 4.24 |
A3 | −6.07 | −2.04 | 4.02 |
A4 | −6.47 | −1.92 | 4.55 |
A5 | −6.53 | −2.09 | 4.44 |
B0 | −6.45 | −2.45 | 3.99 |
B1 | −5.99 | −2.30 | 3.69 |
B2 | −6.15 | −2.33 | 3.81 |
B3 | −6.07 | −2.34 | 3.73 |
B4 | −6.46 | −2.27 | 4.19 |
B5 | −6.54 | −2.50 | 4.03 |
Dyes | Excitation Wavelength | Oscillator Strength (f) | |
---|---|---|---|
Energy (eV) | |||
A0 | 2.66 | 465.00 | 1.24 |
A1 | 2.49 | 496.04 | 1.31 |
A2 | 2.58 | 479.58 | 1.34 |
A3 | 2.49 | 479.07 | 1.34 |
A4 | 2.71 | 457.51 | 1.33 |
A5 | 2.62 | 471.97 | 1.34 |
B0 | 2.25 | 550.00 | 1.45 |
B1 | 2.15 | 574.59 | 1.51 |
B2 | 2.24 | 553.00 | 1.50 |
B3 | 2.24 | 552.29 | 1.48 |
B4 | 2.42 | 512.01 | 1.47 |
B5 | 2.31 | 536.65 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, F.M.; Abdel Khalek, A.A.; Mahboob, A.A.; Abdel-Latif, M.K. Designing Efficient Metal-Free Dye-Sensitized Solar Cells: A Detailed Computational Study. Molecules 2023, 28, 6177. https://doi.org/10.3390/molecules28176177
Mustafa FM, Abdel Khalek AA, Mahboob AA, Abdel-Latif MK. Designing Efficient Metal-Free Dye-Sensitized Solar Cells: A Detailed Computational Study. Molecules. 2023; 28(17):6177. https://doi.org/10.3390/molecules28176177
Chicago/Turabian StyleMustafa, Fatma M., Ahmed A. Abdel Khalek, Abdulla Azzam Mahboob, and Mahmoud K. Abdel-Latif. 2023. "Designing Efficient Metal-Free Dye-Sensitized Solar Cells: A Detailed Computational Study" Molecules 28, no. 17: 6177. https://doi.org/10.3390/molecules28176177
APA StyleMustafa, F. M., Abdel Khalek, A. A., Mahboob, A. A., & Abdel-Latif, M. K. (2023). Designing Efficient Metal-Free Dye-Sensitized Solar Cells: A Detailed Computational Study. Molecules, 28(17), 6177. https://doi.org/10.3390/molecules28176177