Lipids and Terpenoids from the Deep-Sea Fungus Trichoderma lixii R22 and Their Antagonism against Two Wheat Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation
2.2. Antifungal Activity of Isolated Compounds
3. Materials and Methods
3.1. General Experimental Producres
3.2. Fungal Material and Fermentation
3.3. Extraction and Isolation
3.4. Spectral and Physical Data of Compounds 1–5
3.5. ECD Determination for Mo2-Complex of 5
3.6. Assay for Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shao, H.B.; Liang, Z.S.; Shao, M.A.; Wang, B.C. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloid Surf. B Biointerfaces 2005, 42, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases-a field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Ward, E. Gaeumannomyces graminis, the take-all fungus and its relatives. Mol. Plant Pathol. 2004, 5, 235–252. [Google Scholar] [CrossRef]
- Cheng, Y.-N.; Sun, L.; Meng, H.; Jiang, Z.; Zhang, Z.; Yun, Y.; Wang, X.; Yan, J.; Yang, X.; Zhou, H.; et al. Structure-activity studies of N-heterocyclic benzoyl arylamine derivatives led to a highly fungicidal candidate against Gaeumannomyces graminis var. tritici and four Fusarium wheat pathogens. J. Agric. Food Chem. 2022, 70, 10305–10315. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Qiao, X.; Fan, X.; Huo, X.; Zhang, D. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici. J. Sep. Sci. 2021, 44, 931–940. [Google Scholar] [CrossRef]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Ghisalberti, E.L.; Sivasithamparam, K. Antifungal antibiotics produced by Trichoderma spp. Soil Biol. Biochem. 1991, 23, 1011–1020. [Google Scholar] [CrossRef]
- Reino, J.L.; Guerrero, R.F.; Hernández-Galán, R.; Collado, I.G. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 2008, 7, 89–123. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Liu, X.-H.; Li, X.-N.; Ji, N.-Y. Antifungal and antimicroalgal trichothecene sesquiterpenes from the marine algicolous fungus Trichoderma brevicompactum A-DL-9-2. J. Agric. Food Chem. 2020, 68, 15440–15448. [Google Scholar] [CrossRef]
- You, J.; Dai, H.; Chen, Z.; Liu, G.; He, Z.; Song, F.; Yang, X.; Fu, H.; Zhang, L.; Chen, X. Trichoderone, a novel cytotoxic cyclopentenone and cholesta-7, 22-diene-3β, 5α, 6β-triol, with new activities from the marine-derived fungus Trichoderma sp. J. Ind. Microbiol. Biotechnol. 2010, 37, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, X.; Li, X.; Hu, Z.; Wang, L. Novel harziane diterpenes from deep-sea sediment fungus Trichoderma sp. SCSIOW21 and their potential anti-inflammatory effects. Mar. Drugs 2021, 19, 689. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.-J.; Chen, P.-N.; Li, H.-J.; Wu, F.; Zhang, G.-Y.; Shao, Z.-Z.; Liu, X.-P.; Ma, W.-Z.; Xu, J.; Mahmud, T.; et al. β-Carboline alkaloids from the deep-sea fungus Trichoderma sp. MCCC 3A01244 as a new type of anti-pulmonary fibrosis agent that inhibits TGF-b/Smad signaling pathway. Front. Microbiol. 2022, 13, 947226. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, X.; Hu, Z.; Wang, L. Novel sesquiterpene and diterpene aminoglycosides from the deep-sea-sediment fungus Trichoderma sp. SCSIOW21. Mar. Drugs 2023, 21, 7. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Fang, S.-T.; Shi, Z.-Z.; Wang, B.-G.; Li, X.-N.; Ji, N.-Y. Phenylhydrazone and quinazoline derivatives from the cold-seep-derived fungus Penicillium oxalicum. Mar. Drugs 2021, 19, 9. [Google Scholar] [CrossRef]
- Li, C.-P.; Song, Y.-P.; Wang, B.-G.; Ji, N.-Y. Sulfurated and iodinated metabolites from the cold-seep fungus Cladosporium cladosporioides 8-1. Tetrahedron Lett. 2022, 93, 152689. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Fang, S.-T.; Wang, B.-G.; Ji, N.-Y. Phenol derivatives from the cold-seep fungus Aspergillus sydowii 10-31. Phytochem. Lett. 2022, 52, 63–66. [Google Scholar] [CrossRef]
- Almassi, F.; Ghisalberti, E.L.; Narvey, M.J.; Sivasithamparam, K. New antibiotics from strains of Trichoderma harzianum. J. Nat. Prod. 1991, 54, 396–402. [Google Scholar] [CrossRef]
- Claydon, N.; Hanson, J.R.; Truneh, A.; Avent, A.G. Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 1991, 30, 3802–3803. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Murasaki, C.; Shimada, H.; Nishioka, S.; Kakinuma, K.; Singh, S.; Singh, M.; Gupta, Y.K.; Sahai, M. Annonaceous acetogenins from the seeds of Annona squamosa. Non-adjacent bis-tetrahydrofuranic acetogenins. Chem. Pharm. Bull. 1994, 42, 1175–1184. [Google Scholar] [CrossRef]
- Harmange, J.-C.; Figadère, B.; Cavé, A. Stereocontrolled synthesis of 2,5-linked monotetrahydrofuran units of acetogenins. Tetrahedron Lett. 1992, 33, 5749–5752. [Google Scholar] [CrossRef]
- Liu, X.-H.; Ji, N.-Y. Isolation, identification, and bioactivity of a new triol from algicolous fungus Trichoderma citrinoviride. Chem. Bioeng. 2022, 39, 15–18. [Google Scholar]
- Liu, X.-H.; Song, Y.-P.; Yin, X.-L.; Ji, N.-Y. Antimicrobial terpenoids and polyketides from the algicolous fungus Byssochlamys spectabilis RR-dl-2-13. J. Agric. Food Chem. 2022, 70, 4658–4666. [Google Scholar] [CrossRef] [PubMed]
- Capon, R.J.; Barrow, R.A.; Rochfort, S.; Jobling, M.; Skene, C.; Lacey, E.; Gill, J.H.; Friedel, T.; Wadsworth, D. Marine nematocides: Tetrahydrofurans from a southern Australian brown alga, Notheia anomala. Tetrahedron 1998, 54, 2227–2242. [Google Scholar] [CrossRef]
- González-Andrés, P.; Fernández-Peña, L.; Díez-Poza, C.; Barbero, A. The tetrahydrofuran motif in marine lipids and terpenes. Mar. Drugs 2022, 20, 642. [Google Scholar] [CrossRef]
- Miyata, Y.; Matsunaga, S. Structure elucidation of 21,22-dihydroxyonnamides A1-A4 from the marine sponge Theonella swinhoei: An empirical rule to assign the relative stereochemistry of linear 1,5-diols. Tetrahedron Lett. 2008, 49, 6334–6336. [Google Scholar] [CrossRef]
- Xia, M.-W.; Cui, C.-B.; Li, C.-W.; Wu, C.-J. Three new and eleven known unusual C25 steroids: Activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate. Mar. Drugs 2014, 12, 1545–1568. [Google Scholar] [CrossRef]
- Feng, J.; Surup, F.; Hauser, M.; Miller, A.; Wennrich, J.-P.; Stadler, M.; Cox, R.J.; Kuhnert, E. Biosynthesis of oxygenated brasilane terpene glycosides involves a promiscuous N-acetylglucosamine transferase. Chem. Commun. 2020, 56, 12419–12422. [Google Scholar] [CrossRef]
- Hu, D.-B.; Zhang, S.; He, J.-B.; Dong, Z.-J.; Li, Z.-H.; Feng, T.; Liu, J.-K. Brasilane sesquiterpenoids and alkane derivatives from cultures of the basidiomycete Coltricia sideroides. Fitoterapia 2015, 104, 50–54. [Google Scholar] [CrossRef]
- Zhao, D.-L.; Yang, L.-J.; Shi, T.; Wang, C.-Y.; Shao, C.-L.; Wang, C.-Y. Potent phytotoxic harziane diterpenes from a soft coral-derived strain of the fungus Trichoderma harzianum XS-20090075. Sci. Rep. 2019, 9, 13345. [Google Scholar] [CrossRef]
- Murai, K.; Lauterbach, L.; Teramoto, K.; Quan, Z.; Barra, L.; Yamamoto, T.; Nonaka, K.; Shiomi, K.; Nishiyama, M.; Kuzuyama, T.; et al. An unusual skeletal rearrangement in the biosynthesis of the sesquiterpene trichobrasilenol from Trichoderma. Angew. Chem. Int. Ed. 2019, 58, 15046–15050. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Cai, Y.-S.; Yuan, Y.; Bian, G.; Ye, Z.; Deng, Z.; Liu, T. Genome mining in Trichoderma viride J1-030: Discovery and identification of novel sesquiterpene synthase and its products. Beilstein J. Org. Chem. 2019, 15, 2052–2058. [Google Scholar] [CrossRef]
- Zou, J.-X.; Song, Y.-P.; Zeng, Z.-Q.; Ji, N.-Y. Proharziane and harziane derivatives from the marine algicolous fungus Trichoderma asperelloides RR-dl-6-11. J. Nat. Prod. 2021, 84, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Marra, R.; Scala, F.; Ghisalberti, E.L.; Lorito, M.; Sivasithamparam, K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 2006, 43, 143–148. [Google Scholar] [CrossRef]
- Song, Y.-P.; Liu, X.-H.; Shi, Z.-Z.; Miao, F.-P.; Fang, S.-T.; Ji, N.-Y. Bisabolane, cyclonerane, and harziane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Phytochemistry 2018, 152, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-P.; Miao, F.-P.; Liu, X.-H.; Yin, X.-L.; Ji, N.-Y. Seven chromanoid norbisabolane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum A-YMD-9-2. Fitoterapia 2019, 135, 107–113. [Google Scholar] [CrossRef]
- Hamidi, M.R.; Jovanova, B.; Panovska, T.K. Toxicological evaluation of the plant products using brine shrimp (Artemia salina L.) model. Maced. Pharm. Bull. 2014, 60, 9–18. [Google Scholar] [CrossRef]
- Miao, F.P.; Liang, X.R.; Yin, X.L.; Wang, G.; Ji, N.Y. Absolute configurations of unique harziane diterpenes from Trichoderma species. Org. Lett. 2012, 14, 3815–3817. [Google Scholar] [CrossRef]
Position | 1 (in DMSO-d6) | 1 (in CDCl3) | 2 (in DMSO-d6) | 2 (in CD3OD) |
---|---|---|---|---|
1 | 1.02, d (6.2) | 1.23, d (6.2) | 1.03, d (6.2) | 1.18, d (6.2) |
2 | 3.77, m | 4.05, m | 3.77, m | 3.97, m |
3a | 2.36, m | 2.53, m | 2.30, dd (13.4, 7.1) | 2.43, br dd (13.8, 7.6) |
3b | 2.26, br dd (13.3, 5.8) | 2.46, m | 2.21, dd (13.4, 5.8) | 2.37, br dd (13.8, 5.2) |
6a | 6.54, br d (16.1) | 6.47, br d (16.1) | 3.21, dd (16.4, 6.8) | 3.28, br d (6.7) |
6b | 3.18, dd (16.4, 7.2) | |||
7 | 6.14, dt (16.1, 6.7) | 6.05, dt (16.1, 6.9) | 5.60, br ddd (15.3, 7.2, 6.8) | 5.71, dtt (15.3, 6.7, 1.1) |
8 | 2.38, m | 2.49, m | 5.69, br dd (15.3, 5.0) | 5.79, br dt (15.3, 5.2) |
9 | 2.62, t (7.3) | 2.62, t (7.0) | 3.89, br s | 4.04, br dd (5.2, 1.1) |
11 | 2.10, s | 2.17, s | ||
12a | 4.95, d (16.5) | 4.89, s | 4.75, d (17.9) | 4.78, s |
12b | 4.91, d (16.5) | 4.69, d (17.9) | ||
OH-2 | 4.63, br d (4.1) | 4.62, br d (4.3) | ||
OH-9 | 4.68, m |
Position | 1 (in DMSO-d6) | 1 (in CDCl3) | 2 (in DMSO-d6) | 2 (in CD3OD) |
---|---|---|---|---|
1 | 23.2, CH3 | 23.5, CH3 | 23.3, CH3 | 23.3, CH3 |
2 | 64.8, CH | 66.7, CH | 64.6, CH | 67.0, CH |
3 | 33.2, CH2 | 33.5, CH2 | 33.1, CH2 | 34.1, CH2 |
4 | 122.0, C | 123.4, C | 123.1, C | 125.0, C |
5 | 156.0, C | 155.7, C | 162.0, C | 164.1, C |
6 | 121.1, CH | 121.5, CH | 29.6, CH2 | 31.0, CH2 |
7 | 138.6, CH | 138.3, CH | 124.0, CH | 126.5, CH |
8 | 26.8, CH2 | 27.3, CH2 | 133.8, CH | 134.4, CH |
9 | 41.2, CH2 | 42.2, CH2 | 61.0, CH2 | 63.0, CH2 |
10 | 207.4, C | 207.1, C | ||
11 | 29.8, CH3 | 30.1, CH3 | ||
12 | 69.3, CH2 | 69.9, CH2 | 71.2, CH2 | 73.1, CH2 |
13 | 174.8, C | 176.0, C | 174.7, C | 177.7, C |
Position | 3 (in CD3OD) | 4 (in DMSO-d6) | 5 (in CD3OD) |
---|---|---|---|
1 | 1.13, d (6.4) | 1.64, br d (6.5) | 2.28, s |
2 | 3.71, qd (6.4, 5.0) | 5.61, dqd (15.4, 6.5, 1.2) | |
3 | 3.79, m | 5.40, m | 6.16, d (15.7) |
4a | 1.95, m | 3.82, m | 7.30, dd (15.7, 10.7) |
4b | 1.82, m | ||
5a | 1.95, m | 3.75, ddd (9.0, 4.4, 3.4) | 6.48, br dd (15.3, 10.7) |
5b | 1.82, m | ||
6a | 3.82, m | 1.97, ddd (11.9, 8.5, 3.4) | 6.37, dd (15.3, 5.8) |
6b | 1.72, m | ||
7 | 3.53, ddd (8.9, 5.3, 3.2) | 3.85, q (8.5) | 4.05, ddd (5.8, 5.3, 0.9) |
8a | 1.64, m | 3.51, ddd (9.4, 5.3, 3.1) | |
8b | 1.42, m | ||
9a | 2.30, m | 1.71, m | 1.61, m |
9b | 2.15, m | 1.58, m | 1.43, m |
10a | 5.72, dt (15.2, 7.0) | 2.09, m | 2.19, m |
10b | 1.91, m | 2.03, m | |
11 | 6.09, dd (15.2, 10.3) | 5.40, m | 5.45, m |
12 | 6.31, dt (17.0, 10.3) | 5.40, m | 5.45, m |
13a | 5.06, dd (17.0, 2.0) | 1.60, br d (4.9) | 1.64, br d (4.7) |
13b | 4.93, dd (10.3, 2.0) | ||
CH3O-8 | 3.14, s | ||
OH-4 | 4.75, br d (4.7) | ||
OH-7 | 4.43, br d (8.5) |
Position | 3 (in CD3OD) | 4 (in DMSO-d6) | 5 (in CD3OD) |
---|---|---|---|
1 | 19.5, CH3 | 17.7, CH3 | 27.0, CH3 |
2 | 70.2, CH | 125.4, CH | 201.6, C |
3 | 85.0, CH | 131.8, CH | 131.1, CH |
4 | 27.9, CH2 | 72.6, CH | 145.5, CH |
5 | 27.8, CH2 | 78.3, CH | 130.5, CH |
6 | 84.1, CH | 32.6, CH2 | 145.3, CH |
7 | 73.5, CH | 73.6, CH | 76.2, CH |
8 | 34.2, CH2 | 104.5, C | 74.9, CH |
9 | 29.8, CH2 | 32.1, CH2 | 33.8, CH2 |
10 | 135.7, CH | 26.4, CH2 | 29.8, CH2 |
11 | 132.7, CH | 131.5, CH | 132.1, CH |
12 | 138.6, CH | 124.0, CH | 126.2, CH |
13 | 115.1, CH2 | 17.8, CH3 | 18.1, CH3 |
CH3O-8 | 47.4, CH3 |
Compound | MIC (μg/mL) | Lethal Rate (at 100 μg/mL) | |
---|---|---|---|
Fusarium graminearum ACCC39334 | Gaeumannomyces graminis ACCC38864 | Artemia salina | |
1 | 25.0 ± 0.0 | – | 15.6 ± 5.2% |
2 | 25.0 ± 0.0 | – | 15.2 ± 2.1% |
3 | – | – | 4.7 ± 1.3% |
4 | – | – | 19.9 ± 3.7% |
5 | – | – | 7.2 ± 5.3% |
6 | – | 12.5 ± 0.0 | 23.4 ± 5.4% |
7 | – | – | 0.0 ± 0.0% |
carbendazim | 6.1 ± 0.0 | 6.1 ± 0.0 | |
CuSO4 | 100.0 ± 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-P.; Shi, Z.-Z.; Fang, S.-T.; Song, Y.-P.; Ji, N.-Y. Lipids and Terpenoids from the Deep-Sea Fungus Trichoderma lixii R22 and Their Antagonism against Two Wheat Pathogens. Molecules 2023, 28, 6220. https://doi.org/10.3390/molecules28176220
Li C-P, Shi Z-Z, Fang S-T, Song Y-P, Ji N-Y. Lipids and Terpenoids from the Deep-Sea Fungus Trichoderma lixii R22 and Their Antagonism against Two Wheat Pathogens. Molecules. 2023; 28(17):6220. https://doi.org/10.3390/molecules28176220
Chicago/Turabian StyleLi, Chang-Peng, Zhen-Zhen Shi, Sheng-Tao Fang, Yin-Ping Song, and Nai-Yun Ji. 2023. "Lipids and Terpenoids from the Deep-Sea Fungus Trichoderma lixii R22 and Their Antagonism against Two Wheat Pathogens" Molecules 28, no. 17: 6220. https://doi.org/10.3390/molecules28176220
APA StyleLi, C. -P., Shi, Z. -Z., Fang, S. -T., Song, Y. -P., & Ji, N. -Y. (2023). Lipids and Terpenoids from the Deep-Sea Fungus Trichoderma lixii R22 and Their Antagonism against Two Wheat Pathogens. Molecules, 28(17), 6220. https://doi.org/10.3390/molecules28176220