Developing an Electrochemically Reversible Switch for Modulating the Optical Signal of Gold Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Synthetic Materials
2.2. Characterization of the Modified ITO Electrodes
2.3. Electrochemical Reversible Regulation of AuNP Optical Properties
3. Materials and Methods
3.1. General Materials
3.2. Instrumentation and Methods
3.3. Material Synthesis
3.4. Pretreatment of ITO Electrode
3.5. Preparation of Self-Assembly Monolayers (SAM) on Pretreated ITO Electrode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Piella, J.; Bastús, N.G.; Puntes, V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 2016, 28, 1066–1075. [Google Scholar]
- Mohammed, I.A.; Al-Gawhari, F.J. Gold nanoparticle: Synthesis, functionalization, enhancement, drug delivery and therapy: A review. Syst. Rev. Pharm. 2020, 11, 888–910. [Google Scholar]
- Yuan, Z.; Hu, C.C.; Chang, H.T.; Lu, C. Gold nanoparticles as sensitive optical probes. Analyst 2016, 141, 1611–1626. [Google Scholar] [PubMed]
- Jackman, J.A.; Rahim Ferhan, A.; Cho, N.J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 2017, 46, 3615–3660. [Google Scholar] [PubMed]
- Lu, L.; Zhang, Y.; Chen, Z.; Feng, F.; Ma, Z.; Zhang, S.; Teng, K.; An, Q. Elemental diversity-enhanced her and oer photoelectrochemical catalytic performance in feco-aunp/nitrogen-carbon composite catalysts. Appl. Surf. Sci. 2021, 568, 151005. [Google Scholar]
- Topçu, E.; Dağcı Kıranşan, K. Flexible gold nanoparticles/rgo and thin film/rgo papers: Novel electrocatalysts for hydrogen evolution reaction. J. Chem. Technol. Biotechnol. 2019, 94, 3895–3904. [Google Scholar]
- Buoro, R.M.; Bacil, R.P.; da Silva, R.P.; da Silva, L.C.C.; Lima, A.W.O.; Cosentino, I.C.; Serrano, S.H.P. Lignin-aunp modified carbon paste electrodes—Preparation, characterization, and applications. Electrochim. Acta 2013, 96, 191–198. [Google Scholar]
- Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019, 7, 167. [Google Scholar]
- Salabat, A.; Mirhoseini, F. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq. 2018, 268, 849–853. [Google Scholar] [CrossRef]
- Ginzburg, A.L.; Truong, L.; Tanguay, R.L.; Hutchison, J.E. Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano 2018, 12, 5312–5322. [Google Scholar]
- Bulut, O.; Yilmaz, M.D. Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin. Carbohydr. Polym. 2021, 258, 117699. [Google Scholar] [PubMed]
- Teixeira, P.R.; Santos, M.S.C.; Silva, A.L.G.; Bao, S.N.; Azevedo, R.B.; Sales, M.J.A.; Paterno, L.G. Photochemically-assisted synthesis of non-toxic and biocompatible gold nanoparticles. Colloids Surf. B Biointerfaces 2016, 148, 317–323. [Google Scholar] [PubMed]
- Cheng, X.; Sun, R.; Yin, L.; Chai, Z.; Shi, H.; Gao, M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894. [Google Scholar]
- Zhou, J.; Yang, T.; Chen, J.; Wang, C.; Zhang, H.; Shao, Y. Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coord. Chem. Rev. 2020, 410, 213218. [Google Scholar]
- Leroux, Y.; Lacroix, J.C.; Fave, C.; Trippe, G.; Felidj, N.; Aubard, J.; Hohenau, A.; Krenn, J.R. Tunable electrochemical switch of the optical properties of metallic nanoparticles. ACS Nano 2008, 2, 728–732. [Google Scholar]
- Xu, X.; Zhou, G.; Li, H.; Liu, Q.; Zhang, S.; Kong, J. A novel molecularly imprinted sensor for selectively probing imipramine created on ito electrodes modified by au nanoparticles. Talanta 2009, 78, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Tian, X.; Wu, A.; Li, J.; Tian, J.; Chong, Y.; Chai, Z.; Zhao, Y.; Chen, C.; Ge, C. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl. Mater. Interfaces 2015, 7, 20568–20575. [Google Scholar]
- Khan, A.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res. 2014, 13, 1169–1177. [Google Scholar]
- Gao, Q.; Zhang, J.; Gao, J.; Zhang, Z.; Zhu, H.; Wang, D. Gold nanoparticles in cancer theranostics. Front. Bioeng. Biotechnol. 2021, 9, 647905. [Google Scholar]
- Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer 2023, 22, 98. [Google Scholar]
- Dutta, D.; Sahoo, A.K.; Chattopadhyay, A.; Ghosh, S.S. Bimetallic silver nanoparticle-gold nanocluster embedded composite nanoparticles for cancer theranostics. J. Mater. Chem. B 2016, 4, 793–800. [Google Scholar] [PubMed]
- Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I. DNA origami based au-ag-core-shell nanoparticle dimers with single-molecule sers sensitivity. Nanoscale 2016, 8, 5612–5620. [Google Scholar] [PubMed]
- Zhang, W.; Li, C.; Gao, K.; Lu, F.; Liu, M.; Li, X.; Zhang, L.; Mao, D.; Gao, F.; Huang, L.; et al. Surface-enhanced raman spectroscopy with au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 2018, 29, 205301. [Google Scholar]
- Yu, G.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W.; Yan, W.; Liu, G. Collective excitation of plasmon-coupled au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912. [Google Scholar]
- Zheng, J.; Zhang, J.; Wang, Z.; Zhong, L.; Sun, Y.; Liang, Z.; Li, Y.; Jiang, L.; Chen, X.; Chi, L. Programmable negative differential resistance effects based on self-assembled au@ppy core-shell nanoparticle arrays. Adv. Mater. 2018, 30, 1802731. [Google Scholar]
- Thirumalraj, B.; Dhenadhayalan, N.; Chen, S.M.; Liu, Y.J.; Chen, T.W.; Liang, P.H.; Lin, K.C. Highly sensitive fluorogenic sensing of l-cysteine in live cells using gelatin-stabilized gold nanoparticles decorated graphene nanosheets. Sens. Actuators B Chem. 2018, 259, 339–346. [Google Scholar]
- Zhu, H.; Yuan, X.; Yao, Q.; Xie, J. Shining photocatalysis by gold-based nanomaterials. Nano Energy 2021, 88, 106306. [Google Scholar]
- Yuan, M.; Li, Y.-B.; Guo, J.; Zhong, R.-B.; Wang, L.-P.; Zhang, F. Solvent effects on gold nanoparticle formation from photochemical reduction of au(iii) by uv irradiation. Nucl. Sci. Tech. 2018, 29, 158. [Google Scholar]
- Blinco, J.P.; Fairfull-Smith, K.E.; Morrow, B.J.; Bottle, S.E. Profluorescent nitroxides as sensitive probes of oxidative change and free radical reactions. Aust. J. Chem. 2011, 64, 373–389. [Google Scholar]
- Tansakul, C.; Lilie, E.; Walter, E.D.; Rivera, F., 3rd; Wolcott, A.; Zhang, J.Z.; Millhauser, G.L.; Braslau, R. Distance-dependent fluorescence quenching and binding of cdse quantum dots by functionalized nitroxide radicals. J. Phys. Chem. C 2010, 114, 7793–7805. [Google Scholar]
- Blinco, J.P.; Fairfull-Smith, K.E.; Micallef, A.S.; Bottle, S.E. Highly efficient, stoichiometric radical exchange reactions using isoindoline profluorescent nitroxides. Polym. Chem. 2010, 1, 1009. [Google Scholar]
- Klinska, M.; Smith, L.M.; Gryn’ova, G.; Banwell, M.G.; Coote, M.L. Experimental demonstration of ph-dependent electrostatic catalysis of radical reactions. Chem. Sci. 2015, 6, 5623–5627. [Google Scholar] [PubMed]
- Colwell, J.M.; Walker, J.R.; Blinco, J.P.; Micallef, A.S.; George, G.A.; Bottle, S.E. Profluorescent nitroxides: Thermo-oxidation sensors for stabilised polypropylene. Polym. Degrad. Stab. 2010, 95, 2101–2109. [Google Scholar]
- Coman, A.G.; Paraschivescu, C.C.; Paun, A.; Diac, A.; Hădade, N.D.; Jouffret, L.; Gautier, A.; Matache, M.; Ionita, P. Synthesis of novel profluorescent nitroxides as dual luminescent-paramagnetic active probes. New J. Chem. 2017, 41, 7472–7480. [Google Scholar]
- Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells. Anal. Chem. 2016, 88, 5981–5987. [Google Scholar] [PubMed]
- Geneste, F.; Moinet, C.; Ababou-Girard, S.; Solal, F. Covalent attachment of tempo onto a graphite felt electrode and application in electrocatalysis. New J. Chem. 2005, 29, 1520. [Google Scholar]
- Aleveque, O.; Seladji, F.; Gautier, C.; Dias, M.; Breton, T.; Levillain, E. Nitroxyl radical self-assembled monolayers on gold: Versatile electroactive centers in aqueous and organic media. ChemPhysChem 2009, 10, 2401–2404. [Google Scholar]
- Suguro, M.; Mori, A.; Iwasa, S.; Nakahara, K.; Nakano, K. Syntheses and electrochemical properties of tempo radical substituted silicones: Active material for organic radical batteries. Macromol. Chem. Phys. 2009, 210, 1402–1407. [Google Scholar]
- Billone, P.S.; Maretti, L.; Maurel, V.; Scaiano, J.C. Dynamics of the dissociation of a disulfide biradical on a cdse nanoparticle surface. J. Am. Chem. Soc. 2007, 129, 14150–14151. [Google Scholar]
- Swiech, O.; Hrynkiewicz-Sudnik, N.; Palys, B.; Kaim, A.; Bilewicz, R. Gold nanoparticles tethered to gold surfaces using nitroxyl radicals. J. Phys. Chem. C 2011, 115, 7347–7354. [Google Scholar]
- Zhang, Z.; Berg, A.; Levanon, H.; Fessenden, R.W.; Meisel, D. On the interactions of free radicals with gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 7959–7963. [Google Scholar]
- Kumar, S.S.; Baek, G.; Lee, S.; Jun, C.-H.; Lee, D. Facile modification of ito electrodes with functional materials through catalytic grafting of n-hydroxysuccinimidyl-ester-functionalized methallylsilane. Electrochem. Commun. 2012, 19, 123–126. [Google Scholar]
- Umadevi, S.; Sundari, S.; Ganesh, V.; Berchmans, S. Liquid crystal-gold nanoparticle composite-modified indium tin oxide (ito) substrates and their electrochemical characterisation. Liq. Cryst. 2017, 44, 2222–2229. [Google Scholar]
- Gerken, J.B.; Pang, Y.Q.; Lauber, M.B.; Stahl, S.S. Structural effects on the ph-dependent redox properties of organic nitroxyls: Pourbaix diagrams for tempo, abno, and three tempo analogs. J. Org. Chem. 2017, 83, 7323–7330. [Google Scholar] [PubMed]
- Nicolaÿ, R.; Marx, L.; Hémery, P.; Matyjaszewski, K. Synthesis of multisegmented degradable polymers by atom transfer radical cross-coupling. Macromolecules 2007, 40, 9217–9223. [Google Scholar]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Zhang, L.; Song, X.; Zhao, L. Developing an Electrochemically Reversible Switch for Modulating the Optical Signal of Gold Nanoparticles. Molecules 2023, 28, 6233. https://doi.org/10.3390/molecules28176233
Tang M, Zhang L, Song X, Zhao L. Developing an Electrochemically Reversible Switch for Modulating the Optical Signal of Gold Nanoparticles. Molecules. 2023; 28(17):6233. https://doi.org/10.3390/molecules28176233
Chicago/Turabian StyleTang, Mengran, Long Zhang, Xiaoxue Song, and Long Zhao. 2023. "Developing an Electrochemically Reversible Switch for Modulating the Optical Signal of Gold Nanoparticles" Molecules 28, no. 17: 6233. https://doi.org/10.3390/molecules28176233
APA StyleTang, M., Zhang, L., Song, X., & Zhao, L. (2023). Developing an Electrochemically Reversible Switch for Modulating the Optical Signal of Gold Nanoparticles. Molecules, 28(17), 6233. https://doi.org/10.3390/molecules28176233