Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscopy (SEM) Analysis of the Ag-Mn Oxide Nanoparticles
2.2. Photocatalytic Degradation of Malachite Green Dye
2.2.1. Effect of Time on the Photocatalytic Degradation
2.2.2. Effect of Dye Concentration on Photocatalytic Degradation
2.2.3. Effect of pH Solution on Photodegradation
2.2.4. Effect of Catalyst Dosage on Photodegradation
2.2.5. Effect of Recovered Catalyst on Photodegradation
2.3. Proposed Mechanism for Photodegradation of MG Dye Degradation Using Ag-Mn Oxide Nanoparticles
2.4. Bandgap Energy Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Instrumentation
3.3. Preparation of Silver–Manganese Oxide Nanoparticles
3.4. Photodegradation of Malachite Green Dye Using Ag-Mn Oxide Nanoparticles
3.5. UV–Vis Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amdeha, E. Recovery of nanomaterials from agricultural and industrial wastes for water treatment applications. In Waste Recycling Technologies for Nanomaterials Manufacturing; Makhlouf, A.S.H., Ali, G.A.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 385–417. [Google Scholar]
- Mostafa, E.M.; Amdeha, E. Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts. Environ. Sci. Pollut. Res. 2022, 29, 69861–69874. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Zhang, D.; Mo, Y.; Song, L.; Brewer, E.; Huang, X.; Xiong, Y. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater. 2008, 156, 80–85. [Google Scholar] [CrossRef]
- Royer, B.; Cardoso, N.F.; Lima, E.C.; Macedo, T.R.; Airoldi, C. A useful organofunctionalized layered silicate for textile dye removal. J. Hazard. Mater. 2010, 181, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Chundawat, T.S.; Rawat, P.; Rao, G.K.; Vaya, D. Photocatalytic degradation of malachite green dye by ZnO and ZnO–β-cyclodextrin nanocomposite. Bull. Mater. Sci. 2021, 44, 250. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Salehi, R.; Arami, M.; Bahrami, H. Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 2011, 267, 64–72. [Google Scholar] [CrossRef]
- Kumar, V.G.; Gokavarapu, S.D.; Rajeswari, A.; Dhas, T.S.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I.A.; Roy, A.; Sinha, S. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf. B Biointerfaces 2011, 87, 159–163. [Google Scholar] [CrossRef]
- Singh, J.; Dhaliwal, A.S. Plasmon-induced Photocatalytic Degradation of Methylene Blue Dye Using Biosynthesized Silver Nanoparticles as Photocatalyst. Environ. Technol. 2020, 41, 1520–1534. [Google Scholar] [CrossRef]
- Nagar, N.; Devra, V. A Kinetic Study on the Degradation and Biodegradability of Silver Nanoparticles Catalyzed Methyl Orange and Textile Effluents. Heliyon 2019, 5, e01356. [Google Scholar] [CrossRef]
- Kamat, P. Manipulation of charge transfer across semiconductor interface a criterion that cannot be ignored in photo catalyst design. J. Phys. Chem. Lett. 2012, 3, 663–672. [Google Scholar] [CrossRef]
- Hammad, A.; Haitham, M.; El-Bery, H.M.; EL-Shazly, A.H.; Elkady, M. Effect of WO3 Morphological Structure on its Photoelectrochemical Properties. Int. J. Electrochem. Sci. 2018, 13, 362–372. [Google Scholar] [CrossRef]
- Velusamy, P.; Lakshmi, G. Enhanced Photocatalytic Performance of (ZnO/CeO2)-b-CD System for the Effective Decolorization of Rhodamine B under UV Light Irradiation. Appl. Water Sci. 2017, 7, 4025–4036. [Google Scholar] [CrossRef]
- Saeed, K.; Khan, I.; Gul, T.; Sadiq, M. Efficient Photodegradation of Methyl Violet Dye Using TiO2/Pt and TiO2/Pd Photocatalysts. Appl. Water Sci. 2017, 7, 3841–3848. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M.; Kohsari, I. Biosynthesis, Characterization and Catalytic Activity of the Pd/Bentonite Nanocomposite for Base- and Ligand-Free Oxidative Hydroxylation of Phenylboronic Acid and Reduction of Chromium (VI) and Nitro Compounds. Microporous Microporous Mater. 2018, 271, 128–137. [Google Scholar] [CrossRef]
- Zada, N.; Khan, I.; Shah, T.; Gul, T.; Khan, N.; Saeed, K. Ag–Co oxides nanoparticles supported on carbon nanotubes as an effective catalyst for the photodegradation of Congo red dye in aqueous medium. Inorg. Nano-Metal Chem. 2020, 50, 333–340. [Google Scholar] [CrossRef]
- Culp, S.J.; Beland, F.A. Malachite green: A toxicological review. J. Am. Coll. Toxicol. 1996, 15, 219–238. [Google Scholar] [CrossRef]
- Srivaji, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 2004, 66, 319. [Google Scholar]
- Sarvamangala, D.; Kondala, K.; Sivakumar, N.; Saratchandra Babu, M.; Manga, S. Synthesis, characterization and anti microbial studies of AgNP’s using pro-biotics. Int. Res. J. Pharm. 2013, 4, 240. [Google Scholar] [CrossRef]
- Jaast, S.; Grewal, A. Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity. Curr. Res. Green Sustain. Chem. 2021, 4, 100195. [Google Scholar] [CrossRef]
- Wang, W.; Yu, J.; Xiang, Q.; Cheng, B. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Appl. Catal. B Environ. 2016, 4, 109–120. [Google Scholar] [CrossRef]
- Hachem, C.; Bocquillon, F.; Zahraa, O.; Bouchy, M. Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments 2001, 49, 117–125. [Google Scholar] [CrossRef]
- Sohrabi, M.; Davallo, M.; Miri, M. Influence of operational parameters on eliminating azo dyes from wastewater by advanced oxidation technology. Int. J. Chem. Tech. Res. 2009, 1, 446–451. [Google Scholar]
- Fu, H.; Yang, Y.; Zhu, R.; Liu, J.; Usman, M.; Chen, Q.; He, H. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. J. Colloid Interface Sci. 2018, 530, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.F.; Hassan, H.S. Photocatalytic degradation of malachite green dye from aqueous solution using environmentally compatible Ag/ZnO polymeric nanofibers. Polymers 2021, 13, 2033. [Google Scholar] [CrossRef] [PubMed]
- Abukhadra, M.R.; Shaban, M.; Abd El Samad, M.A. Enhanced photocatalytic removal of Safranin-T dye under sunlight within minute time intervals using heulandite/polyaniline@ nickel oxide composite as a novel photocatalyst. Ecotoxicol. Environ. Saf. 2018, 162, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic reactors and it’s comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135. [Google Scholar] [CrossRef]
- Krishna Kumar, A.S.; Warchol, J.; Matusik, J.; Tseng, W.L.; Rajesh, N.; Bajda, T. Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. NPJ Clean Water 2022, 5, 24. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Goda, E.S.; Gamal, H.; El-Bahy, S.M.; Nour, M.A.; Yoon, K.R. Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. Int. J. Biol. Macromol. 2021, 191, 385–395. [Google Scholar] [CrossRef]
- John Abel, M.; Pramothkumar, A.; Senthilkumar, N.; Jothivenkatachalam, K.; Fermi Hilbert Inbaraj, P.; Joseph prince, J. Flake-like CuMn2O4 nanoparticles synthesized via co-precipitation method for photocatalytic activity. Phys. B Condens. Matter 2019, 572, 117–124. [Google Scholar]
- Bahal, M.; Kaur, N.; Sharotri, N.; Sud, D. Investigations on amphoteric chitosan/TiO2 bionanocomposites for application in visible light induced photocatalytic degradation. Adv. Polym. Technol. 2019, 2019, 2345631. [Google Scholar] [CrossRef]
- El-Hout, S.I.; El-Sheikh, S.M.; Gaber, A.; Shawky, A.; Ahmed, A.I. Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced graphene oxide-supported CuS nanoparticles. J. Alloys Compd. 2020, 849, 156573. [Google Scholar] [CrossRef]
- Surendra, B.S.; Shashi Shekhar, T.R.; Veerabhadraswamy, M.; Nagaswarupa, H.P.; Prashantha, S.C.; Geethanjali, G.C.; Likitha, C. Probe sonication synthesis of ZnFe2O4 NPs for the photocatalytic degradation of dyes and effect of treated wastewater on growth of plants. Chem. Phys. Lett. 2020, 745, 137286. [Google Scholar] [CrossRef]
- Alharbi, A.; Abdelrahman, E.A. Efficient photocatalytic degradation of malachite green dye using facilely synthesized hematite nanoparticles from Egyptian insecticide cans. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2020, 226, 117612. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, M.; Gnanamoorthy, G.; Varun Prasath, P.; Abinaya, M.; Dhinagaran, G.; Sagadevan, S.; Mohammad, F.; Oh, W.C.; Venkatachalam, K. Enhanced photocatalytic activity of Cuprous Oxide nanoparticles for malachite green degradation under the visible light radiation. Mater. Res. Express 2019, 7, 015038. [Google Scholar] [CrossRef]
- Sukri, S.N.A.M.; Isa, E.D.M.; Shameli, K. Photocatalytic Degradation of Malachite Green Dye by Plant-mediated Biosynthesized Zinc Oxide Nanoparticles. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 808. [Google Scholar] [CrossRef]
- Brindhadevi, K.; Samuel, M.S.; Verma, T.N.; Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Pugazhendhi, A.; Duc, P.A. Zinc oxide nanoparticles (ZnONPs)induced antioxidants and photocatalytic degradation activity from hybrid grape pulp extract (HGPE). Biocatal. Agric. Biotechnol. 2020, 28, 101730. [Google Scholar] [CrossRef]
- Sarwan, B.; Acharya, A.D.; Pare, B. Visible light-driven photocatalytic degradation and mineralization of the malachite green dye in a slurry photoreactor. Part. Sci. Technol. 2017, 35, 472–478. [Google Scholar] [CrossRef]
- He, H.Y. Facile synthesis of Bi2S3 nanocrystalline-modified TiO2: Fe nanotubes hybrids and their photocatalytic activities in dye degradation. Part. Sci. Technol. 2017, 35, 410–417. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, Y.J.; Zhang, K.; Zhang, L.; Yang, M.Y. Photocatalytic degradation of malachite green by a novel CeO2 loaded alkali-activated steel slag-based nanocomposite. Integr. Ferroelectr. 2017, 180, 108–117. [Google Scholar] [CrossRef]
- Ma, Y.; Ni, M.; Li, S. Optimization of malachite green removal from water by TiO2 nanoparticles under UV irradiation. Nanomaterials 2018, 8, 428. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Shawky, A. CNT supported Mn-doped ZnO nanoparticles: Simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Appl. Nanosci. 2018, 8, 1179–1188. [Google Scholar] [CrossRef]
- Batool, M. Biosynthesis of Copper Nanoparticles by using Aloe Barbadensis Leaf Extracts. Interv. Pediatr. Dent. Open Access J. 2018, 1, 34–37. [Google Scholar] [CrossRef]
- Nithiyadevi, K.; Ravichandran, K. Enhancement of photocatalytic and antibacterial activities of ZnO:Ag nanopowders through the addition of bamboo charcoal: An efficient natural adsorbent. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 1249–1256. [Google Scholar] [CrossRef]
- Lu, M.; Wang, X.; Zhang, Y.; Li, Z.; Xu, S.; Yao, C. Facile synthesis of a symmetrical squarylium dye sensitized SnIn4S8 composites with enhanced photocatalytic activity under visible-light irradiation. J. Mater. Sci. Mater. Electron. 2017, 28, 15987–15995. [Google Scholar] [CrossRef]
- Babu, M.J.; Botsa, S.M.; Rani, S.J.; Venkateswararao, B.; Muralikrishna, R. Enhanced photocatalytic degradation of cationic dyes under visible light irradiation by CuWO4-RGO nanocomposite. Adv. Compos. Hybrid Mater. 2020, 3, 205–212. [Google Scholar] [CrossRef]
- Du, F.; Sun, L.; Huang, Z.; Chen, Z.; Xu, Z.; Ruan, G.; Zhao, C. Electrospun reduced graphene oxide/TiO2/poly(acrylonitrile-co-maleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 2020, 239, 124764. [Google Scholar] [CrossRef]
- Andrade, F.V.; de Oliveira, A.B.; Siqueira, G.O.; Lage, M.M.; de Freitas, M.R.; de Lima, G.M.; Nuncira, J. MnFe2O4 nanoparticulate obtained by microwave-assisted combustion: An efficient magnetic catalyst for degradation of malachite green cationic dye in aqueous medium. J. Environ. Chem. Eng. 2021, 9, 106232. [Google Scholar] [CrossRef]
- Zafari, S.H.; Saadatjou, N.; Shaabani, B. Fe-Cu binary oxides as low-cost adsorbents and their application to photocatalytic removal of Acid Red 14, Methyl Orange, and Malachite Green from aqueous solutions. J. Appl. Chem. 2021, 15, 29–44. [Google Scholar]
- Zaanen, J.; Sawatzky, G.A.; Allen, J.W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 1985, 55, 418–421. [Google Scholar] [CrossRef]
- Aziz, A.; Khalid, M.; Akhtar, M.S.; Nadeem, M.; Gilani, Z.A.; Ul Huda Khan Asghar, H.M.N.; Rehman, J.; Ullah, Z.; Saleem, M. Structural, morphological and optical investigations of silver nanoparticles synthesized by sol-gel auto-combustion method. Dig. J. Nanomater. Biostruct. 2018, 13, 679–683. [Google Scholar]
- Sharfalddin, A.; Alzahrani, E.; Alamoudi, M. Micro, Sono, Photocatalytic Degradation of Eosin B Using Ferric Oxide Doped with Cobalt. Am. Chem. Sci. J. 2016, 13, 1–13. [Google Scholar] [CrossRef]
Metal Oxide NM | Synthesis Technique | Morphology | Photocatalytic Experimental Setup | Degradation Efficiency [%] | Ref. |
---|---|---|---|---|---|
Xanthan gum/SiO2 | Ultra-sonication with polymerization | Lobule | 10 mg catalyst, 450 ppm of MG dye, pH = 7, the temperature of 30 °C, 480 min, | 99.5 | Abu Elella et al., 2021 [28] |
CuMn2 O4 | Co-precipitation method | Flake-like structure | Daylight, 60 min. UV light, 60 min, bandgap value 2.54 eV | 94.80, | John Abel et al., 2019 [29] |
Chitosan/TiO2 | – | Spherical nanoparticles | 70 ppm, 90 min, bandgap value ≈ 3 eV | 90.70 | Bahal et al., 2019 [30] |
rGO/CuS | Co-precipitation method | Irregular hexagonal 100 mg photocatalyst, 10 ppm dye, | 97.60 | El-Hout et al., 2020 [31] | |
under sunlight at room temperature, bandgap value 2 eV | |||||
ZnFe2 O4 | Probe sonication | Spongy like | Under sunlight, UV lamp, it took about 180 min, 2.4 eV | 98–88 | Surendra et al., 2020 [32] |
Hematite | Combustion | Spherical and irregular structure | Presence of H2 O2, 20 ppm dye, UV source of 250 W, 0.1 g catalyst, 70 min, bandgap 1.45 eV | 100 | Alharbi and Abdelrahman, 2020 [33] |
Cu2O | Sonochemical method | Uniform Icosahedron | 10 ppm dye, 10 mg catalyst, visible lamp, 45 min, 2.26 eV | 91.89 | Muthukumaran et al., 2019 [34] |
ZnO | Sol–gel method | Spherical structure | 10 ppm dye concentration, 20 mg catalyst, UV lamp, 40 min, bandgap 3.3 eV | 99 | Sukri et al., 2020 [35] |
ZnO | Green synthesis method | Irregular hexagon | 100 ppm dye, 10 mm catalyst, 150 min, bandgap value 3.37 eV | Complete | Brindhadevi et al., 2020 [36] |
BiOCl | Hydrolysis method | Tetragonal structure | Visible light, 120 min, pH 2.3 to 14, under normal room temperature, bandgap 3.2 eV | Remarkable | Sarwan et al., 2017 [37] |
TiO2: Fe | Sol–gel method | Nanotubes, orthorhombic | Sunlight, 210 min, bandgap 2.57 eV | Complete | He, 201 [38]) |
CeO2 | Chemical precipitation method | Cubic fluorite | Visible light, 80 min, bandgap value 2.90 eV | 99 | Kang et al., 2017 [39] |
TiO2 | Micro-emulsion method | Spherical | 10 mg catalyst, 10 ppm dye, visible light, 50 min, bandgap 3.2 eV | 96.40 | Ma et al., 2018 [40] |
Mn-doped ZnO | Wet diffusional impregnation | Tetragonal | 3 g catalyst, 80 ppm concentration, visible light, 180 min, bandgap 3.2 eV | Faster degradation | Mohamed and Shawky, 2018 [41] |
ZnO/CuO | Hydrothermal method | – | 0.2 g catalyst, 15 ppm dye, pH-10, UV lamp, 240 min, bandgap value 4.42 eV | 82 | Batool, 2018 [42] |
ZnO:Ag | Soft chemical method | Spherical structure | 45 min, 500-Watt tungsten lamp, 60 min, visible light, pH 4.66, temperature of 30 °C, bandgap of 2.67 eV | 88.8 | Nithiyadevi and Ravichandran, 2017 [43] |
SnIn4 S8 | Solvothermal method | Spherical structure | 500 kW Xe lamp, 30 min, at room temperature, bandgap 1.53 eV | Strong degradation | Lu et al., 2017 [44] |
CuWO4-RGO | Hydrothermal method | Agglomerated with polycrystalline nature | 2 ppm dye, 50 mg catalyst, 370 W mercury halide visible light, 60 min, 2.2 eV | 93 | Babu et al., 2020 [45] |
CuWO4-GO | Ball-milling method | Microstructure | 0.05 g catalyst, 10 ppm dye, visible lamp, 80 min, | 95 | Du et al., 2020 [46] |
MnFe2 O4 | Microwave-assisted combustion method | Irregular shape agglomerates | 30 mg catalyst, 50 ppm dye, 60 min under natural pH condition | Maximum complete | de Andrade et al., 2021 [47] |
Fe-Cu binary oxides | Electron spun method | Hair like structure | 3 mg catalyst, 100 ppm dye solution, pH = 1, UV lamp, 60 min | 91.40 | Zafari et al., 2021 [48] |
Ag-Mn- oxide nanoparticles | Wet chemical precipitation method | aqueous solution containing 25 ppm of MG, 100 min | 92% | This study | |
-- | 60 min of degradation, at pH 4, 7, and 10 | 34%, 72%, and 99% respectively | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zada, N.; Habib, F.; Ullah, H.; Hussain, K.; Ullah, N.; Bibi, M.; Bibi, M.; Ghani, H.; Khan, S.; et al. Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles. Molecules 2023, 28, 6241. https://doi.org/10.3390/molecules28176241
Xu Z, Zada N, Habib F, Ullah H, Hussain K, Ullah N, Bibi M, Bibi M, Ghani H, Khan S, et al. Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles. Molecules. 2023; 28(17):6241. https://doi.org/10.3390/molecules28176241
Chicago/Turabian StyleXu, Zhong, Noor Zada, Fazal Habib, Hamid Ullah, Kashif Hussain, Naveed Ullah, Marwa Bibi, Maria Bibi, Huma Ghani, Suliman Khan, and et al. 2023. "Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles" Molecules 28, no. 17: 6241. https://doi.org/10.3390/molecules28176241
APA StyleXu, Z., Zada, N., Habib, F., Ullah, H., Hussain, K., Ullah, N., Bibi, M., Bibi, M., Ghani, H., Khan, S., Hussain, K., Cai, X., & Ullah, H. (2023). Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles. Molecules, 28(17), 6241. https://doi.org/10.3390/molecules28176241