On the Potential Role of the (Pseudo-) Jahn–Teller Effect in the Membrane Transport Processes: Enniatin B and Beauvericin
Abstract
:1. Introduction
2. Theoretical Background
3. Results
4. Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, Y.M.; Zhang, H.Y.; Chen, D.Z.; Liu, C.B. Theoretical Elucidation on the Antioxidant Mechanism of Curcumin: A DFT Study. Org. Lett. 2002, 4, 2909–2911. [Google Scholar] [PubMed]
- Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. 2009, 30, 85–94. [Google Scholar]
- Logrieco, A.; Moretti, A.; Mule, G.; Paciolla, C.; Ritieni, A. Advances on the toxicity of the cereal contaminant Fusarium esadepsipeptides. Cereal Res. Commun. 2008, 36, 303–313. [Google Scholar]
- Ezekiel, C.N.; Ayeni, K.I.; Akinyemi, M.O.; Sulyok, M.; Oyedele, O.A.; Babalola, D.A.; Ogara, I.M.; Krska, R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins 2021, 13, 635. [Google Scholar] [PubMed]
- Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar]
- Firáková, S.; Proksa, B.; Sturdíkova, M. Biosynthesis and biological activity of enniatins. Pharmazie 2007, 62, 563–568. [Google Scholar] [PubMed]
- Ivanova, L.; Egge-Jacobsen, W.M.; Solhaug, A.; Thoen, E.; Faeste, C.K. Lysosomes as a possible target of enniatin B-induced toxicity in Caco-2 cells. Chem. Res. Toxicol. 2012, 25, 1662–1674. [Google Scholar] [PubMed]
- Yuan, Y.; Meng, G.; Li, Y.; Wu, C. Study on In Vitro Metabolism and In Vivo Pharmacokinetics of Beauvericin. Toxins 2022, 14, 477. [Google Scholar]
- Logrieco, A.; Moretti, A.; Castella, G.; Kostecki, M.; Golinski, P.; Ritieni, A.; Chelkowski, J. Beauvericin production by Fusarium species. Appl. Environ. Microb. 1998, 64, 3084–3088. [Google Scholar]
- Jestoi, M.; Rokka, M.; Yli-Mattila, T.; Parikka, P.; Rizzo, A.; Peltonen, K. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in finnish grain species. Food Addit. Contamin. 2004, 21, 794–802. [Google Scholar]
- Meca, G.; Sospedra, I.; Valero, M.A.; Mañes, J.; Font, G.; Ruiz, M.J. Antibacterial activity of the enniatin B, produced by Fusarium tricinctum in liquid culture, and cytotoxic effects on Caco-2 cells. Toxicol. Mech. Methods 2011, 21, 503–512. [Google Scholar]
- Lin, H.I.; Lee, Y.J.; Chen, B.F.; Tsai, M.C.; Lu, J.L.; Chou, C.J.; Jow, G.M. Involvement of Bcl-2 family, cytochrome c and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells. Cancer Lett. 2005, 239, 248–259. [Google Scholar]
- Jow, G.M.; Chou, C.J.; Chen, B.F.; Tsai, J.H. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: The causative role of calcium. Cancer Lett. 2004, 216, 165–173. [Google Scholar] [PubMed]
- Dornetshuber-Fleiss, R.; Heilos, D.; Mohr, T.; Richter, L.; Süssmuth, R.D.; Zlesak, M.; Novicky, A.; Heffeter, P.; Lemmens-Gruber, R.; Berger, W. The naturally born fusariotoxin enniatin B and sorafenib exert synergistic activity against cervical cancer in vitro and in vivo. Biochem. Pharmacol. 2015, 93, 318–331. [Google Scholar]
- Dornetshuber, R.; Heffeter, P.; Kamyar, M.R.; Peterbauer, T.; Berger, W.; Lemmens-Gruber, R. Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem. Res. Toxicol. 2007, 20, 465–473. [Google Scholar] [PubMed]
- Wu, Q.; Patocka, J.; Nepovimova, E.; Kuca, K. A review on the synthesis and bioactivity aspects of beauvericin, a Fusarium mycotoxin. Front. Pharmacol. 2018, 9, 1338. [Google Scholar]
- Sood, S.; Sandhu, S.S.; Mukherjee, T.K. Pharmacological and Therapeutic Potential of Beauvericin: A Short Review. J. Proteom. Bioinform. 2017, 10, 18–23. [Google Scholar]
- Castlebury, L.A.; Sutherland, J.B.; Tanner, L.A.; Henderson, A.L.; Cerniglia, C.E. Use of a bioassay to evaluate the toxicity of beauvericin to bacteria. World J. Microb. Biot. 1999, 15, 119–121. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, K.; Zhang, Y.; Huang, R.; Bian, J.; Zheng, C.; Sun, H.; Chen, Z.; Sun, N.; An, R.; et al. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc. Natl. Acad. Sci. USA 2007, 104, 4606–4611. [Google Scholar]
- Fukuda, T.; Arai, M.; Yamaguchi, Y.; Masuma, R.; Tomoda, H.; Omura, S. New beauvericins, potentiators of antifungal miconazole activity, Produced by Beauveria sp. FKI-1366. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 2004, 57, 110–116. [Google Scholar]
- Kouri, K.; Lemmens, M.; Lemmens-Gruber, R. Beauvericininduced channels in ventricular myocytes and liposomes. Biochim. Biophys. Acta 2003, 1609, 203–210. [Google Scholar] [PubMed]
- Kamyar, M.; Rawnduzi, P.; Studenik, C.R.; Kouri, K.; Lemmens-Gruber, R. Investigation of the electrophysiological properties of enniatins. Arch. Biochem. Biophys. 2004, 429, 215–223. [Google Scholar] [PubMed]
- Dobler, M.; Dunitz, I.D.; Krajewski, J. Structure of the K+ complex with enniatin B, a macrocyclic antibiotic with K+ transport properties. J. Mol. Biol. 1969, 42, 603. [Google Scholar] [PubMed]
- Mueller, P.; Rudin, D.O. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. Biophys. Res. Commun. 1967, 26, 398404. [Google Scholar]
- Pressman, B.C. Biological applications of ionophores. Annu. Rev. Biochem. 1976, 45, 501–530. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, Y.A.; Ivanov, V.T.; Evstratov, A.V.; Mikhaleva, I.I.; Bystrov, V.F.; Portnova, S.L.; Balashova, T.A.; Meshcheryakova, E.N.; Tulchinsky, V.M. The Enniatin Ionophoress. Conformation and ion binding properties. J. Pept. Protein Res. 1974, 6, 465–498. [Google Scholar]
- Štellerová, D.; Lukeš, V.; Breza, M. How does pseudo-Jahn-Teller effect induce the photoprotective potential of curcumin? Molecules 2023, 28, 2946. [Google Scholar]
- Jahn, H.A.; Teller, E. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. R. Soc. Lond. A 1937, 161, 220–235. [Google Scholar]
- Opik, U.; Pryce, M.H.L. Studies of the Jahn-Teller effect I. A survey of the static problem. Proc. R. Soc. Lond. A 1957, 238, 425–447. [Google Scholar]
- Pelikán, P.; Breza, M. Classification of the possible symmetries of the Jahn—Teller systems. Chem. Pap. 1984, 39, 255–270. [Google Scholar]
- Breza, M. Group-Theoretical Analysis of Jahn-Teller Systems. In The Jahn-Teller Effect. Fundamentals and Implications for Physics and Chemistry; Köppel, H., Yarkony, D.R., Barentzen, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 51–76. ISBN 978-3642034312. [Google Scholar]
- Ceulemans, A.; Beyens, D.; Vanquickenborne, L.G. Symmetry aspects of Jahn-Teller activity: Structure and reactivity. J. Am. Chem. Soc. 1984, 106, 5824–5837. [Google Scholar] [CrossRef]
- Bersuker, I.B. Pseudo-Jahn–Teller Effect—A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids. Chem. Rev. 2013, 113, 1351–1390. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, A.; Vanquickenborne, L.G. The Epikernel Principle. Struct. Bond. 1989, 71, 125–159. [Google Scholar]
- Breza, M. Group-Theoretical Treatment of Pseudo-Jahn-Teller Systems. In Vibronic Interactions and the Jahn-Teller Effect: Theory and Application. (Prog. Theor. Chem. Phys. B 23); Atanasov, M., Daul, C., Tregenna-Piggott, P.L.W., Eds.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2012; pp. 59–82. ISBN 1567-7354. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J.; Zhao, J.; Li, P.; Shan, T.; Wang, J.; Li, X.; Zhou, L. Beauvericin from the Endophytic Fungus, Fusarium redolens, Isolated from Dioscorea zingiberensis and Its Antibacterial Activity. Nat. Prod. Commun. 2010, 5, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Carpenter, J.E.; Weinhold, F. Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure. J. Mol. Struct. 1988, 46, 41–62. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 2006, 124, 94107. [Google Scholar] [CrossRef]
- Frisch, G.W.M.J.; Schlegel, B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Ugliengo, P. MOLDRAW: A Program to Display and Manipulate Molecular and Crystal Structures, University Torino, Torino. 2012. Available online: https://www.moldraw.software.informer.com (accessed on 9 September 2019).
- Varetto, U. Molekel, Ver. 5.4.0.8; Swiss National Supercomputing Centre: Lugano, Switzerland, 2009; Available online: https://www.molekel.software.informer.com (accessed on 8 July 2017).
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian, Inc. 2020. Available online: https://gaussian.com/thermo/ (accessed on 18 August 2023).
CSD Code | Chemical Formula | Chemical Name | Space Group | R-Factor |
---|---|---|---|---|
Neutral ENB molecules | ||||
BICMEF | C33H57N3O9·1.5H2O | Cyclo-tris(l-methylvalyl-d-2-hydroxyisovaleryl) sesquihydrate | R3 | 0.06 |
CIKJAH | C33H57N3O9·1.67H2O | Enniatin B hydrate | R3 | 0.057 |
DESYIJ | C33H57N3O9 | Enniatin B unknown solvate | R3 | 0.113 |
EROPIM | (C11H19NO3)3·0.2238(CH3O)3· 0.328677O | 3,6,9,12,15,18-hexaisopropyl-4,10,16-trimethyl-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone methanol solvate hydrate | R3 | 0.0397 |
ZASQOZ | C33H57N3O9 | Enniatin B | P1121 | 0.0714 |
ENB complexes | ||||
IHECUT | (C132H229K4N12O36)n(CNS)4n | catena-(tetrakis((μ2-Enniatin B)-potassium thiocyanate)) | P3 | 0.0643 |
MVHIRB10 | (C34H57N4O9RbS)n | catena-(l,d,l,l,d,l-Enniatin B)-rubidium isothiocyanate | P43212 | 0.085 |
PEKFEQ | (C66H114KN6O18)I·H2O | bis(Enniatin B)-potassium iodide monohydrate | P61 | 0.0766 |
Neutral BEA molecule | ||||
BEVERC | C45H57N3O9·H2O | Cyclo-tri(l-N-methylphenylalanyl-d-alpha-hydroxyisovaleryl) monohydrate | P21 | 0.096 |
BEA complex | ||||
BEAVBA | (C45H57N3O9)(C6H2N3O7)2Ba·2C7H8 | Beauvericin barium picrate toluene solvate | P21212 | 0.15 |
System | Γ | d(O–O)C=O | d(O–O)bridge | d(N–N) | Θ(O–O–O)C=O | Θ(O–O–O)bridge | Θ(N–N–N) |
---|---|---|---|---|---|---|---|
Neutral ENB molecules | |||||||
BICMEF | C3 | 4.827(3×) | 5.636(3×) | 5.497(3×) | 74.6(3×) | 60.0(3×) | 60.0(3×) |
4.725(3×) | 71.9(3×) | ||||||
CIKJAH | C1 | 4.86(1), 4.70(1) | 5.577(9) | 5.570(7) | 74.7(2), 82.6(2) | 60.0(1) (3×) | 60.0(1) (3×) |
4.31(1), 3.66(1) | 5.58(1) | 5.570(9) | 74.7(2), 81.6(2) | ||||
4.86(1), 4.70(1) | 5.577(9) | 5.57(1) | 74.7(2), 73.1(2) | ||||
DESYIJ | C3 | 4.01(3) (3×) | 5.87(2) (3×) | 5.71(3) (3×) | 67.5(5) (3×) | 60.0(3) (3×) | 60.0(3) (3×) |
3.89(3) (3×) | 66.0(5) (3×) | ||||||
EROPIM | C3 | 4.888(2) (3×) | 5.556(3) (3×) | 5.444(3) (3×) | 75.07(4) (3×) | 60.00(3) (3×) | 60.00(4) (3×) |
4.776(3) (3×) | 74.57(4) (3×) | ||||||
ZASQOZ (a) | C1 | 4.746(9), 3.41(1) | 5.829(9) | 5.989(8) | 82.8(2), 74.2(2) | 56.38(9) | 52.8(1) |
3.69(1), 4.26(1) | 5.90(1) | 5.510(9) | 57.4(2), 48.2(1) | 61.2(1) | 68.4(1) | ||
4.907(9),4.969(9) | 5.540(7) | 5.13(1) | 72.7(2), 83.5(2) | 62.4(1) | 58.8(1) | ||
4.92(1), 4.805(9) | 5.631(8) | 5.455(9) | 84.8(2), 74.0(2) | 59.8(1) | 51.8(1) | ||
4.10(1), 3.72(1) | 5.91(1) | 5.97(1) | 56.5(2), 73.5(3) | 57.7(1) | 58.8(1) | ||
3.64(1), 4.77(1) | 5.762(8) | 5.01(1) | 86.1(3), 68.1(2) | 62.5(1) | 69.4(1) | ||
ENB complexes | |||||||
IHECUT (b) | C3 | 3.40(1) (3×) | 5.87(2) (3×) | 6.07(2) (3×) | 68.6(3) (3×) | 60.0(2) (12×) | 60.0(2)(12×) |
3.37(2) (3×) | 64.7(3) (3×) | ||||||
3.42(1) (3×) | 6.04(1) (3×) | 5.93(2) (3×) | 67.4(3) (3×) | ||||
3.52(2) (3×) | 67.3(3) (3×) | ||||||
3.24(1) (3×) | 6.27(2) (3×) | 6.02(2) (3×) | 67.9(4) (3×) | ||||
3.59(2) (3×) | 64.6(4) (3×) | ||||||
3.45(1) (3×) | 5.80(2) (3×) | 5.86(2) (3×) | 66.7(3) (3×) | ||||
3.46(1) (3×) | 63.2(3) (3×) | ||||||
MVHIRB10 | C1 | 3.26, 3.52 | 5.85 | 5.84 | 54.3, 91.4 | 56.8 | 65.5 |
3.70, 3.28 | 5.80 | 5.46 | 90.9, 66.8 | 65.7 | 58.3 | ||
3.63, 4.24 | 6.32 | 5.32 | 63.3, 123.6 | 57.5 | 56.1 | ||
PEKFEQ (a) | C1 | 3.64(5), 3.64(4) | 5.93(4) | 5.93(4) | 68.5(7), 65.9(7) | 60.8(4) | 61.1(5) |
3.55(3), 3.80(3) | 6.01(3) | 5.82(3) | 68.0(7), 62.9(6) | 58.9(4) | 59.6(5) | ||
3.67(4), 3.63(4) | 5.94(3) | 6.05(5) | 70.5(7), 62.2(7) | 60.3(4) | 59.3(5) | ||
3.62(4), 3.55(4) | 5.90(2) | 5.99(3) | 77.3(9), 61.6(9) | 60.8(4) | 58.8(4) | ||
3.69(3), 3.48(3) | 6.02(4) | 6.20(5) | 77.7(9), 64.6(7) | 59.5(4) | 62.3(5) | ||
3.76(4), 3.62(3) | 5.99(3) | 5.98(3) | 68.5(7), 56.0(6) | 59.7(4) | 58.9(4) | ||
Neutral BEA molecule | |||||||
BEVERC | C1 | 3.21, 4.03 | 6.24 | 5.70 | 52.5, 78.9 | 58.0 | 64.2 |
3.55, 4.06 | 6.30 | 5.94 | 62.4, 70.7 | 60.5 | 56.0 | ||
3.95, 3.49 | 6.08 | 6.19 | 68.5, 73.9 | 61.6 | 59.8 | ||
BEA complex | |||||||
BEAVBA | C1 | 3.33, 3.46 | 6.33 | 5.92 | 67.6, 69.4 | 61.2 | 59.6 |
3.36, 3.82 | 6.20 | 5.90 | 63.9, 74.2 | 59.1 | 60.0 | ||
3.11, 3.49 | 6.23 | 5.88 | 69.2, 66.4 | 59.7 | 60.4 |
Compound | q | Symmetry Group | Ground Electron State | EDFT [Hartree] | G298 [Hartree] | EJT [eV] | Imaginary Vibration Symmetry |
---|---|---|---|---|---|---|---|
ENB | 0 | C3 | 1A | −2132.49018 | −2131.68230 | 0.000 | - |
+1 | C1 | 2A | −2132.19790 | −2131.39270 | unknown | - | |
−1 | C3 | 2A | −2132.45687 | −2131.65855 | - | e | |
C1 | 2A | −2132.47930 | −2131.67406 | 0.610 | - | ||
BEA | 0 | C3 | 1A | −2589.67257 | −2588.79282 | 0.000 | - |
+1 | C1 | 2A | −2589.38017 | −2588.50454 | unknown | - | |
−1 | C1 | 2A | −2589.62864 | −2588.76092 | unknown | - |
Compound | q | Γ | d(O–O)C=O | d(O–O)bridge | d(N–N) | Θ(O–O–O)C=O | Θ(O–O–O)bridge | Θ(N–N–N) |
---|---|---|---|---|---|---|---|---|
ENB | 0 | C3 | 4.062 (3×) | 6.037 (3×) | 5.721 (3×) | 67.3 (3×) | 60.0 (3×) | 60.0 (3×) |
3.845 (3×) | 65.7 (3×) | |||||||
+1 | C1 | 3.380, 3.205 | 6.024 | 6.114 | 68.1, 65.9 | 63.4 | 57.7 | |
3.234, 3.009 | 6.393 | 5.775 | 80.4, 69.3 | 57.7 | 58.8 | |||
3.742, 3.122 | 6.533 | 5.846 | 56.7, 64.4 | 61.1 | 63.5 | |||
−1 | C3 | 5.026 (3×) | 5.389 (3×) | 5.224 (3×) | 78.0 (3×) | 60.0 (3×) | 60.0 (3×) | |
4.943 (3×) | 79.0 (3×) | |||||||
C1 | 5.040, 5.027 | 5.261 | 5.184 | 76.1, 80.4 | 66.7 | 59.3 | ||
4.983, 5.065 | 4.903 | 5.017 | 88.8, 78.8 | 54.5 | 62.6 | |||
5.140, 5.043 | 4.665 | 4.954 | 82.7, 84.8 | 58.8 | 58.1 | |||
BEA | 0 | C3 | 3.194 (3×) | 6.357 (3×) | 5.920 (3×) | 73.8 (3×) | 60.0 (3×) | 60.0 (3×) |
3.593 (3×) | 60.9 (3×) | |||||||
+1 | C1 | 3.122, 3.380 | 6.392 | 6.114 | 69.3, 80.4 | 63.4 | 57.7 | |
3.205, 3.234 | 6.533 | 5.775 | 65.9, 68.1 | 61.1 | 63.5 | |||
3.009, 3.742 | 6.024 | 5.846 | 64.4, 56.7 | 55.5 | 58.8 | |||
−1 | C1 | 3.211, 3.641 | 6.380 | 5.877 | 62.6, 73.0 | 60.0 | 59.9 | |
3.192, 3.607 | 6.409 | 5.878 | 61.8, 73.1 | 60.4 | 59.9 | |||
3.184, 3.608 | 6.360 | 5.899 | 61.4, 71.0 | 59.6 | 60.2 |
Compound | q | Γ | Q(O)C=O | Q(O)bridge | Q(N) | ρ(O)C=O | ρ(O)bridge | ρ(N) |
---|---|---|---|---|---|---|---|---|
ENB | 0 | C3 | −0.639 (3×) | −0.585 (3×) | −0.554 (3×) | - | - | - |
−0.632 (3×) | ||||||||
+1 | C1 | −0.580, −0.454 | −0.554 | −0.232 | 0.078, 0.116 | 0.014 | 0.657 | |
−0.647, −0.623 | −0.576 | −0.566 | 0.005, 0.001 | 0.000 | 0.000 | |||
−0.639, −0.617 | −0.583 | −0.551 | 0.000, 0.001 | 0.000 | 0.001 | |||
−1 | C3 | −0.704 (3×) | −0.594 (3×) | −0.544 (3×) | 0.068 (3×) | 0.006 (3×) | 0.003 (3×) | |
−0.681 (3×) | 0.029 (3×) | |||||||
C1 | −0.634, −0.684 | −0.591 | −0.549 | 0.000 (4×) 0.265, 0.003 | 0.000 | 0.001 | ||
−0.824, −0.688 | −0.669 | −0.530 | 0.031 | 0.036 | ||||
−0.642, −0.651 | −0.579 | −0.546 | 0.000 | 0.000 | ||||
BEA | 0 | C3 | −0.607 (3×) | −0.598 (3×) | −0.560 (3×) | - | - | - |
−0.638 (3×) | ||||||||
+1 | C1 | −0.560, −0.665 | −0.580 | −0.213 | 0.040, 0.003 | 0.019 | 0.665 0.000 (2×) | |
−0.612, −0.641 | −0.593 | −0.532 | 0.000 (2×) | 0.000 | ||||
−0.628, −0.442 | −0.584 | −0.559 | −0.002, 0.174 | −0.001 | ||||
−1 | C1 | −0.619, −0.632 | −0.600 (2×) | −0.559 | 0.007, 0.003 | 0.000 (2×) 0.001 | 0.001 0.000 (2×) | |
−0.616, −0.631 | −0.601 | −0.560 | 0.004, 0.001 | |||||
−0.624, −0.634 | −0.601 | 0.012, 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štellerová, D.; Lukeš, V.; Breza, M. On the Potential Role of the (Pseudo-) Jahn–Teller Effect in the Membrane Transport Processes: Enniatin B and Beauvericin. Molecules 2023, 28, 6264. https://doi.org/10.3390/molecules28176264
Štellerová D, Lukeš V, Breza M. On the Potential Role of the (Pseudo-) Jahn–Teller Effect in the Membrane Transport Processes: Enniatin B and Beauvericin. Molecules. 2023; 28(17):6264. https://doi.org/10.3390/molecules28176264
Chicago/Turabian StyleŠtellerová, Dagmar, Vladimír Lukeš, and Martin Breza. 2023. "On the Potential Role of the (Pseudo-) Jahn–Teller Effect in the Membrane Transport Processes: Enniatin B and Beauvericin" Molecules 28, no. 17: 6264. https://doi.org/10.3390/molecules28176264
APA StyleŠtellerová, D., Lukeš, V., & Breza, M. (2023). On the Potential Role of the (Pseudo-) Jahn–Teller Effect in the Membrane Transport Processes: Enniatin B and Beauvericin. Molecules, 28(17), 6264. https://doi.org/10.3390/molecules28176264