Effective Removal of Dyes from Wastewater by Osmanthus Fragrans Biomass Charcoal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Batch Adsorption Experiments
2.2.1. Effect of Reaction Time and Adsorption Kinetics
2.2.2. Effects of Initial Concentration and Isotherms
2.2.3. Effect of Different pH
2.3. Adsorption Mechanism
2.4. Adsorbent Regeneration
3. Materials and Methods
3.1. Materials
3.2. Adsorbent Preparation
3.3. Characterization
3.4. Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Marrakchi, F.; Fazeli Zafar, F.; Wei, M.; Wang, S. Cross-linked FeCl3-activated seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of bisphenol A plasticizer and basic dye from aqueous solution. Bioresour. Technol. 2021, 331, 125046. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, N.; Zhang, H.; Baeyens, J. Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. J. Environ. Manag. 2019, 238, 473–483. [Google Scholar] [CrossRef]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem. 2020, 16, 100233. [Google Scholar] [CrossRef]
- Ganzoury, M.A.; Ghasemian, S.; Zhang, N.; Yagar, M.; de Lannoy, C.-F. Mixed metal oxide anodes used for the electrochemical degradation of a real mixed industrial wastewater. Chemosphere 2022, 286, 131600. [Google Scholar] [CrossRef]
- Salmerón, I.; Oller, I.; Malato, S. Solar photo-assisted electrochemical processes applied to actual industrial and urban wastewaters: A practical approach based on recent literature. Chemosphere 2021, 279, 130560. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Durán, A.; Valderas, V.; Chen, X.; Shi, X. Capture of ambient air CO2 from municipal wastewater mineralization by using an ion-exchange membrane. Sci. Total Environ. 2021, 790, 148136. [Google Scholar] [CrossRef] [PubMed]
- Atsever, N.; Borahan, T.; Girgin, A.; Selali Chormey, D.; Bakırdere, S. A simple and effective determination of methyl red in wastewater samples by UV–Vis spectrophotometer with matrix matching calibration strategy after vortex assisted deep eutectic solvent based liquid phase extraction and evaluation of green profile. Microchem. J. 2021, 162, 105850. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A. Magsorbents: Potential candidates in wastewater treatment technology—A review on the removal of methylene blue dye. J. Magn. Magn. Mater. 2020, 500, 166408. [Google Scholar] [CrossRef]
- Momina; Mohammad, S.; Suzylawati, I. Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating. J. Water Process Eng. 2020, 34, 101155. [Google Scholar] [CrossRef]
- Drout, R.J.; Robison, L.; Chen, Z.; Islamoglu, T.; Farha, O.K. Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. Trends Chem. 2019, 1, 304–317. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Sheng, L.; He, C.; Sun, W.; He, Q. Enhancing Cd(II) sorption by red mud with heat treatment: Performance and mechanisms of sorption. J. Environ. Manag. 2020, 255, 109866. [Google Scholar] [CrossRef]
- Cheng, Z.-L.; Li, Y.-X.; Liu, Z. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio. Ecotox. Environ. Safe 2018, 148, 585–592. [Google Scholar] [CrossRef]
- León, O.; Muñoz-Bonilla, A.; Soto, D.; Pérez, D.; Rangel, M.; Colina, M.; Fernández-García, M. Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohyd. Polym. 2018, 194, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Shahnaz, T.; Bedadeep, D.; Narayanasamy, S. Investigation of the adsorptive removal of methylene blue using modified nanocellulose. Int. J. Biol. Macromol. 2022, 200, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Chang, N.; Sun, J.; Xiang, S.; Ayaz, T.; Zhang, H.; Wang, H. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. J. Hazard. Mater. 2022, 422, 126778. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhao, X.; Qian, X.; Dong, M. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J. Colloid Interf. Sci. 2018, 509, 245–253. [Google Scholar] [CrossRef]
- Wang, C.; Bi, L.; Liu, J.; Huang, B.; Wang, F.; Zhang, Y.; Yao, C.; Pan, G.; Song, M. Microalgae-derived carbon quantum dots mediated formation of metal sulfide nano-adsorbents with exceptional cadmium removal performance. J. Colloid Interf. Sci. 2023, 629, 994–1002. [Google Scholar] [CrossRef]
- Hou, H.; Murugadoss, V.; Qin, Z.; Wang, D.; Li, Y.; Xu, B.B. Mechanical properties of graphene-metal composite system: A first principles study. Adv. Compos. Hybrid Mater. 2023, 6, 97. [Google Scholar] [CrossRef]
- Shen, X.; Hussain, T.; Mitchek, M.; Wong, J.; Reible, D. Evaluating the Sorption Kinetics of Polychlorinated Biphenyls in Powdered and Granular Activated Carbon. Water Res. 2023, 236, 119978. [Google Scholar] [CrossRef]
- Zhang, X.; Tran, H.N.; Liu, Y.; Yang, C.; Zhang, T.; Guo, J.; Zhu, W.; Ahmad, M.; Xiao, H.; Song, J. Nitrogen-doped magnetic biochar made with K3[Fe(C2O4)3] to adsorb dyes: Experimental approach and density functional theory modeling. J. Clean. Prod. 2023, 383, 135527. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Zhang, X.; Rao, G.; Li, G.; Yang, H.; Zhang, S.; Chen, H. Facile synthesis of Cu-BTC@biochar with controlled morphology for effective toluene adsorption at medium–high temperature. Chem. Eng. J. 2023, 452, 139003. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, X.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Simultaneous removal of cadmium and lead by biochar modified with layered double hydroxide. Fuel Process. Technol. 2022, 235, 107389. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Chen, H.; Lu, J.; Yu, G.; Möslang, M.; Zhou, Y. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 2020, 382, 121040. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Feng, P.; Huang, G.; Xu, C.; Lin, B. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere 2020, 246, 125734. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, H.; Cheng, X.; Ling, Q.; Chen, H.; Barati, B.; Yao, Q.; Abomohra, A.; Hu, X.; Bartocci, P.; et al. A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: From macroscopic to microscopic scale. Process Saf. Environ. Prot. 2023, 172, 1132–1143. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Shao, X.; Tong, J.; Chen, R.; Yang, Q.; Yang, X.; Li, G.; Zimmerman, A.R.; Gao, B. Preparation of biosorbent for the removal of organic dyes from aqueous solution via one-step alkaline ball milling of hickory wood. Bioresour. Technol. 2022, 348, 126831. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- Quan, H.; Fan, X.; Wang, W.; Gao, W.; Dong, Y.; Chen, D. Hierarchically porous carbon derived from biomass: Effect of mesopore and heteroatom-doping on electrochemical performance. Appl. Surf. Sci. 2018, 460, 8–16. [Google Scholar] [CrossRef]
- Zou, R.; Quan, H.; Wang, W.; Gao, W.; Dong, Y.; Chen, D. Porous carbon with interpenetrating framework from Osmanthus flower as electrode materials for high-performance supercapacitor. J. Environ. Chem. Eng. 2018, 6, 258–265. [Google Scholar] [CrossRef]
- Tian, S.-Q.; Wang, L.; Liu, Y.-L.; Yang, T.; Huang, Z.-S.; Wang, X.-S.; He, H.-Y.; Jiang, J.; Ma, J. Enhanced Permanganate Oxidation of Sulfamethoxazole and Removal of Dissolved Organics with Biochar: Formation of Highly Oxidative Manganese Intermediate Species and in Situ Activation of Biochar. Environ. Sci. Technol. 2019, 53, 5282–5291. [Google Scholar] [CrossRef]
- Shui, T.; Feng, S.; Chen, G.; Li, A.; Yuan, Z.; Shui, H.; Kuboki, T.; Xu, C. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractionated from cornstalk. Biomass Bioenergy 2017, 105, 51–58. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Ferreira, S.O.; de Alvarenga, E.S.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; de Oliveira, E.B. Polyelectrolyte complexes (PECs) obtained from chitosan and carboxymethylcellulose: A physicochemical and microstructural study. Carbohydr. Polym. Technol. Appl. 2022, 3, 100197. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Luo, X.; Shi, J. Efficient adsorption of dyes from aqueous solution using a novel functionalized magnetic biochar: Synthesis, kinetics, isotherms, adsorption mechanism, and reusability. Bioresour. Technol. 2022, 360, 127526. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, R.; Chen, G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J. Hazard. Mater. 2020, 387, 121980. [Google Scholar] [CrossRef]
- Wu, F.; Chen, L.; Hu, P.; Zhou, X.; Zhou, H.; Wang, D.; Lu, X.; Mi, B. Comparison of properties, adsorption performance and mechanisms to Cd(II) on lignin-derived biochars under different pyrolysis temperatures by microwave heating. Environ. Technol. Innov. 2022, 25, 102196. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, N. Adsorption profile of anionic and cationic dyes through Fe3O4 embedded oxidized Sterculia gum/Gelatin hybrid gel matrix. Int. J. Biol. Macromol. 2023, 232, 123098. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Chen, Y.; Cai, L.; Wang, Y.; Song, W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour. Technol. 2020, 318, 124082. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Ray, J.; Mondal, B.; Pradhan, S.S.; Tripathy, T. pH responsive adsorption/desorption studies of organic dyes from their aqueous solutions by katira gum-cl-poly(acrylic acid-co-N-vinyl imidazole) hydrogel. Colloids Surf. A 2018, 553, 472–486. [Google Scholar] [CrossRef]
- Zhou, P.; Li, X.; Zhou, J.; Peng, Z.; Shen, L.; Li, W. Insights of the adsorption mechanism of methylene blue on biochar from phytoextraction residues of Citrus aurantium L.: Adsorption model and DFT calculations. J. Environ. Chem. Eng. 2023, 11, 110496. [Google Scholar] [CrossRef]
- Du, Q.; Sun, J.; Li, Y.; Yang, X.; Wang, X.; Wang, Z.; Xia, L. Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 2014, 245, 99–106. [Google Scholar] [CrossRef]
- Kushwaha, R.; Singh, R.S.; Mohan, D. Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar. Bioresour. Technol. 2023, 375, 128831. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.A.; Owda, M.E.; Abouzeid, R.E.; Alaysuy, O.; Mohamed, E.I. Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles. Int. J. Biol. Macromol. 2023, 225, 1462–1475. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Liu, H.; Chang, L.; Lv, S.; Niu, B.; Zheng, J.; Liu, S.; Fu, J. Hollow polyphosphazene microcapsule with rigid-flexible coupling cationic skeletons for highly efficient and selective adsorption of anionic dyes from water. Appl. Surf. Sci. 2023, 626, 157234. [Google Scholar] [CrossRef]
- Hu, N.; Hang, F.; Li, K.; Liao, T.; Rackemann, D.; Zhang, Z.; Shi, C.; Xie, C. Temperature-regulated formation of hierarchical pores and defective sites in MIL-121 for enhanced adsorption of cationic and anionic dyes. Sep. Purif. Technol. 2023, 314, 123650. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; Wu, J.; Zhang, K.; Zhang, Q.; Wang, J.; Zheng, J.; Zheng, S.; Fan, J.; Zhang, W.; et al. A sulfonate-functionalized covalent organic framework for record-high adsorption and effective separation of organic dyes. Chem. Eng. J. 2023, 464, 142706. [Google Scholar] [CrossRef]
- Belcaid, A.; Beakou, B.H.; Bouhsina, S.; Anouar, A. New insights on manganese dioxide nanoparticles loaded on cellulose-based biochar of cassava peel for the adsorption of three cationic dyes from wastewater. Int. J. Biol. Macromol. 2023, 241, 124534. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, D.-S.; Moradi, H.; Chang, Y.-Y.; Yang, J.-K. Highly porous biobased graphene-like carbon adsorbent for dye removal: Preparation, adsorption mechanisms and optimization. J. Environ. Chem. Eng. 2023, 11, 109278. [Google Scholar] [CrossRef]
- Mohammad-Rezaei, R.; Khalilzadeh, B.; Rahimi, F.; Moradi, S.; Shahlaei, M.; Derakhshankhah, H.; Jaymand, M. Simultaneous removal of cationic and anionic dyes from simulated industrial effluents using a nature-inspired adsorbent. Environ. Res. 2022, 214, 113966. [Google Scholar] [CrossRef]
- Du, R.; Cao, H.; Wang, G.; Dou, K.; Tsidaeva, N.; Wang, W. PVP modified rGO/CoFe2O4 magnetic adsorbents with a unique sandwich structure and superior adsorption performance for anionic and cationic dyes. Sep. Purif. Technol. 2022, 286, 120484. [Google Scholar] [CrossRef]
Adsorbent | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
K1 (min−1) | Qe (mg·g−1) | R2 | K2 (g·mg−1·min−1) | Qe (mg·g−1) | R2 | |
MG | 2.174 × 10−2 | 4062.620 | 0.899 | 7.398 × 10−6 | 4443.008 | 0.994 |
CR | 1.037 × 10−2 | 1696.880 | 0.958 | 6.410 × 10−6 | 1966.689 | 0.997 |
RhB | 10.176 × 10−2 | 477.290 | 0.839 | 290.60 × 10−6 | 508.968 | 0.998 |
MO | 2.100 × 10−2 | 2661.941 | 0.975 | 9.470 × 10−6 | 2969.427 | 0.999 |
MB | 9.051 × 10−2 | 454.027 | 0.752 | 246.071 × 10−6 | 490.371 | 0.997 |
CV | 7.939 × 10−2 | 2292.463 | 0.839 | 44.942 × 10−6 | 2468.242 | 0.998 |
Models | Parameters | MG | CR | RhB | MO | MB | CV |
---|---|---|---|---|---|---|---|
Langmuir | Qm (mg·g−1) | 7386.845 | 3209.326 | 608.709 | 6577.761 | 692.476 | 3069.929 |
KL (L·mg−1) | 456.844 | 338.953 | 90.949 | 837.915 | 137.184 | 117.323 | |
R2 | 0.996 | 0.998 | 0.997 | 0.987 | 0.996 | 0.997 | |
Freundlich | 1/n | 0.591 | 0.512 | 0.154 | 0.910 | 0.220 | 0.194 |
KF (mg·g−1)·(L·mg−1)1/n | 106.688 | 85.851 | 194.074 | 10.347 | 135.461 | 732.094 | |
R2 | 0.956 | 0.962 | 0.957 | 0.975 | 0.964 | 0.961 | |
Temkin | KT (L·g−1) | 0.011 | 0.014 | 0.988 | 0.006 | 0.163 | 0.289 |
B (J·mol−1) | 2616.080 | 1136.487 | 81.854 | 2805.106 | 121.485 | 492.192 | |
R2 | 0.981 | 0.985 | 0.963 | 0.976 | 0.970 | 0.966 |
Adsorbent | Qm (mg·g−1) | Ref. | |||||
---|---|---|---|---|---|---|---|
MG | CR | MB | MO | RhB | CV | ||
DBSA-Fe3O4@BC | 367.67 | [33] | |||||
MNB | 1360.00 | 320.00 | [20] | ||||
HLP | 2468.00 | 404.40 | [24] | ||||
SWAC | 249.00 | [25] | |||||
HTCM | 124.22 | 1009.66 | 136.35 | 124.87 | [43] | ||
MIL-121 | 597.90 | 246.00 | [44] | ||||
TpStb-SO3H | 5857.00 | 1078.00 | 1861.00 | [45] | |||
MnO2-NP-CPC | 319.40 | 289.84 | 267.67 | [46] | |||
CGLC | 220.70 | 572.80 | [47] | ||||
Alg-g-PANI | 578.30 | 409.60 | [48] | ||||
PVP/rGO/CFO | 355.90 | 333.30 | 558.70 | [49] | |||
OBC | 6501.09 | 2870.30 | 626.50 | 6277.72 | 554.93 | 3539.34 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Diao, S.; Xu, R.; Wei, G.; Wen, J.; Hu, G.; Tang, T.; Jiang, L.; Li, X.; Li, M.; et al. Effective Removal of Dyes from Wastewater by Osmanthus Fragrans Biomass Charcoal. Molecules 2023, 28, 6305. https://doi.org/10.3390/molecules28176305
Xie Z, Diao S, Xu R, Wei G, Wen J, Hu G, Tang T, Jiang L, Li X, Li M, et al. Effective Removal of Dyes from Wastewater by Osmanthus Fragrans Biomass Charcoal. Molecules. 2023; 28(17):6305. https://doi.org/10.3390/molecules28176305
Chicago/Turabian StyleXie, Zhemin, Sijie Diao, Ruizheng Xu, Guiyu Wei, Jianfeng Wen, Guanghui Hu, Tao Tang, Li Jiang, Xinyu Li, Ming Li, and et al. 2023. "Effective Removal of Dyes from Wastewater by Osmanthus Fragrans Biomass Charcoal" Molecules 28, no. 17: 6305. https://doi.org/10.3390/molecules28176305
APA StyleXie, Z., Diao, S., Xu, R., Wei, G., Wen, J., Hu, G., Tang, T., Jiang, L., Li, X., Li, M., & Huang, H. (2023). Effective Removal of Dyes from Wastewater by Osmanthus Fragrans Biomass Charcoal. Molecules, 28(17), 6305. https://doi.org/10.3390/molecules28176305