A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of the CS-BNS Probe
2.1.1. SEM Analysis
2.1.2. XRD Analysis
2.1.3. FTIR Analysis
2.1.4. Mapping Analysis
2.1.5. 13C-NMR Analysis
2.1.6. TG Analysis
2.2. Spectral Characterization of the Probe CS-BNS
2.2.1. Concentration Gradient for ClO−
2.2.2. Selectivity and Interference Resistance
2.2.3. Time Response to ClO−
2.2.4. Effect of pH
2.3. Smartphone-Based Detection of ClO−
3. Materials and Methods
3.1. Materials
3.2. Experimental Process
3.2.1. Synthesis of CS-B
3.2.2. Synthesis of CS-BNS
3.3. Properties of CS-BNS Probe
3.3.1. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectrometer (EDS-Mapping) Analysis
3.3.2. X-ray Diffraction (XRD) Analysis
3.3.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3.4. Nuclear Magnetic Resonance (NMR) Analysis
3.3.5. Thermogravimetric (TG) Analysis
3.3.6. Ultraviolet Spectral Analysis
3.3.7. Fluorescence Spectral Analysis
3.4. Smartphone-Based Detection of ClO−
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rutala, W.A.; Weber, D.J. Uses of inorganic hypochlorite (bleach) in health-care facilities. Clin. Microbiol. Rev. 1997, 10, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.J.; Jeffrey, J.A. Trihalomethane formation during swimming pool water disinfection using hypobromous and hypochlorous acids. Water Res. 1995, 29, 1203–1206. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, J.; Wang, Z.; An, J.; Xu, Y.; Qian, X.; Liu, G. A highly sensitive and selectivehypochlorite fluorescent probe based on oxidation of hydrazine via free radical mechanism. Dye. Pigment. 2016, 126, 218–223. [Google Scholar] [CrossRef]
- Pattison, D.I.; Hawkins, C.L.; Davies, M.J. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Chem. Res. Toxicol. 2009, 22, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiang, T.; Wang, B.; Ke, B.; Zhou, Y.; Du, L.; Li, M. Environment-sensitive fluorescent probe for the human ether-a-go-go-related gene potassium channel. Anal. Chem. 2016, 88, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Dehghan, Z.; Rassa, M.; Chaibakhsh, N. Colorimetric probes based on bioactive organic dyes for selective sensing of cyanide and fluoride ions. Sens. Actuators B Chem. 2016, 230, 388–397. [Google Scholar] [CrossRef]
- Jung, Y.K.; Park, H.G. Colorimetric detection of clinical DNA samples using an intercalator-conjugated polydiacetylene sensor. Biosens. Bioelectron. 2015, 72, 127–132. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Ramezani, M.; Emrani, A.S.; Taghdisi, S.M. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosens. Bioelectron. 2016, 78, 80–86. [Google Scholar] [CrossRef]
- Takahashi, S.; Hanaoka, K.; Okubo, Y.; Echizen, H.; Ikeno, T.; Komatsu, T.; Urano, Y. Rational Design of a Near-infrared Fluorescence Probe for Ca2+ Based on Phosphorus-substituted Rhodamines Utilizing Photoinduced Electron Transfer. Chem.-Asian J. 2020, 15, 524–530. [Google Scholar] [CrossRef]
- Feng, H.; Wang, Y.; Liu, J.; Zhang, Z.; Yang, X.; Chen, R.; Zhang, R. A highly specific fluorescent probe for rapid detection of hypochlorous acid in vivo and in water samples. J. Mater. Chem. B 2019, 7, 3909–3916. [Google Scholar] [CrossRef]
- Zare, H.; Ghalkhani, M.; Akhavan, O.; Taghavinia, N.; Marandi, M. Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots. Mater. Res. Bull. 2017, 95, 532–538. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Fluorescent and colorimetric probes for detection of thiols. Chem. Soc. Rev. 2010, 39, 2120–2135. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.T.; Kim, J.S. Fluoro-and chromogenic chemodosimeters for heavy metal ion detectionin solution and biospecimens. Chem. Rev. 2010, 110, 6280–6301. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Kim, S.K.; Yoon, J. Revisit to imidazolium receptors for the recognition of anions: Highlighted research during 2006–2009. Chem. Soc. Rev. 2010, 39, 1457–1466. [Google Scholar] [CrossRef]
- Yuan, X.; Lv, J.; Liu, L.; Zhang, W.; Lin, Y.; Xie, L.; Chai, X.; Xu, K.; Du, G.; Zhang, L. The H2S Detection Based on the Combined Smartphone Technology and Cellulose Composite Film and Its Application in Biological Imaging. J. Mol. Struct. 2023, 1294, 136449. [Google Scholar] [CrossRef]
- Wang, K.; Xi, D.; Liu, C.; Chen, Y.; Gu, H.; Jiang, L.; Chen, X.; Wang, F. A ratiometric benzothiazole-based fluorescence probe for selectively recognizing HClO and its practical applications. Chin. Chem. Lett. 2020, 31, 2955–2959. [Google Scholar] [CrossRef]
- Yan, F.; Zang, Y.; Sun, J.; Sun, Z.; Zhang, H. Sensing mechanism of reactive oxygen species optical detection. TrAC Trends Anal. Chem. 2020, 131, 116009. [Google Scholar] [CrossRef]
- Kwon, N.; Chen, Y.; Chen, X.; Kim, M.H.; Yoon, J. Recent progress on small molecule-based fluorescent imaging probes for hypochlorous acid (HOCl)/hypochlorite (OCl−). Dye. Pigment. 2022, 200, 110132. [Google Scholar] [CrossRef]
- Hou, J.T.; Kwon, N.; Wang, S.; Wang, B.; He, X.; Yoon, J.; Shen, J. Sulfur-based fluorescent probes for HOCl: Mechanisms, design, and applications. Coord. Chem. Rev. 2022, 450, 214232. [Google Scholar] [CrossRef]
- Hu, N.; Zeng, H.; Shi, S.; Yao, W.; Ji, D.; Guo, H.; Luo, L.; Jin, T.; Yu, Q.; Xu, K.; et al. The preparation of a chitosan-based novel fluorescent macromolecular probe and its application in the detection of hypochlorite. Mater. Today Chem. 2023, 29, 101420. [Google Scholar] [CrossRef]
- Song, X.; Hu, W.; Wang, D.; Mao, Z.; Liu, Z. A highly specific and ultrasensitive probe for the imaging of inflammation-induced endogenous hypochlorous acid. Analyst 2019, 144, 3546–3551. [Google Scholar] [CrossRef]
- Yin, W.; Zhu, H.; Wang, R. A sensitive and selective fluorescence probe based fluorescein for detection of hypochlorous acid and its application for biological imaging. Dye. Pigment. 2014, 107, 127–132. [Google Scholar] [CrossRef]
- Duan, C.; Won, M.; Verwilst, P.; Xu, J.; Kim, H.S.; Zeng, L.; Kim, J.S. In vivo imaging of endogenously produced HClO in zebrafish and mice using a bright, photostable ratiometric fluorescent probe. Anal. Chem. 2019, 91, 4172–4178. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Xue, X.; Gan, L.; Jin, P.; Zhang, B.; Guo, M.; Si, J.; Du, H.; Chen, H.; Fang, J. Individual and successive detection of H2S and HClO in living cells and zebrafish by a dual-channel fluorescent probe with longer emission wavelength. Anal. Chim. Acta 2021, 1156, 338362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Liu, C.; Nie, S.R.; Li, X.L.; Wang, Y.M.; Zhang, Y.; Guo, J.; Sun, Y.D. Two Novel Fluorescent Probes Based on quinolinone for Continuous recognition of Al3+ and ClO−. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 300, 122917. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.R.; Xiao, C.M.; Xu, S.J. Starch-based completely biodegradable polymer materials. Express Polym. Lett. 2009, 3, 366–375. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Du, Q.; Zhang, L.; Yang, X.; Wu, S.; Cao, A. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydr. Polym. 2014, 102, 755–761. [Google Scholar] [CrossRef]
- Lou, C.; Yin, Y.; Tian, X.; Deng, H.; Wang, Y.; Jiang, X. Hydrophilic finishing of PET fabrics by applying chitosan and the periodate oxidized β-cyclodextrin for wash resistance improvement. Fibers Polym. 2020, 21, 73–81. [Google Scholar] [CrossRef]
- Lv, S.; Liang, S.; Zuo, J.; Zhang, S. Preparation and application of chitosan-based fluorescent probes. Analyst 2022, 147, 4657. [Google Scholar] [CrossRef]
- Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev. 2010, 62, 59–82. [Google Scholar] [CrossRef]
- Chen, T.; Kumar, G.; Harris, M.T.; Smith, P.J.; Payne, G.F. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol. Bioeng. 2000, 70, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Alimirzaei, F.; Vasheghani-Farahani, E.; Ghiaseddin, A.; Soleimani, M. pH-Sensitive Chitosan Hydrogel with Instant Gelation for Myocardial Regeneration. J. Tissue Sci. Eng 2017, 8, 3. [Google Scholar]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Saeedi, M.; Vahidi, O.; Moghbeli, M.; Ahmadi, S.; Asadnia, M.; Akhavan, O.; Seidi, F.; Rabiee, M.; Seab, M.; Webster, T.; et al. Customizing nano-chitosan for sustainable drug delivery. J. Control. Release 2022, 350, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Yoon, B.; Kim, J.S.; Sessler, J.L. Naphthalimide trifluoroacetyl acetonate: A hydrazine-selective chemodosimetric sensor. Chem. Sci. 2013, 4, 4121–4126. [Google Scholar] [CrossRef]
- Kim, T.I.; Park, S.; Choi, Y.; Kim, Y. A BODIPY-based probe for the selective detection of hypochlorous acid in living cells. Chem.-Asian J. 2011, 6, 1358–1361. [Google Scholar] [CrossRef]
- Liu, S.R.; Vedamalai, M.; Wu, S.P. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide. Anal. Chim. Acta 2013, 800, 71–76. [Google Scholar] [CrossRef]
- Yuan, X.; Yao, W.; Ji, D.; Liu, L.; Lin, Y.; Zeng, H.; Jin, T.; Xu, K.; Du, G.; Zhang, L. Synthesis of corn bract cellulose-based Au3+ fluorescent probe and its application in composite membranes. Int. J. Biol. Macromol. 2023, 242, 124600. [Google Scholar] [CrossRef]
- Charpentier, T.V.; Neville, A.; Lanigan, J.L.; Barker, R.; Smith, M.J.; Richardson, T. Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions. ACS Omega 2016, 1, 77–83. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 2009, 25, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Gurgel, L.V.A.; Júnior, O.K.; de Freitas Gil, R.P.; Gil, L.F. Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour. Technol. 2008, 99, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Guo, Y.; Yang, C.; Liu, X.; Iqbal, A.; Guo, H. Fluorescent glutathione probe based on MnO2-phenol formaldehyde resin nanocomposite. Biosens. Bioelectron. 2016, 77, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.P.; Li, Z.J.; Hu, Y.H.; Li, B.; Huang, L.H.; Wang, C.J.; Liao, H.Q. A highly sensitive fluorescent probe for HClO and its application in live cell imaging. J. Fluoresc. 2012, 22, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.X.; Qian, Y. A novel pyridyl triphenylamine-BODIPY aldoxime: Naked-eye visible and fluorometric chemodosimeter for hypochlorite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 183, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, J.; Xie, P.; Han, X.; Zhang, D.; Ye, Y.; Zhao, Y. Visualization of biothiols and HClO in cancer therapy via a multi-responsive fluorescent probe. Sens. Actuators B Chem. 2021, 347, 130620. [Google Scholar] [CrossRef]
- Khosravikia, M.; Rahbar-Kelishami, A. A simulation study of an applied approach to enhance drug recovery through electromembrane extraction. J. Mol. Liq. 2022, 358, 119210. [Google Scholar] [CrossRef]
- Ou, Q.; Tawfik, S.M.; Zhang, X.; Lee, Y.I. Novel “turn on-off” paper sensor based on nonionic conjugated polythiophene-coated CdTe QDs for efficient visual detection of cholinesterase activity. Analyst 2020, 145, 4305–4313. [Google Scholar] [CrossRef]
- Tawfik, S.M.; Sharipov, M.; Kakhkhorov, S.; Elmasry, M.R.; Lee, Y.I. Multiple emitting amphiphilic conjugated polythiophenes-coated CdTe QDs for picogram detection of trinitrophenol explosive and application using chitosan film and paper-based sensor coupled with smartphone. Adv. Sci. 2019, 6, 1801467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhang, W.; Liu, L.; Lin, Y.; Xie, L.; Chai, X.; Xu, K.; Du, G.; Zhang, L. A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water. Molecules 2023, 28, 6316. https://doi.org/10.3390/molecules28176316
Yuan X, Zhang W, Liu L, Lin Y, Xie L, Chai X, Xu K, Du G, Zhang L. A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water. Molecules. 2023; 28(17):6316. https://doi.org/10.3390/molecules28176316
Chicago/Turabian StyleYuan, Xushuo, Wenli Zhang, Li Liu, Yanfei Lin, Linkun Xie, Xijuan Chai, Kaimeng Xu, Guanben Du, and Lianpeng Zhang. 2023. "A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water" Molecules 28, no. 17: 6316. https://doi.org/10.3390/molecules28176316
APA StyleYuan, X., Zhang, W., Liu, L., Lin, Y., Xie, L., Chai, X., Xu, K., Du, G., & Zhang, L. (2023). A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water. Molecules, 28(17), 6316. https://doi.org/10.3390/molecules28176316