Characterization of Olive Oil Volatile Compounds after Elution through Selected Bleaching Materials—Gas Chromatography–Mass Spectrometry Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Adsorbents on the Volatile Compounds of Treated Olive Oil Samples
2.2. Effect of Adsorbents on the Smoke Point of Treated Olive Oil Samples
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Immobilized Adsorbents
3.3. Olive Oil Sample Preparation
3.4. Elution of Oxidized Olive Oil
3.5. Determination and Identification of Volatile Compounds
3.6. Smoke Point Determination
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.) a Review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- FAO. 2023. Available online: https://www.fao.org/support-to-investment/news/detail/en/c/1253722/ (accessed on 31 May 2023).
- Kattan, U.; Bakri, B.; Habahbeh, J.; Al-Qudah, L. Olive Sector in Jordan. Olevea IOC 2022, 192, 9–12. [Google Scholar]
- Al-Rousan, W.M.; Al-Marazeeq, K.M.; Abdullah, M.A.; Al-Khalaileh, N.I.; Angor, M.M.; Ajo, R.Y. Use of Enzymatic Preparations to Improve the Productivity and Quality of Olive Oil. Jordan J. Agric. Sci. 2021, 17, 447–561. [Google Scholar] [CrossRef]
- Prasad, N.B.S.; Sivamani, S. Isolation of Oleic Acid from Virgin and Extra Virgin Olive Oil and Study their Physico-Chemical Properties. IJRES 2021, 9, 29–34. [Google Scholar]
- Bawadi, H.; Al-Hamdan, Z.; Bawadi, H.; Ershidat, O.; Hammad, F.; Agraib, L.M. Cultural Eating Practices among Jordanians. Food Nutr. Sci. 2012, 3, 790–795. [Google Scholar] [CrossRef]
- El-Qudah, J. Dietary Intake of Selected Common Vegetable Foods and Their Total Carotenoids Determination. Am. J. Agric. Biol. Sci. 2008, 3, 729–733. [Google Scholar] [CrossRef]
- Varzakas, T. Extra Virgin Olive Oil (EVOO): Quality, Safety, Authenticity, and Adulteration. Foods 2021, 10, 995. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Extra Virgin Olive Oil Quality. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Jordanian Standards and Metrology Organization JSMO. Fats and Oil: Olive Oil and Olive Pomace Oil, Technical Regulation; JSMO: Amman, Jordan, 2012; Number 3. [Google Scholar]
- Lozano-Castellón, J.; Vallverdú-Queralt, A.; Rinaldi de Alvarenga, J.F.; Illán, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Domestic Sautéing with EVOO: Change in the Phenolic Profile. Antioxidants 2020, 9, 77. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Bulló, M.; Estruch, R.; Ros, E.; Covas, M.I.; Ibarrola-Jurado, N.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; et al. Prevention of Diabetes with Mediterranean Diets: A Subgroup Analysis of a Randomized Trial. Ann. Intern. Med. 2014, 160, 1–10. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Sayón-Orea, C.; Bullón-Vela, V.; Bes-Rastrollo, M.; Rodríguez-Artalejo, F.; Yusta-Boyo, M.J.; García-Solano, M. Effect of Olive Oil Consumption on Cardiovascular Disease, Cancer, Type 2 Diabetes, and All-Cause Mortality: A Systematic Review and Meta-Analysis. Clin. Nutr. 2022, 41, 2659–2682. [Google Scholar] [CrossRef] [PubMed]
- Kamini, N.R.; Edwinoliver, N.G.; Thirunavukarasu, K.; Gowthaman, M.K.; Chellan, R. Utilization of Olive Oil and its By-Products for Industrial Applications, Chapter 7. In Olive Oil and Health; James, D., Ed.; Corrigan. Nova Science Pub Inc.: New York, NY, USA, 2009. [Google Scholar]
- Frankel, E.N. Nutritional and Biological Properties of Extra Virgin Olive Oil. J. Agric. Food Chem. 2011, 59, 785–792. [Google Scholar] [CrossRef]
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Influence of Enzymes and Technology on Virgin Olive Oil Composition. Crit. Rev. Food Sci. Nutr. 2017, 57, 3104–3126. [Google Scholar] [CrossRef]
- Lechhab, T.; Lechhab, W.; Trovato, E.; Salmoun, F.; Mondello, L.; Cacciola, F. Screening of the Volatile Composition of Moroccan Olive Oils by Using SPME/GC-MS-FID over a Two-Year Period: A Pedoclimatic Discrimination. Horticulturae 2022, 8, 925. [Google Scholar] [CrossRef]
- da Silva, M.D.G.; Freitas, A.M.C.; Cabrita, M.J.; Garcia, R. Olive Oil Composition: Volatile Compounds. In Olive Oil: Constituents, Quality, Health Properties and Bioconversions; Boskou, D., Ed.; 17; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- Shaker, M.A.; Basuny, M.A. Sensory Analysis of Olive Oil. COJ Tech. Sci. Res. 2020, 3, 000555. [Google Scholar]
- Escudero, A.; Ramos, N.; La Rubia, M.D.; Pacheco, R. Influence of Extreme Storage Conditions on Extra Virgin Olive Oil Parameters: Traceability Study. J. Anal. Methods Chem. 2016, 2016, 7506807. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.; Penco-Valenzuela, J.; Priego-Capote, F. Cultivar Influence on the Volatile Components of Olive Oil Formed in the Lipoxygenase Pathway. LWT 2021, 147, 111485. [Google Scholar] [CrossRef]
- Yan, J.; Alewijn, M. From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds Versus Odor. Molecules 2020, 25, 2469. [Google Scholar] [CrossRef]
- Mirrezaie, R.M.; Sahari, M.A.; Ghiassi, T.B.; Barzegar, M.; Gharachorloo, M. Effect of Refining and Thermal Processes on Olive Oil Properties. J. Agric. Sci. Technol. 2016, 18, 629–641. [Google Scholar]
- International Olive Oil Council (IOC). Sensory Analysis of Olive Oil Method for the Organoleptic Assessment of Virgin Olive Oil; IOC: Madrid, Spain, 2018. [Google Scholar]
- Luaces, P.; Pérez, A.G.; Sanz, C. Effect of the Blanching Process and Olive Fruit Temperature at Milling on the Biosynthesis of Olive Oil Aroma. Eur. Food Res. Technol. 2006, 224, 11–17. [Google Scholar] [CrossRef]
- MERCY CORPS. Market System Assessment of the Olive Oil Value Chain- Irbid & Mafraq Governorates, Jordan. 2017. Available online: https://data.unhcr.org/en/documents/details/62035 (accessed on 27 August 2023).
- Kiritsakis, A.K. Flavor Components of Olive Oil—A Review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Chung, T.-W.; Wu, Y.-L.; Hsu, S.-H. Removal of Free Fatty Acid from Plant Oil by the Adsorption Process. IOP Conf. Ser. Mater. Sci. Eng. 2018, 362, 012019. [Google Scholar] [CrossRef]
- Bani Mustafa, S.M. Influence of Several Physical Treatments on the Improvement of Some Quality Parameters of Locally Produced Olive Oil. Master’s Thesis, University of Jordan, Amman, Jordan, 2016. [Google Scholar]
- Abd El-Salam, A.S.M.; Doheim, M.A.; Sitohy, M.Z.; Ramadan, M.F. Deacidification of High-Acid Olive Oil. J. Food Process. Technol. 2011, 10, 2157–7110. [Google Scholar] [CrossRef]
- Žanetić, M.; Jukić Špika, M.; Ožić, M.M.; Brkić Bubola, K. Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants 2021, 10, 1995. [Google Scholar] [CrossRef]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME–GCMS Method for the Analysis of Virgin Olive Oil Volatiles Responsible for Sensory Defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef]
- Morales, M.T.; Aparicio-Ruiz, R.; Aparicio, R. Chromatographic Methodologies: Compounds for Olive Oil Odor Issues. In Handbook of Olive Oil. Analysis and Properties, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: New York, NY, USA, 2013; pp. 261–309. [Google Scholar]
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 2022, 6627013. [Google Scholar] [CrossRef]
- Teneqja, V.; Drushku, S. Activation of Kosovo Bentonite with Sulphuric Acid for Recycling of Used Motor Oils. J. Int. Environ. Appl. Sci. 2015, 10, 408–413. [Google Scholar]
- Waraho, T.; McClements, D.J.; Decker, E.A. Mechanisms of Lipid Oxidation in Food Dispersions. Trends Food Sci. Technol. 2011, 22, 3–13. [Google Scholar] [CrossRef]
- Xiang, S.; Yao, X.; Zhang, W.; Zhang, K.; Fang, Y.; Nishinari, K.; Phillips, G.O.; Jiang, F. Gum Arabic-Stabilized Conjugated Linoleic Acid Emulsions: Emulsion Properties in Relation to Interfacial Adsorption Behaviors. Food Hydrocoll. 2015, 48, 110–116. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive Oil Volatile Compounds, Flavour Development and Quality: A Critical Review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Şeyma, Ş.O.; Güzin, K.; Mükerrem, K. Volatile Compounds of Olive Oils from Different Geographic Regions in Turkey. Int. J. Food Prop. 2018, 21, 1833–1843. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Characterization of Volatile Compounds of French and Spanish Virgin Olive Oils by HS-SPME: Identification of Quality-Freshness Markers. Food Chem. 2004, 88, 151–157. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society AOCS. Smoke, Flash, and Fire Points, Cleveland Open Cup Method, Official Method Cc 9a-48; APCS: Urbana, IL, USA, 2017. [Google Scholar]
- Sarwar, A.; Vunguturi, S.; Ferdose, A. A Study on Smoke Point and Peroxide Values of Different Widely Used Edible Oils. Int. J. Eng. Technol. Sci. Res. 2016, 3, 271–273. [Google Scholar]
- De Alzaa, F.; Guillaume, C.; Ravetti, L. Evaluation of Chemical and Physical Changes in Different Commercial Oils during Heating. Acta Sci. Nutr. Health 2018, 2, 2–11. [Google Scholar]
- Fitri, H.; Irawati; Tirto, P.; Subagjo; Tatang, H.S. Deacidification of Fatty Oils using Anion Exchange Resin. In Proceedings of the 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology Palembang, Palembang, Indonesia, 10–11 September 2014. [Google Scholar]
- American Oil Chemists’ Society AOCS. Free Fatty Acids in Crude and Refined Fats and Oils, Official Method Ca 5a-40; APCS: Urbana, IL, USA, 2017. [Google Scholar]
- American Oil Chemists’ Society AOCS. Peroxide Value, Acetic Acid, Isooctane Method, Official Method Cd 8b-90; APCS: Urbana, IL, USA, 2017. [Google Scholar]
- Afifi, F.; Aboalhaija, N.H.; Awwad, O.; Khalil, A.; Abbassi, R.; Abaza, I.F. Chemodiversity and Antiproliferative Activity of the Essential Oil of Schinus molle L. Growing in Jordan. Chem. Biodivers. 2019, 16, e1900388. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Allured Publishing: Houston, TX, USA, 2017; ISBN 978-1-932633-21-4. [Google Scholar]
- SAS Institute. SAS User’s Guide in Statistics, 10th International Symposium; SAS Institues, Inc.: Cary, NC, USA, 2003. [Google Scholar]
No. | Volatile | % | Chemical Class | |||||
---|---|---|---|---|---|---|---|---|
1. | Limonene ((−)-p-Mentha-1,8-diene, (−)-Carvene, (S)-4-Isopropenyl-1-methyl cyclohexene | 14.53 | Aliphatic hydrocarbon/a cyclic monoterpene | |||||
2. | Piperitone | 10.32 | p-Menthane monoterpenoid/a cyclic terpene ketone | |||||
3. | 2- Isopropyl-5-methyl-(2E)-hexenal | 8.6 | Medium-chain aldehydes | |||||
4. | Methyl octadecenoate | 6.57 | Hydrocarbon | |||||
5. | Citronellyl acetate | 5.87 | Fatty acid ester/monoterpenoid | |||||
6. | 4,4-Dimethyl-1-heptene-6-yne (1-Hepten-6-yne) | 5.18 | Aliphatic hydrocarbon | |||||
7. | β-Ocimene (E) | 4.27 | Hydrocarbon/monoterpenes | |||||
8. | Citronellol isobutanoate | 3.53 | Fatty alcohol esters | |||||
9. | n-Decanol | 2.98 | Straight-chain fatty alcohol | |||||
10. | Valeranone | 2.95 | Ketone | |||||
11. | 1-ρ-Menthene | 2.23 | Menthane monoterpenoids | |||||
12. | 1-Octadecene | 1.89 | Alpha-olefin/long-chain hydrocarbon alkene | |||||
13. | Caryophyllene acetate | 1.86 | Carboxylic acid Ester | |||||
14. | Methyl cyclohexyl carboxylate | 1.76 | Ester | |||||
15. | Dehydroxy_cis Linalool oxide | 1.64 | Acyclic monoterpene tertiary alcohol | |||||
16. | 1-Undecyne | 1.64 | Terminal acetylenic compound/alkyne | |||||
17. | γ-Terpinene | 1.62 | Isomeric hydrocarbons/terpenes | |||||
18. | 5-neo-Cedranol | 1.5 | Alcohol | |||||
19. | Myltayl-4 (12)-ene | 1.4 | Sesquiterpene | |||||
20. | Eudesm-7(11)-en-4-ol, (acetate (7(11)-Selinen-4.alpha.-ol) | 1.37 | Sesquiterpenoids | |||||
21. | Piperitenone oxide | 1.33 | Aliphatic heterocyclic oxepanes | |||||
22. | Trans-Thujone | 1.30 | Monoterpene ketone | |||||
23. | 4,5-dimethyl Thiazole | 1.28 | 2,4-disubstituted thiazoles | |||||
24. | 2-allyl-Phenol | 1.27 | 1-hydroxy-4-unsubstituted benzenoids/phenols | |||||
25. | n-Hexadecanol (hexadecanol) | 1.17 | Alcohol | |||||
26. | Sandaracopimarinol | 1.15 | Terpenoids | |||||
27. | Ethyl sorbate (Ethyl trans, trans-2,4-hexadienoate) | 1.12 | Fatty acid esters | |||||
28. | 1,1-dimethoxy-2-Nonyne | 1.05 | Acetal | |||||
29. | Trans-Vertocitral C | 1.01 | Aldehyde | |||||
30. | γ-Terpineol | 1.01 | p-menthane monoterpenoid | |||||
31. | n-Pentadecanol | 1.01 | Alcohol | |||||
32. | Citronellyl pentanoate (Citronellyl valerate) | 0.98 | Fatty alcohol esters | |||||
33. | n-Pentadecane | 0.96 | Aliphatic alkane Hydrocarbon | |||||
34. | 10,11-Dihydroatlantone (E) | 0.94 | Sesquiterpenoid | |||||
35. | cis-Linalool oxide | 0.93 | Tetrahydrofurans | |||||
36. | trans-Cadinene ether | 0.89 | Ether | |||||
37. | Methyl octadecenoate | 0.89 | Ester | |||||
% of volatiles detected through different bleaching media compared with the control | ||||||||
OOO | OOS | OOC | OOR | OOB | OOA | |||
100% | 54.06% | 50.4% | 40.18% | 42.31% | 58.71% | |||
% of oil retained after elution through different bleaching media compared with the control | ||||||||
100% | 94.3% | 94.9% | 97.9% | 93.7% | 94.9% |
Volatile | Chemical Structure | Silica | Charcoal | Resin | Bentonite | Arabic Gum |
---|---|---|---|---|---|---|
4,5-dimethyl Thiazole | 1.36 | 2.96 | 2.39 | 4.18 | ND | |
1-ρ-Menthene | 10.33 | 2.44 | 3.35 | ND | 6.39 | |
γ-Terpinene | 1.70 | 2.40 | 2.36 | 8.41 | ND | |
Trans-Vertocitral C | 1.81 | 6.35 | 2.96 | 3.09 | ND |
Treatment | Smoke Point (°C) for Control Sample | Smoke Point (°C) for Treated Oil | Improvement Efficiency % |
---|---|---|---|
Resin | ** 134.5 ± 0.71 e | 188.50 ± 0.71 a | 40.15 |
Charcoal | 149.95 ± 0.07 d | 11.49 | |
Arabic gum | 150.00 ± 1.41 d | 11.52 | |
Bentonite | 160.50 ± 0.71 c | 19.33 | |
Silica overnight | 170.77 ± 0.42 b | 26.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dabbas, M.M.; Al-Jaloudi, R.; Abdullah, M.A.; Abughoush, M. Characterization of Olive Oil Volatile Compounds after Elution through Selected Bleaching Materials—Gas Chromatography–Mass Spectrometry Analysis. Molecules 2023, 28, 6444. https://doi.org/10.3390/molecules28186444
Al-Dabbas MM, Al-Jaloudi R, Abdullah MA, Abughoush M. Characterization of Olive Oil Volatile Compounds after Elution through Selected Bleaching Materials—Gas Chromatography–Mass Spectrometry Analysis. Molecules. 2023; 28(18):6444. https://doi.org/10.3390/molecules28186444
Chicago/Turabian StyleAl-Dabbas, Maher M., Rawan Al-Jaloudi, Mai Adnan Abdullah, and Mahmoud Abughoush. 2023. "Characterization of Olive Oil Volatile Compounds after Elution through Selected Bleaching Materials—Gas Chromatography–Mass Spectrometry Analysis" Molecules 28, no. 18: 6444. https://doi.org/10.3390/molecules28186444
APA StyleAl-Dabbas, M. M., Al-Jaloudi, R., Abdullah, M. A., & Abughoush, M. (2023). Characterization of Olive Oil Volatile Compounds after Elution through Selected Bleaching Materials—Gas Chromatography–Mass Spectrometry Analysis. Molecules, 28(18), 6444. https://doi.org/10.3390/molecules28186444