Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins
Abstract
:1. Introduction
2. Factors Influencing Protein Aggregation
2.1. α-Synuclein
2.2. Prion Protein
2.3. 6aJL2
2.4. Amyloid-Beta
2.5. Tau
2.6. Amylin
2.7. Serum Amyloid A Protein (SSA)
2.8. Transthyretin
2.9. Neurokinin B
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sriram Ravichandran, H.J.; Lachmann, A.D.W. Epidemiologic and Survival Trends in Amyloidosis, 1987–2019. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Iadanza, M.G.; Jackson, M.P.; Hewitt, E.W.; Ranson, N.A.; Radford, S.E. A New Era for Understanding Amyloid Structures and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 755–773. [Google Scholar] [CrossRef]
- Suh, J.M.; Kim, M.; Yoo, J.; Han, J.; Paulina, C.; Lim, M.H. Intercommunication between Metal Ions and Amyloidogenic Peptides or Proteins in Protein Misfolding Disorders. Coord. Chem. Rev. 2023, 478, 214978. [Google Scholar] [CrossRef]
- Owen, M.C.; Gnutt, D.; Gao, M.; Wärmländer, S.K.T.S.; Jarvet, J.; Gräslund, A.; Winter, R.; Ebbinghaus, S.; Strodel, B. Effects of in Vivo Conditions on Amyloid Aggregation. Chem. Soc. Rev. 2019, 48, 3946–3996. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper Biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Min, J.; Wang, F. Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef]
- Oliveri, V. Biomedical Applications of Copper Ionophores. Coord. Chem. Rev. 2020, 422, 213474. [Google Scholar] [CrossRef]
- Poulson, B.G.; Szczepski, K.; Lachowicz, J.I.; Jaremko, L.; Emwas, A.H.; Jaremko, M. Aggregation of Biologically Important Peptides and Proteins: Inhibition or Acceleration Depending on Protein and Metal Ion Concentrations. RSC Adv. 2019, 10, 215–227. [Google Scholar] [CrossRef]
- Hecel, A.; De Ricco, R.; Valensin, D. Influence of Membrane Environments and Copper Ions on the Structural Features of Amyloidogenic Proteins Correlated to Neurodegeneration. Coord. Chem. Rev. 2016, 327–328, 8–19. [Google Scholar] [CrossRef]
- Bacchella, C.; Camponeschi, F.; Kolkowska, P.; Kola, A.; Tessari, I.; Baratto, M.C.; Bisaglia, M.; Monzani, E.; Bubacco, L.; Mangani, S.; et al. Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment. Biomolecules 2023, 13, 287. [Google Scholar] [CrossRef]
- Atrián-Blasco, E.; Gonzalez, P.; Santoro, A.; Alies, B.; Faller, P.; Hureau, C. Cu and Zn Coordination to Amyloid Peptides: From Fascinating Chemistry to Debated Pathological Relevance. Coord. Chem. Rev. 2018, 371, 38–55. [Google Scholar] [CrossRef]
- De Gregorio, G.; Biasotto, F.; Hecel, A.; Luczkowski, M.; Kozlowski, H.; Valensin, D. Structural Analysis of Copper(I) Interaction with Amyloid β Peptide. J. Inorg. Biochem. 2019, 195, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Uceda, A.B.; Ramis, R.; Pauwels, K.; Adrover, M.; Mariño, L.; Frau, J.; Vilanova, B. Understanding the Effect of the Membrane-Mimetic Micelles on the Interplay between α-Synuclein and Cu(II)/Cu(I) Cations. J. Inorg. Biochem. 2023, 247, 112344. [Google Scholar] [CrossRef]
- Rodríguez, E.E.; Ríos, A.; Trujano-Ortiz, L.G.; Villegas, A.; Castañeda-Hernández, G.; Fernández, C.O.; González, F.J.; Quintanar, L. Comparing the Copper Binding Features of Alpha and Beta Synucleins. J. Inorg. Biochem. 2022, 229, 111715. [Google Scholar] [CrossRef] [PubMed]
- Dzień, E.; Dudek, D.; Witkowska, D.; Rowińska-Żyrek, M. Thermodynamic Surprises of Cu(II)–Amylin Analogue Complexes in Membrane Mimicking Solutions. Sci. Rep. 2022, 12, 425. [Google Scholar] [CrossRef]
- Di Natale, G.; Sabatino, G.; Sciacca, M.F.M.; Tosto, R.; Milardi, D.; Pappalardo, G. Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022, 27, 5066. [Google Scholar] [CrossRef] [PubMed]
- Martic, S.; Rains, M.K.; Kraatz, H.B. Probing Copper/Tau Protein Interactions Electrochemically. Anal. Biochem. 2013, 442, 130–137. [Google Scholar] [CrossRef]
- Russino, D.; McDonald, E.; Hejazi, L.; Hanson, G.R.; Jones, C.E. The Tachykinin Peptide Neurokinin b Binds Copper Forming an Unusual [CuII(NKB)2] Complex and Inhibits Copper Uptake into 1321N1 Astrocytoma Cells. ACS Chem. Neurosci. 2013, 4, 1371–1381. [Google Scholar] [CrossRef]
- Graves, N.J.; Gambin, Y.; Sierecki, E. α-Synuclein Strains and Their Relevance to Parkinson’s Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int. J. Mol. Sci. 2023, 24, 12134. [Google Scholar] [CrossRef]
- Becerra-Calixto, A.; Mukherjee, A.; Ramirez, S.; Sepulveda, S.; Sinha, T.; Al-Lahham, R.; De Gregorio, N.; Gherardelli, C.; Soto, C. Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson’s Disease Patient. Cells 2023, 12, 625. [Google Scholar] [CrossRef]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-Synuclein in Parkinson’s Disease and Other Synucleinopathies: From Overt Neurodegeneration Back to Early Synaptic Dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Villar-Piqué, A.; Lopes da Fonseca, T.; Outeiro, T.F. Structure, Function and Toxicity of Alpha-Synuclein: The Bermuda Triangle in Synucleinopathies. J. Neurochem. 2016, 139, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.A.; Gasser, T.; Edwards, R.; Zweckstetter, M.; Melki, R.; Stefanis, L.; Lashuel, H.A.; Sulzer, D.; Vekrellis, K.; Halliday, G.M.; et al. Alpha-Synuclein Research: Defining Strategic Moves in the Battle against Parkinson’s Disease. NPJ Park. Dis. 2021, 7, 65. [Google Scholar] [CrossRef]
- Emin, D.; Zhang, Y.P.; Lobanova, E.; Miller, A.; Li, X.; Xia, Z.; Dakin, H.; Sideris, D.I.; Lam, J.Y.L.; Ranasinghe, R.T.; et al. Small Soluble α-Synuclein Aggregates Are the Toxic Species in Parkinson’s Disease. Nat. Commun. 2022, 13, 5512. [Google Scholar] [CrossRef]
- Cascella, R.; Chen, S.W.; Bigi, A.; Camino, J.D.; Xu, C.K.; Dobson, C.M.; Chiti, F.; Cremades, N.; Cecchi, C. The Release of Toxic Oligomers from α-Synuclein Fibrils Induces Dysfunction in Neuronal Cells. Nat. Commun. 2021, 12, 1814. [Google Scholar] [CrossRef]
- Oliveri, V. Toward the Discovery and Development of Effective Modulators of α-Synuclein Amyloid Aggregation. Eur. J. Med. Chem. 2019, 167, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, Y.; Ma, G. Modulation Effects of Fe3+, Zn2+, and Cu2+ Ions on the Amyloid Fibrillation of α-Synuclein: Insights from a FTIR Investigation. Molecules 2022, 27, 8383. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, Y.; Zhao, K.; Ma, Y.; Xu, Q.; Liu, C.; Zhang, S.; Li, D. Structural Insights of Fe3+ Induced α-Synuclein Fibrillation in Parkinson’s Disease. J. Mol. Biol. 2023, 435, 167680. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.; Fusco, G.; De Simone, A. Metal Interactions of α-Synuclein Probed by NMR Amide-Proton Exchange. Front. Chem. 2023, 11, 1167766. [Google Scholar] [CrossRef]
- Atarod, D.; Mamashli, F.; Ghasemi, A.; Moosavi-Movahedi, F.; Pirhaghi, M.; Nedaei, H.; Muronetz, V.; Haertlé, T.; Tatzelt, J.; Riazi, G.; et al. Bivalent Metal Ions Induce Formation of α-Synuclein Fibril Polymorphs with Different Cytotoxicities. Sci. Rep. 2022, 12, 11898. [Google Scholar] [CrossRef]
- Carboni, E.; Lingor, P. Insights on the Interaction of Alpha-Synuclein and Metals in the Pathophysiology of Parkinson’s Disease. Metallomics 2015, 7, 395–404. [Google Scholar] [CrossRef] [PubMed]
- De Ricco, R.; Valensin, D.; Dell’Acqua, S.; Casella, L.; Dorlet, P.; Faller, P.; Hureau, C. Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorg. Chem. 2015, 54, 4744–4751. [Google Scholar] [CrossRef] [PubMed]
- Binolfi, A.; Rasia, R.M.; Bertoncini, C.W.; Ceolin, M.; Zweckstetter, M.; Griesinger, C.; Jovin, T.M.; Fernández, C.O. Interaction of α-Synuclein with Divalent Metal Ions Reveals Key Differences: A Link between Structure, Binding Specificity and Fibrillation Enhancement. J. Am. Chem. Soc. 2006, 128, 9893–9901. [Google Scholar] [CrossRef] [PubMed]
- Binolfi, A.; Quintanar, L.; Bertoncini, C.W.; Griesinger, C.; Fernández, C.O. Bioinorganic Chemistry of Copper Coordination to Alpha-Synuclein: Relevance to Parkinson’s Disease. Coord. Chem. Rev. 2012, 256, 2188–2201. [Google Scholar] [CrossRef]
- Wittung-Stafshede, P. Crossroads between Copper Ions and Amyloid Formation in Parkinson’s Disease. Essays Biochem. 2022, 66, 977–986. [Google Scholar] [CrossRef]
- Synhaivska, O.; Bhattacharya, S.; Campioni, S.; Thompson, D.; Nirmalraj, P.N. Single-Particle Resolution of Copper-Associated Annular α-Synuclein Oligomers Reveals Potential Therapeutic Targets of Neurodegeneration. ACS Chem. Neurosci. 2022, 13, 1410–1421. [Google Scholar] [CrossRef]
- Savva, L.; Platts, J.A. How Cu(II) Binding Affects Structure and Dynamics of α-Synuclein Revealed by Molecular Dynamics Simulations. J. Inorg. Biochem. 2023, 239, 112068. [Google Scholar] [CrossRef]
- Choi, T.S.; Lee, J.; Han, J.Y.; Jung, B.C.; Wongkongkathep, P.; Loo, J.A.; Lee, M.J.; Kim, H.I. Supramolecular Modulation of Structural Polymorphism in Pathogenic A-Synuclein Fibrils Using Copper(II) Coordination. Angew. Chem. 2018, 130, 3153–3157. [Google Scholar] [CrossRef]
- Bloch, D.N.; Kolkowska, P.; Tessari, I.; Baratto, M.C.; Sinicropi, A.; Bubacco, L.; Mangani, S.; Pozzi, C.; Valensin, D.; Miller, Y. Fibrils of α-Synuclein Abolish the Affinity of Cu2+-Binding Site to His50 and Induce Hopping of Cu2+ Ions in the Termini. Inorg. Chem. 2019, 58, 10920–10927. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Wang, S.; Yang, D.; Zhang, Y.; Xu, L.; Ma, L.; Zheng, J.; Petersen, R.B.; Zheng, L.; et al. Copper and Iron Ions Accelerate the Prion-like Propagation of α-Synuclein: A Vicious Cycle in Parkinson’s Disease. Int. J. Biol. Macromol. 2020, 163, 562–573. [Google Scholar] [CrossRef]
- Falcone, E.; Ahmed, I.M.M.; Oliveri, V.; Bellia, F.; Vileno, B.; El Khoury, Y.; Hellwig, P.; Faller, P.; Vecchio, G. Acrolein and Copper as Competitive Effectors of α-Synuclein. Chem.-A Eur. J. 2020, 26, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Valensin, D.; Dell’Acqua, S.; Kozlowski, H.; Casella, L. Coordination and Redox Properties of Copper Interaction with α-Synuclein. J. Inorg. Biochem. 2016, 163, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Uliassi, E.; Nikolic, L.; Bolognesi, M.L.; Legname, G. Therapeutic Strategies for Identifying Small Molecules against Prion Diseases. Cell Tissue Res. 2023, 392, 337–347. [Google Scholar] [CrossRef]
- Baiardi, S.; Mammana, A.; Capellari, S.; Parchi, P. Human Prion Disease: Molecular Pathogenesis, and Possible Therapeutic Targets and Strategies. Expert Opin. Ther. Targets 2023, 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, A.; Spagnolli, G.; Biasini, E.; Barreca, M.L. The Compelling Demand for an Effective PrPC-Directed Therapy against Prion Diseases. ACS Med. Chem. Lett. 2020, 11, 2063–2067. [Google Scholar] [CrossRef]
- Legname, G. Elucidating the Function of the Prion Protein. PLoS Pathog. 2017, 13, 6–11. [Google Scholar] [CrossRef]
- Watts, J.C.; Bourkas, M.E.C.; Arshad, H. The Function of the Cellular Prion Protein in Health and Disease. Acta Neuropathol. 2018, 135, 159–178. [Google Scholar] [CrossRef]
- Nguyen, X.T.A.; Tran, T.H.; Cojoc, D.; Legname, G. Copper Binding Regulates Cellular Prion Protein Function. Mol. Neurobiol. 2019, 56, 6121–6133. [Google Scholar] [CrossRef]
- Sánchez-López, C.; Rossetti, G.; Quintanar, L.; Carloni, P. Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int. J. Mol. Sci. 2019, 20, 18. [Google Scholar] [CrossRef]
- Burns, C.S.; Aronoff-Spencer, E.; Dunham, C.M.; Lario, P.; Avdievich, N.I.; Antholine, W.E.; Olmstead, M.M.; Vrielink, A.; Gerfen, G.J.; Peisach, J.; et al. Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein. Biochemistry 2002, 41, 3991–4001. [Google Scholar] [CrossRef]
- Posadas, Y.; López-Guerrero, V.E.; Segovia, J.; Perez-Cruz, C.; Quintanar, L. Dissecting the Copper Bioinorganic Chemistry of the Functional and Pathological Roles of the Prion Protein: Relevance in Alzheimer’s Disease and Cancer. Curr. Opin. Chem. Biol. 2022, 66, 102098. [Google Scholar] [CrossRef] [PubMed]
- Legname, G. Copper Coordination Modulates Prion Conversion and Infectivity in Mammalian Prion Proteins. Prion 2023, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gielnik, M.; Szymańska, A.; Dong, X.; Jarvet, J.; Svedružić, Ž.M.; Gräslund, A.; Kozak, M.; Wärmländer, S.K.T.S. Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Biochemistry 2023, 62, 1689–1705. [Google Scholar] [CrossRef] [PubMed]
- Gertz, M.A. Immunoglobulin Light Chain Amyloidosis: 2020 Update on Diagnosis, Prognosis, and Treatment. Am. J. Hematol. 2020, 95, 848–860. [Google Scholar] [CrossRef]
- Hasib Sidiqi, M.; Gertz, M.A. Immunoglobulin Light Chain Amyloidosis Diagnosis and Treatment Algorithm 2021. Blood Cancer J. 2021, 11, 90. [Google Scholar] [CrossRef]
- Jensen, C.E.; Byku, M.; Hladik, G.A.; Jain, K.; Traub, R.E.; Tuchman, S.A. Supportive Care and Symptom Management for Patients with Immunoglobulin Light Chain (AL) Amyloidosis. Front. Oncol. 2022, 12, 907584. [Google Scholar] [CrossRef]
- Meunier-Carmenate, Y.; Valdés-García, G.; Maya-Martinez, R.; French-Pacheco, L.; Fernández-Silva, A.; González-Onofre, Y.; Millan-Pacheco, C.; Pastor, N.; Amero, C. Unfolding and Aggregation Pathways of Variable Domains from Immunoglobulin Light Chains. Biochemistry 2023, 62, 1000–1011. [Google Scholar] [CrossRef]
- Pelaez-Aguilar, A.E.; Rivillas-Acevedo, L.; French-Pacheco, L.; Valdes-Garcia, G.; Maya-Martinez, R.; Pastor, N.; Amero, C. Inhibition of Light Chain 6aJL2-R24G Amyloid Fiber Formation Associated with Light Chain Amyloidosis. Biochemistry 2015, 54, 4978–4986. [Google Scholar] [CrossRef]
- Pelaez-Aguilar, A.E.; Valdés-Garciá, G.; French-Pacheco, L.; Pastor, N.; Amero, C.; Rivillas-Acevedo, L. Site-Specific Interactions with Copper Promote Amyloid Fibril Formation for Λ6aJL2-R24G. ACS Omega 2020, 5, 7085–7095. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Doré, V.; Burnham, S.C.; Masters, C.L.; Rowe, C.C. Imaging Tau and Amyloid-? Proteinopathies in Alzheimer Disease and Other Conditions. Nat. Rev. Neurol. 2018, 14, 225–236. [Google Scholar] [CrossRef]
- Ittner, L.M.; Götz, J. Amyloid-β and Tau—A Toxic Pas de Deux in Alzheimer’s Disease. Nat. Rev. Neurosci. 2011, 12, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hajji, N.; Calvert, C.; Ritchie, C.W.; Sastre, M. The Role of Metals in Alzheimer’s Disease. Mech. Met. Involv. Neurodegener. Dis. 2013, 2013, 80–97. [Google Scholar] [CrossRef]
- Ling, Y.; Morgan, K.; Kalsheker, N. Amyloid Precursor Protein (APP) and the Biology of Proteolytic Processing: Relevance to Alzheimer’s Disease. Int. J. Biochem. Cell Biol. 2003, 35, 1505–1535. [Google Scholar] [CrossRef]
- Borghesani, V.; Alies, B.; Hureau, C. CuII Binding to Various Forms of Amyloid-β Peptides: Are They Friends or Foes? Eur. J. Inorg. Chem. 2018, 2018, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Na, C.; Han, J.; Lim, M.H. Methods for Analyzing the Coordination and Aggregation of Metal-Amyloid-β. Metallomics 2023, 15, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Du, Z.; Lim, M.H. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer’s Disease. Acc. Chem. Res. 2021, 54, 3930–3940. [Google Scholar] [CrossRef]
- Lee, S.J.C.; Nam, E.; Lee, H.J.; Savelieff, M.G.; Lim, M.H. Towards an Understanding of Amyloid-β Oligomers: Characterization, Toxicity Mechanisms, and Inhibitors. Chem. Soc. Rev. 2017, 46, 310–323. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Ramamoorthy, A.; Sahoo, B.R.; Zheng, J.; Faller, P.; Straub, J.E.; Dominguez, L.; Shea, J.E.; Dokholyan, N.V.; de Simone, A.; et al. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem. Rev. 2021, 121, 2545–2647. [Google Scholar] [CrossRef]
- Summers, K.L.; Schilling, K.M.; Roseman, G.; Markham, K.A.; Dolgova, N.V.; Kroll, T.; Sokaras, D.; Millhauser, G.L.; Pickering, I.J.; George, G.N. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Inorg. Chem. 2019, 58, 6294–6311. [Google Scholar] [CrossRef]
- Sacco, C.; Skowronsky, R.A.; Gade, S.; Kenney, J.M.; Spuches, A.M. Calorimetric Investigation of Copper(II) Binding to Ab Peptides: Thermodynamics of Coordination Plasticity. J. Biol. Inorg. Chem. 2012, 17, 531–541. [Google Scholar] [CrossRef]
- Hureau, C.; Dorlet, P. Coordination of Redox Active Metal Ions to the Amyloid Precursor Protein and to Amyloid-β Peptides Involved in Alzheimer Disease. Part 2: Dependence of Cu(II) Binding Sites with Aβ Sequences. Coord. Chem. Rev. 2012, 256, 2175–2187. [Google Scholar] [CrossRef]
- Drew, S.C.; Barnham, K.J. The heterogeneous nature of Cu2+ interactions with Alzheimer’s amyloid-β peptide. Acc. Chem. Res. 2011, 44, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Sharma, A.K. Cu and Zn Interactions with Aβ Peptides: Consequence of Coordination on Aggregation and Formation of Neurotoxic Soluble Aβ Oligomers. Metallomics 2019, 11, 64–84. [Google Scholar] [CrossRef] [PubMed]
- Lanza, V.; Bellia, F.; Rizzarelli, E. An Inorganic Overview of Natural Aβ Fragments: Copper(II) and Zinc(II)-Mediated Pathways. Coord. Chem. Rev. 2018, 369, 1–14. [Google Scholar] [CrossRef]
- Chen, L.L.; Fan, Y.G.; Zhao, L.X.; Zhang, Q.; Wang, Z.Y. The Metal Ion Hypothesis of Alzheimer’s Disease and the Anti-Neuroinflammatory Effect of Metal Chelators. Bioorg. Chem. 2023, 131, 106301. [Google Scholar] [CrossRef] [PubMed]
- Okafor, M.; Gonzalez, P.; Ronot, P.; El Masoudi, I.; Boos, A.; Ory, S.; Chasserot-Golaz, S.; Gasman, S.; Raibaut, L.; Hureau, C.; et al. Development of Cu(Ii)-Specific Peptide Shuttles Capable of Preventing Cu-Amyloid Beta Toxicity and Importing Bioavailable Cu into Cells. Chem. Sci. 2022, 13, 11829–11840. [Google Scholar] [CrossRef]
- Hureau, C.; Faller, P. Aβ-Mediated ROS Production by Cu Ions: Structural Insights, Mechanisms and Relevance to Alzheimer’s Disease. Biochimie 2009, 91, 1212–1217. [Google Scholar] [CrossRef]
- Cheignon, C.; Faller, P.; Testemale, D.; Hureau, C.; Collin, F. Metal-Catalyzed Oxidation of Aβ and the Resulting Reorganization of Cu Binding Sites Promote ROS Production. Metallomics 2016, 8, 1081–1089. [Google Scholar] [CrossRef]
- Cheignon, C.; Jones, M.; Atrián-Blasco, E.; Kieffer, I.; Faller, P.; Collin, F.; Hureau, C. Identification of Key Structural Features of the Elusive Cu-Aβ Complex That Generates ROS in Alzheimer’s Disease. Chem. Sci. 2017, 8, 5107–5118. [Google Scholar] [CrossRef]
- Cassagnes, L.-E.; Hervé, V.; Nepveu, F.; Hureau, C.; Faller, P.; Collin, F. The Catalytically Active Copper-Amyloid-Beta State: Coordination Site Responsible for Reactive Oxygen Species Production. Angew. Chem. 2013, 125, 11316–11319. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Bai, R.; Guo, J.; Ye, X.Y.; Xie, Y.; Xie, T. Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef]
- Huang, X.; Atwood, C.S.; Hartshorn, M.A.; Multhaup, G.; Goldstein, L.E.; Scarpa, R.C.; Cuajungco, M.P.; Gray, D.N.; Lim, J.; Moir, R.D.; et al. The Aβ Peptide of Alzheimer’s Disease Directly Produces Hydrogen Peroxide through Metal Ion Reduction. Biochemistry 1999, 38, 7609–7616. [Google Scholar] [CrossRef]
- Lee, H.J.; Korshavn, K.J.; Kochi, A.; Derrick, J.S.; Lim, M.H. Cholesterol and Metal Ions in Alzheimer’s Disease. Chem. Soc. Rev. 2014, 43, 6672–6682. [Google Scholar] [CrossRef]
- Malikidogo, K.P.; Drommi, M.; Atrián-Blasco, E.; Hormann, J.; Kulak, N.; Esmieu, C.; Hureau, C. Ability of Azathiacyclen Ligands to Stop Cu(Aβ)-Induced Production of Reactive Oxygen Species: [3N1S] Is the Right Donor Set. Chem.-A Eur. J. 2023, 29, e202203667. [Google Scholar] [CrossRef]
- Kim, G.; Lelong, E.; Kang, J.; Suh, J.M.; Le Bris, N.; Bernard, H.; Kim, D.; Tripier, R.; Lim, M.H. Reactivities of Cyclam Derivatives with Metal-Amyloid-β. Inorg. Chem. Front. 2020, 7, 4222–4238. [Google Scholar] [CrossRef]
- Nam, G.; Suh, J.M.; Yi, Y.; Lim, M.H. Drug Repurposing: Small Molecules against Cu(II)–Amyloid-β and Free Radicals. J. Inorg. Biochem. 2021, 224, 111592. [Google Scholar] [CrossRef]
- Kwak, J.; Woo, J.; Park, S.; Lim, M.H. Rational Design of Photoactivatable Metal Complexes to Target and Modulate Amyloid-β Peptides. J. Inorg. Biochem. 2023, 238, 112053. [Google Scholar] [CrossRef]
- Han, J.; Lee, H.J.; Kim, K.Y.; Nam, G.; Chae, J.; Lim, M.H. Mechanistic Approaches for Chemically Modifying the Coordination Sphere of Copper–Amyloid-β Complexes. Proc. Natl. Acad. Sci. USA 2020, 117, 5160–5167. [Google Scholar] [CrossRef]
- Montalto, G.; Ricciarelli, R. Tau, Tau Kinases, and Tauopathies: An Updated Overview. BioFactors 2023, 49, 502–511. [Google Scholar] [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef]
- Naseri, N.N.; Wang, H.; Guo, J.; Sharma, M.; Luo, W. The Complexity of Tau in Alzheimer’s Disease. Neurosci. Lett. 2019, 705, 183–194. [Google Scholar] [CrossRef]
- Medina, M.; Hernández, F.; Avila, J. New Features about Tau Function and Dysfunction. Biomolecules 2016, 6, 21. [Google Scholar] [CrossRef]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 10, 204. [Google Scholar] [CrossRef]
- Kent, S.A.; Spires-Jones, T.L.; Durrant, C.S. The Physiological Roles of Tau and Aβ: Implications for Alzheimer’s Disease Pathology and Therapeutics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 140, ISBN 0123456789. [Google Scholar]
- Alquezar, C.; Arya, S.; Kao, A.W. Tau Post-Translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front. Neurol. 2021, 11, 595532. [Google Scholar] [CrossRef]
- Zubčić, K.; Hof, P.R.; Šimić, G.; Jazvinšćak Jembrek, M. The Role of Copper in Tau-Related Pathology in Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13, 572308. [Google Scholar] [CrossRef]
- Capanni, C.; Taddei, N.; Gabrielli, S.; Messori, L.; Orioli, P.; Chiti, F.; Stefani, M.; Ramponi, G. Investigation of the Effects of Copper Ions on Protein Aggregation Using a Model System. Cell. Mol. Life Sci. 2004, 61, 982–991. [Google Scholar] [CrossRef]
- Shin, B.K.; Saxena, S. Insight into Potential Cu(II)-Binding Motifs in the Four Pseudorepeats of Tau Protein. J. Phys. Chem. B 2011, 115, 15067–15078. [Google Scholar] [CrossRef]
- Soragni, A.; Zambelli, B.; Mukrasch, M.D.; Biernat, J.; Jeganathan, S.; Griesinger, C.; Ciurli, S.; Mandelkow, E.; Zweckstetter, M. Structural Characterization of Binding of Cu(II) to Tau Protein. Biochemistry 2008, 47, 10841–10851. [Google Scholar] [CrossRef]
- Zhou, L.X.; Du, J.T.; Zeng, Z.Y.; Wu, W.H.; Zhao, Y.F.; Kanazawa, K.; Ishizuka, Y.; Nemoto, T.; Nakanishi, H.; Li, Y.M. Copper (II) Modulates in Vitro Aggregation of a Tau Peptide. Peptides 2007, 28, 2229–2234. [Google Scholar] [CrossRef]
- Du, X.; Zheng, Y.; Wang, Z.; Chen, Y.; Zhou, R.; Song, G.; Ni, J.; Liu, Q. Inhibitory Act of Selenoprotein P on Cu+/Cu2+-Induced Tau Aggregation and Neurotoxicity. Inorg. Chem. 2014, 53, 11221–11230. [Google Scholar] [CrossRef]
- Ahmadi, S.; Zhu, S.; Sharma, R.; Wu, B.; Soong, R.; Dutta Majumdar, R.; Wilson, D.J.; Simpson, A.J.; Kraatz, H.B. Aggregation of Microtubule Binding Repeats of Tau Protein Is Promoted by Cu2+. ACS Omega 2019, 4, 5356–5366. [Google Scholar] [CrossRef] [PubMed]
- Nanga, R.P.R.; Brender, J.R.; Vivekanandan, S.; Ramamoorthy, A. Structure and Membrane Orientation of IAPP in Its Natively Amidated Form at Physiological PH in a Membrane Environment. Biochim. Biophys. Acta-Biomembr. 2011, 1808, 2337–2342. [Google Scholar] [CrossRef] [PubMed]
- Cort, J.R.; Liu, Z.; Lee, G.M.; Huggins, K.N.L.; Janes, S.; Prickett, K.; Andersen, N.H. Solution State Structures of Human Pancreatic Amylin and Pramlintide. Protein Eng. Des. Sel. 2009, 22, 497–513. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Camargo, D.C.; Tripsianes, K.; Kapp, T.G.; Mendes, J.; Schubert, J.; Cordes, B.; Reif, B. Cloning, Expression and Purification of the Human Islet Amyloid Polypeptide (HIAPP) from Escherichia coli. Protein Expr. Purif. 2015, 106, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Woerle, H.J.; Albrecht, M.; Linke, R.; Zschau, S.; Neumann, C.; Nicolaus, M.; Gerich, J.E.; Göke, B.; Schirra, J. Impaired Hyperglycemia-Induced Delay in Gastric Emptying in Patients with Type 1 Diabetes Deficient for Islet Amyloid Polypeptide. Diabetes Care 2008, 31, 2325–2331. [Google Scholar] [CrossRef]
- Martin, C. The Physiology of Amylin and Insulin: Maintaining the Balance between Glucose Secretion and Glucose Uptake. Diabetes Educ. 2006, 32, 101–104. [Google Scholar] [CrossRef]
- Fernández, M.S. Human IAPP Amyloidogenic Properties and Pancreatic β-Cell Death. Cell Calcium 2014, 56, 416–427. [Google Scholar] [CrossRef]
- Haataja, L.; Gurlo, T.; Huang, C.J.; Butler, P.C. Islet Amyloid in Type 2 Diabetes, and the Toxic Oligomer Hypothesis. Endocr. Rev. 2008, 29, 303–316. [Google Scholar] [CrossRef]
- Young, L.M.; Cao, P.; Raleigh, D.P.; Ashcroft, A.E.; Radford, S.E. Ion Mobility Spectrometry-Mass Spectrometry Defines the Oligomeric Intermediates in Amylin Amyloid Formation and the Mode of Action of Inhibitors. J. Am. Chem. Soc. 2014, 136, 660–670. [Google Scholar] [CrossRef]
- Jha, S.; Snell, J.M.; Sheftic, S.R.; Patil, S.M.; Daniels, S.B.; Kolling, F.W.; Alexandrescu, A.T. PH Dependence of Amylin Fibrillization. Biochemistry 2014, 53, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, C.; Cortés-Mejía, R.; Miotto, M.C.; Binolfi, A.; Fernández, C.O.; Del Campo, J.M.; Quintanar, L. Copper Coordination Features of Human Islet Amyloid Polypeptide: The Type 2 Diabetes Peptide. Inorg. Chem. 2016, 55, 10727–10740. [Google Scholar] [CrossRef] [PubMed]
- Moracci, L.; Crotti, S.; Traldi, P.; Cosma, C.; Lapolla, A.; Pucciarelli, S.; Agostini, M. An Electrospray Ionization Study on Complexes of Amylin with Cu(II) and Cu(I). J. Mass Spectrom. 2021, 56, e4773. [Google Scholar] [CrossRef] [PubMed]
- Alghrably, M.; Czaban, I.; Jaremko, Ł.; Jaremko, M. Interaction of Amylin Species with Transition Metals and Membranes. J. Inorg. Biochem. 2019, 191, 69–76. [Google Scholar] [CrossRef]
- Rowińska-Zyrek, M. Coordination of Zn2+ and Cu2+ to the Membrane Disrupting Fragment of Amylin. Dalt. Trans. 2016, 45, 8099–8106. [Google Scholar] [CrossRef]
- Seal, M.; Dey, S.G. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes. Inorg. Chem. 2018, 57, 129–138. [Google Scholar] [CrossRef]
- Moracci, L.; Crotti, S.; Traldi, P.; Agostini, M.; Cosma, C.; Lapolla, A. Role of Mass Spectrometry in the Study of Interactions between Amylin and Metal Ions. Mass Spectrom. Rev. 2023, 42, 984–1007. [Google Scholar] [CrossRef]
- Roy, D.; Maity, N.C.; Kumar, S.; Maity, A.; Ratha, B.N.; Biswas, R.; Maiti, N.C.; Mandal, A.K.; Bhunia, A. Modulatory Role of Copper on HIAPP Aggregation and Toxicity in Presence of Insulin. Int. J. Biol. Macromol. 2023, 241, 124470. [Google Scholar] [CrossRef]
- Li, H.; Ha, E.; Donaldson, R.P.; Jeremic, A.M.; Vertes, A. Rapid Assessment of Human Amylin Aggregation and Its Inhibition by Copper(II) Ions by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation. Anal. Chem. 2015, 87, 9829–9837. [Google Scholar] [CrossRef]
- Dong, X.; Svantesson, T.; Sholts, S.B.; Wallin, C.; Jarvet, J.; Gräslund, A.; Wärmländer, S.K.T.S. Copper Ions Induce Dityrosine-Linked Dimers in Human but Not in Murine Islet Amyloid Polypeptide (IAPP/Amylin). Biochem. Biophys. Res. Commun. 2019, 510, 520–524. [Google Scholar] [CrossRef]
- Pal, I.; Dey, S.G. The Role of Heme and Copper in Alzheimer’s Disease and Type 2 Diabetes Mellitus. JACS Au 2023, 3, 657–681. [Google Scholar] [CrossRef]
- Hoeger, U.; Robin, J.; Editors, H. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and Other Body Fluid Proteins; Springer: Berlin/Heidelberg, Germany, 2020; Volume 94, ISBN 978-3-030-41768-0. [Google Scholar]
- Lu, J.; Yu, Y.; Zhu, I.; Cheng, Y.; Sun, P.D. Structural Mechanism of Serum Amyloid A-Mediated Inflammatory Amyloidosis. Proc. Natl. Acad. Sci. USA 2014, 111, 5189–5194. [Google Scholar] [CrossRef] [PubMed]
- Sack, G.H., Jr. Serum Amyloid A—A Review. Mol. Med. 2018, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Patke, S.; Srinivasan, S.; Maheshwari, R.; Srivastava, S.K.; Aguilera, J.J.; Colón, W.; Kane, R.S. Characterization of the Oligomerization and Aggregation of Human Serum Amyloid A. PLoS ONE 2013, 8, e64974. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hansmann, U.H.E. Stability of Human Serum Amyloid A Fibrils. J. Phys. Chem. B 2020, 124, 10708–10717. [Google Scholar] [CrossRef]
- Takase, H.; Tanaka, M.; Miyagawa, S.; Yamada, T.; Mukai, T. Effect of Amino Acid Variations in the Central Region of Human Serum Amyloid A on the Amyloidogenic Properties. Biochem. Biophys. Res. Commun. 2014, 444, 92–97. [Google Scholar] [CrossRef]
- Wang, L.; Colón, W. Effect of Zinc, Copper, and Calcium on the Structure and Stability of Serum Amyloid A. Biochemistry 2007, 46, 5562–5569. [Google Scholar] [CrossRef]
- Adams, D.; Koike, H.; Slama, M.; Coelho, T. Hereditary Transthyretin Amyloidosis: A Model of Medical Progress for a Fatal Disease. Nat. Rev. Neurol. 2019, 15, 387–404. [Google Scholar] [CrossRef]
- Gonzalez-Duarte, A.; Ulloa-Aguirre, A. A Brief Journey through Protein Misfolding in Transthyretin Amyloidosis (Attr Amyloidosis). Int. J. Mol. Sci. 2021, 22, 12158. [Google Scholar] [CrossRef]
- Liz, M.A.; Coelho, T.; Bellotti, V.; Fernandez-Arias, M.I.; Mallaina, P.; Obici, L. A Narrative Review of the Role of Transthyretin in Health and Disease. Neurol. Ther. 2020, 9, 395–402. [Google Scholar] [CrossRef]
- Ciccone, L.; Fruchart-Gaillard, C.; Mourier, G.; Savko, M.; Nencetti, S.; Orlandini, E.; Servent, D.; Stura, E.A.; Shepard, W. Copper Mediated Amyloid-β Binding to Transthyretin. Sci. Rep. 2018, 8, 13744. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Koysombat, K.; Mills, E.G.; Tsoutsouki, J.; Comninos, A.N.; Abbara, A.; Dhillo, W.S. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr. Rev. 2023, 2023, bnad023. [Google Scholar] [CrossRef]
- Noel, S.D.; Kaiser, U.B. G Protein-Coupled Receptors Involved in GnRH Regulation: Molecular Insights from Human Disease. Mol. Cell. Endocrinol. 2011, 346, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shushan, S.; Miller, Y. Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. J. Phys. Chem. B 2021, 125, 2796–2811. [Google Scholar] [CrossRef]
- Szeliga, A.; Podfigurna, A.; Bala, G.; Meczekalski, B. Decreased Neurokinin B as a Risk Factor of Functional Hypothalamic Amenorrhea. Gynecol. Endocrinol. 2023, 39, 2216313. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, B.M.; Jones, M.R.; Hong, Y.; Jones, C.E. Copper Ions Trigger Disassembly of Neurokinin B Functional Amyloid and Inhibit de Novo Assembly. J. Struct. Biol. 2019, 208, 107394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveri, V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023, 28, 6446. https://doi.org/10.3390/molecules28186446
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules. 2023; 28(18):6446. https://doi.org/10.3390/molecules28186446
Chicago/Turabian StyleOliveri, Valentina. 2023. "Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins" Molecules 28, no. 18: 6446. https://doi.org/10.3390/molecules28186446
APA StyleOliveri, V. (2023). Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules, 28(18), 6446. https://doi.org/10.3390/molecules28186446