Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations
2.1.1. SEM and EDX Analysis
2.1.2. UV/Visible Spectroscopy
2.1.3. FTIR
2.1.4. XRD
2.1.5. PZC (Point of Zero Charge)
2.2. Degradation Studies of Dyes
2.2.1. Effect of Photocatalyst Amount
2.2.2. Effect of Dye Concentration
2.2.3. Effect of Temperature
2.2.4. Effect of pH
2.2.5. Effect of Contact Time
2.3. Thermodynamics
2.4. Adsorption Isotherms
2.5. Adsorption Kinetics
2.6. Ionic Interferences
2.7. Recyclability of Cu/Ni/rGO Nanocomposites
2.8. Effect of Scavengers on Photocatalytic Degradation Mechanism
3. Experimental
3.1. Chemicals
3.2. Preparation of Leaf Extract
3.3. Fabrication of Graphene Oxide (GO)
3.4. Preparation of Cu/Ni/rGO Composites
3.5. Characterization Techniques
3.6. Dyes Removal Studies
3.7. Point of Zero Charge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tara, N.; Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A.; Inamuddin; Asiri, A.M. Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review. Curr. Anal. Chem. 2020, 16, 14–40. [Google Scholar] [CrossRef]
- Hussein, F.H.; Halbus, A.F. Rapid Decolorization of Cobalamin. Int. J. Photoenergy 2012, 2012, 495435. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. 2017, 24, 15882–15904. [Google Scholar] [CrossRef] [PubMed]
- Seidmohammadi, A.; Asgari, G.; Leili, M.; Dargahi, A.; Mobarakian, A. Effectiveness of Quercus Branti Activated Carbon in Removal of Methylene Blue from Aqueous Solutions. Arch. Hyg. Sci. 2015, 4, 217–225. [Google Scholar]
- Gupta, V.K.; Khamparia, S.; Tyagi, I.; Jaspal, D.; Malviya, A. Decolorization of Mixture of Dyes: A Critical Review. Global J. Environ. Sci. Manag. 2015, 1, 71–94. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Yang, R.; Li, G.; Hu, C. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue. Water Sci. Technol. 2015, 2, wst2015450. [Google Scholar] [CrossRef]
- Alventosa-Delara, E.; Barredo-Damas, S.; Alcaina-Miranda, M.; Iborra-Clar, M. Ultrafiltration technology with a ceramic membrane for reactive dye removal: Optimization of membrane performance. J. Hazard. Mater. 2012, 209–210, 492–500. [Google Scholar] [CrossRef]
- Alvarez, L.; Perez-Cruz, M.; Rangel-Mendez, J.; Cervantes, F. Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. J. Hazard. Mater. 2010, 184, 268–272. [Google Scholar] [CrossRef]
- Tariq, S.R. Multivariate Statistical Analyses of Fluoride and Other Physicochemical Parameters in Groundwater Samples of Two Megacities in Asia: Lahore and Sialkot. J. Chem. 2014, 2014, 682452. [Google Scholar] [CrossRef]
- Sial, R.A.; Chaudhary, M.F.; Abbas, S.T.; Latif, M.I.; Khan, A.G. Quality of effluents from Hattar Industrial Estate. J. Zhejiang Univ. B 2006, 7, 974–980. [Google Scholar] [CrossRef]
- Ahmad, R.; Kumar, R. Conducting Polyaniline/Iron Oxide Composite: A Novel Adsorbent for the Removal of Amido Black 10B. J. Chem. Eng. Data 2010, 55, 3489–3493. [Google Scholar] [CrossRef]
- Aksu, Z.; Tezer, S. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: Effect of temperature. Process. Biochem. 2000, 36, 431–439. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Gao, S.; Wang, H.; He, Z.; Xu, Y.; Huang, K. In situ encapsulated ultrafine Pd nanoparticles in nitrogen-doped porous carbon derived from hyper-crosslinked polymers effectively catalyse hydrogenation. J. Catal. 2021, 396, 342–350. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Wen, J.; Salunke, B.K.; Kim, B.S. Biosynthesis of graphene-metal nanocomposites using plant extract and their biological activities. J. Chem. Technol. Biotechnol. 2016, 92, 1428–1435. [Google Scholar] [CrossRef]
- Shen, J.; Shi, M.; Li, N.; Yan, B.; Ma, H.; Hu, Y.; Ye, M. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349. [Google Scholar] [CrossRef]
- Lee, G.; Kim, B.S. Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Prog. 2014, 30, 463–469. [Google Scholar] [CrossRef] [PubMed]
- El-Kashak, W.; El-Ghonemy, M.M.; Mohamed, T.K.; Omara, E.; Hussein, J.; Farrag, A.-R.H.; Nassar, M.; El-Kady, M.Y. Hepatoprotective activity of Dypsis lutescens against D-galactosamine-induced hepatotoxicity in rats and its phytoconstituents. Asian Pac. J. Trop. Biomed. 2019, 9, 467. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Komber, H.; Khonakdar, H.A.; Sajadi, S.M. In situ green synthesis of Cu-Ni bimetallic nanoparticles supported on reduced graphene oxide as an effective and recyclable catalyst for the synthesis of N-benzyl-N-aryl-5-amino-1H-tetrazoles. Appl. Organomet. Chem. 2019, 33, e4938. [Google Scholar] [CrossRef]
- Giovannetti, R.; Rommozzi, E.; Zannotti, M.; D’Amato, C.A. Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes. Catalysts 2017, 7, 305. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Hafeez, M.; Shaheen, R.; Akram, B.; Abdin, Z.U.; Haq, S.; Mahsud, S.; Ali, S.; Khan, R.T. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express 2020, 7, 025019. [Google Scholar] [CrossRef]
- Murali, A.; Sarswat, P.K.; Free, M.L. Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications. Environ. Sci. Pollut. Res. 2020, 27, 25042–25056. [Google Scholar] [CrossRef] [PubMed]
- Hidayah, N.M.S.; Liu, W.W.; Lai, C.W.; Noriman, N.Z.; Khe, C.S.; Hashim, U.; Lee, H.C. Comparison on graphite, gra-phene oxide and reduced graphene oxide: Synthesis and characterization. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 150002. [Google Scholar]
- Sharma, A.; Lee, B.-K. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J. Environ. Manag. 2016, 181, 563–573. [Google Scholar] [CrossRef]
- Mishra, A.; Singh, A.; Kushwaha, H.R.; Mishra, A. Cytotoxic effect of cobalt oxide–graphene oxide nanocomposites on melanoma cell line. J. Exp. Nanosci. 2022, 17, 509–521. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, G.; Zhang, M.; Guo, S.; Liu, Z. Preparation and capacitance performance of Ag–graphene based nanocomposite. J. Power Sources 2012, 201, 376–381. [Google Scholar] [CrossRef]
- Hassaan, M.; Nemr, A.; El, A. Health and Environmental Impacts of Dyes: Mini Review. Nemr. Health and Environmental Impacts of Dyes: Mini Review. Am. J. Environ. Sci. Eng. 2017, 1, 64–67. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B. Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. J. Ind. Eng. Chem. 2012, 19, 1153–1161. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B. Optimized and functionalized paper sludge activated with potassium fluoride for single and binary adsorption of reactive dyes. J. Ind. Eng. Chem. 2014, 20, 830–840. [Google Scholar] [CrossRef]
- Onyango, M.S.; Kuchar, D.; Kubota, M.; Matsuda, H. Adsorptive Removal of Phosphate Ions from Aqueous Solution Using Synthetic Zeolite. Ind. Eng. Chem. Res. 2007, 46, 894–900. [Google Scholar] [CrossRef]
- Ai, L.; Li, M.; Li, L. Adsorption of Methylene Blue from Aqueous Solution with Activated Carbon/Cobalt Ferrite/Alginate Composite Beads: Kinetics, Isotherms, and Thermodynamics. J. Chem. Eng. Data 2011, 56, 3475–3483. [Google Scholar] [CrossRef]
- Silva, R.; Cadorin, L.; Rubio, J. Sulphate ions removal from an aqueous solution: I. Co-precipitation with hydrolysed aluminum-bearing salts. Miner. Eng. 2010, 23, 1220–1226. [Google Scholar] [CrossRef]
- Guimarães, D.; Leão, V.A. Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21. J. Hazard. Mater. 2014, 280, 209–215. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Ghasemi, F.; Derakhshani, E.; Shahabi, H. Thermodynamic, kinetic and isotherm studies of sulfate removal from aqueous solutions by graphene and graphite nanoparticles. Desalination Water Treat. 2017, 80, 247–254. [Google Scholar] [CrossRef]
- Khatri, A.; Timalsena, S.; Gautam, S.; Kharel, M. Varicella Retinal Vasculopathy: Unilateral Cilioretinal Artery Occlusion Despite Acyclovir Therapy Caught Using Optical Coherence Tomography-Angiography (OCTA). Case Rep. Ophthalmol. Med. 2019, 2019, 5752180. [Google Scholar] [CrossRef] [PubMed]
- Hameeda, B.; Mushtaq, A.; Saeed, M.; Munir, A.; Jabeen, U.; Waseem, A. Development of Cu-doped NiO nanoscale material as efficient photocatalyst for visible light dye degradation. Toxin Rev. 2020, 40, 1396–1406. [Google Scholar] [CrossRef]
- Ahmad, Z.; Afzal, A.M.; Khan, M.F.; Manzoor, A.; Khalil, H.M.W.; Aftab, S. Copper-Doped Nickle-Oxide Nanoparticles for Photocatalytic Degradation of Erichrome Black-T and Methylene Blue and Its Solar Cell Applications. J. Nanoelectron. Optoelectron. 2019, 14, 1304–1312. [Google Scholar] [CrossRef]
- Ghazal, S.; Khandannasab, N.; Hosseini, H.A.; Sabouri, Z.; Rangrazi, A.; Darroudi, M. Green synthesis of copper-doped nickel oxide nanoparticles using okra plant extract for the evaluation of their cytotoxicity and photocatalytic properties. Ceram. Int. 2021, 47, 27165–27176. [Google Scholar] [CrossRef]
- Abdullah; Hussain, T.; Faisal, S.; Rizwan, M.; Saira; Zaman, N.; Iqbal, M.; Iqbal, A.; Ali, Z. Green synthesis and characterization of copper and nickel hybrid nanomaterials: Investigation of their biological and photocatalytic potential for the removal of organic crystal violet dye. J. Saudi Chem. Soc. 2022, 26, 101486. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Kelly, S.J.; Huang, X.; Liu, J. Biomimetic snowflake-shaped magnetic micro-/nanostructures for highly efficient adsorption of heavy metal ions and organic pollutants from aqueous solution. J. Mater. Chem. A 2014, 2, 11759–11767. [Google Scholar] [CrossRef]
- Shahzadi, T.; Rehman, S.; Riaz, T.; Zaib, M. Eco-friendly synthesis of ZnO nanoparticles using Cannabis sativa and assessment of its activities as efficient dyes removal and antioxidant agent. Int. J. Environ. Anal. Chem. 2020, 102, 4738–4756. [Google Scholar] [CrossRef]
- Sohni, S.; Gul, K.; Ahmad, F.; Ahmad, I.; Khan, A.; Khan, N.; Khan, S.B. Highly efficient removal of acid red-17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polym. Compos. 2017, 39, 3317–3328. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Bhattacharyya, A.; Rana, D.; Ghosh, T.K.; Orasugh, J.T.; Khatua, S.; Acharya, K.; Chattopadhyay, D. Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 2020, 247, 122906. [Google Scholar] [CrossRef]
- Senguttuvan, S.; Janaki, V.; Senthilkumar, P.; Kamala-Kannan, S. Polypyrrole/zeolite composite—A nanoadsorbent for reactive dyes removal from synthetic solution. Chemosphere 2022, 287, 132164. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, W.A.; Hanafiah, M.A.K.M.; Mohammed, A.-H.A. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. Environ. Sci. Pollut. Res. 2022, 29, 76565–76610. [Google Scholar] [CrossRef] [PubMed]
- Ayub, A.; Raza, Z.A.; Majeed, M.I.; Tariq, M.R.; Irfan, A. Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. Int. J. Biol. Macromol. 2020, 163, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Nasiruddin Khan, M.; Sarwar, A. Determination of points of zero charge of natural and treated adsorbents. Surf. Rev. Lett. 2007, 14, 461–469. [Google Scholar] [CrossRef]
Lattice Parameters | |
---|---|
a (Å): | 2.8839 |
b (Å): | 2.8839 |
c (Å): | 2.8839 |
Alpha (°): | 90.0000 |
Beta (°): | 90.0000 |
Gamma (°): | 90.0000 |
Calculated density (g/cm3) | 7.20 |
Volume of cell (106 pm3) | 23.99 |
Adsorbing Material | Dye | Temp (K) | KL | ∆H° (KJ mol−1) | ∆S° (J mol−1K−1) | ∆G° (KJ mol−1) | R2 |
---|---|---|---|---|---|---|---|
Cu/Ni/rGO composite | Rhodamine B | 298 | 1.31 | 34.35 | 120.03 | −0.67 | 0.77 |
308 | 3.16 | −2.95 | |||||
318 | 6.36 | −4.89 | |||||
328 | 6.45 | −5.08 | |||||
338 | 6.92 | −5.43 | |||||
Cu/Ni/rGO composite | Alizarin Red | 298 | 1.13 | 33.29 | 114.13 | −0.31 | 0.84 |
308 | 2.02 | −1.80 | |||||
318 | 4.33 | −3.87 | |||||
328 | 5 | −4.38 | |||||
338 | 5.14 | −4.60 |
Adsorbing Material | Dye | Temp (K) | KL | ∆H° (KJ mol−1) | ∆S° (J mol−1K−1) | ∆G° (KJ mol−1) | R2 |
---|---|---|---|---|---|---|---|
Cu/Ni/rGO composite | Rhodamine B | 298 | 2.81 | 57.54 | 203.60 | −2.56 | 0.87 |
308 | 7 | −4.98 | |||||
318 | 27.5 | −8.76 | |||||
328 | 30.45 | −9.31 | |||||
338 | 40.35 | −10.39 | |||||
Cu/Ni/rGO composite | Alizarine Red | 298 | 2.29 | 37.71 | 137.13 | −2.05 | 0.52 |
308 | 6.25 | −4.69 | |||||
318 | 20.11 | −7.93 | |||||
328 | 16.81 | −7.69 | |||||
338 | 12.5 | −7.09 |
Adsorbing Catalyst | Synthesis Methdology | Light Source | Dye | Removal Efficiency | Degradation Time | Reference |
---|---|---|---|---|---|---|
Cu/NiO nanoparticles | Coprecipitaion method | Visible | Methylene blue | 89% | 50 min | [37] |
Cu/NiO nanopartciles | Coprecipitaion method | Visible | Alizarin R | 90% | 60 min | [38] |
Cu/NiO nanoparticles | Coprecipitaion method | Visible | Erichrome black-T Methylene blue | 51% | 90 min | [39] |
Cu/NiO nanoparticles | Green synthesis (Okra plant) | UV-light | Methylene blue | 78% | 105 min | [40] |
Cu/Ni nanoparticles | Green systhesis (Zingiber officinale) | UV-light | Crystal violet | 95% | 160 min | [41] |
Cu/Ni/rGO | Green synthesis (Dypsislutescens plant) | Tungsten lamp | Rhodamin B | 91% | 20 min | Present work |
Cu/Ni/rGO | Green synthesis (Dypsislutescens plant) | Tungsten lamp | Alizarin R | 90% | 20 min | Present work |
Dyes | Constants | Isotherms | |
---|---|---|---|
Rhodamin | Alizarin | Langmuir | |
0.42 | 1.32 | Intercept | |
0.32 | 0.21 | Slope | |
2.35 | 0.75 | KL (L/g) | |
7.16 | 6.20 | qm (mg/g) | |
0.38 | 0.75 | RL | |
0.94 | 0.86 | R2 | |
0.19 | −0.11 | Intercept | Freundlich |
0.76 | 0.39 | Slope | |
0.76 | 0.39 | 1/n | |
1.56 | 0.77 | Kf | |
0.97 | 0.92 | R2 | |
1.40 | 0.69 | Intercept | Temkin |
0.53 | 0.16 | Slope | |
0.53 | 0.16 | BT (J mol−1) | |
13.49 | 58.81 | Kr (L mg−1) | |
0.95 | 0.85 | R2 |
Dyes | Constants | Isotherms | |
---|---|---|---|
Rhodamin | Alizarin | Langmuir | |
0.33 | 0.84 | Intercept | |
0.02 | 0.02 | Slope | |
2.95 | 1.18 | KL (L/g) | |
99.04 | 37.74 | qm (mg/g) | |
0.34 | 0.65 | RL | |
0.94 | 0.88 | R2 | |
0.73 | 0.26 | Intercept | Freundlich |
0.58 | 0.31 | Slope | |
0.58 | 0.31 | 1/n | |
5.39 | 1.86 | Kf | |
0.97 | 0.96 | R2 | |
3.47 | 1.52 | Intercept | Temkin |
0.77 | 0.26 | Slope | |
0.77 | 0.26 | BT (J mol−1) | |
88.05 | 349.70 | Kr (L mg−1) | |
0.94 | 0.94 | R2 |
Without a Tungsten Lamp | With a Tungsten Lamp | ||||
---|---|---|---|---|---|
Kinetics Models | Constants Values | Dyes | Dyes | ||
RhB | AR | RhB | AR | ||
Pseudo 1st order | R2 | 0.46 | 0.91 | 0.27 | 0.94 |
qe | 0.01 | 0.024 | 0.013 | 0.006 | |
K1 (min−1) | 0.00009 | 0.0001 | 0.0003 | 0.0001 | |
Pseudo 2nd order | R2 | 0.996 | 0.998 | 0.993 | 0.999 |
qe | 0.07 | 0.26 | 0.12 | 0.57 | |
K2 (min−1) | 0.006 | 0.005 | 0.007 | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, A.; Shahzadi, T.; Riaz, T.; Zaib, M.; Khan, S.; Habila, M.A.; Sillanpaa, M. Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies. Molecules 2023, 28, 6474. https://doi.org/10.3390/molecules28186474
Kanwal A, Shahzadi T, Riaz T, Zaib M, Khan S, Habila MA, Sillanpaa M. Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies. Molecules. 2023; 28(18):6474. https://doi.org/10.3390/molecules28186474
Chicago/Turabian StyleKanwal, Amina, Tayyaba Shahzadi, Tauheeda Riaz, Maria Zaib, Safia Khan, Mohamed A. Habila, and Mika Sillanpaa. 2023. "Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies" Molecules 28, no. 18: 6474. https://doi.org/10.3390/molecules28186474
APA StyleKanwal, A., Shahzadi, T., Riaz, T., Zaib, M., Khan, S., Habila, M. A., & Sillanpaa, M. (2023). Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies. Molecules, 28(18), 6474. https://doi.org/10.3390/molecules28186474