A Review on Wine Flavour Profiles Altered by Bottle Aging
Abstract
:1. Introduction
2. Chemical Reactions Occurring during the Bottle Aging of Wine
2.1. Oxidation Reactions
2.2. Reduction Reactions
2.3. Esterification and Hydrolysis Reactions
2.4. Strecker Reactions
2.5. Polymerisation Reactions
3. Volatile Compounds Altered during Bottle Aging
3.1. Volatile Sulphur Compounds
3.2. Higher Alcohols
3.3. Aldehydes
3.4. Esters
3.5. Methoxypyrazines
3.6. Other Volatile Compounds
Compounds | Evolution During Bottle Aging | References | |||
---|---|---|---|---|---|
Increase | Decrease | ||||
Volatile | Volatile Sulphide | H2S | may increase or decrease | [11,22,50,51] | |
MeSH | may increase or decrease | [55] | |||
EtSH | |||||
Higher Alcohols | 3-methylbutanol | generally stable, but small amounts may decrease | [24] | ||
isoamyl alcohol | stable | [56] | |||
2-phenylethanol | stable | ||||
isobutanol | stable | [12] | |||
Hexanol | stable | ||||
cis-3-hexen-1-ol | stable | ||||
1,3-butanediol | steadily decreased | [12,57] | |||
Aldehydes | acetaldehyde | * | [7,39] | ||
formaldehyde | increase when oxidation is out of balance | [7,32] | |||
2-methylbutyral | |||||
phenylacetaldehyde | |||||
isobutyral | |||||
isoamental | |||||
Esters | isoamyl acetate | * | [56] | ||
hexyl acetate | * | ||||
cis-3-hexyl acetate | * | ||||
isobutyl acetate | * | ||||
2-phenylethyl acetate | * | ||||
ethyl hexanoate | * | [12,57,58] | |||
octanoate | * | ||||
decanoate | * | ||||
octanoic | * | ||||
decanoic | * | ||||
hexanoic | * | ||||
3-mercaptohexanol acetate | * | [56] | |||
nonalactone | * | [65] | |||
γ-hexalactone | can be detected in heated wines | [66] | |||
γ-decalactone | |||||
lactones | overall stable | [69] | |||
Methoxypyrazines | 3-isobutyl-2-methoxypyrazine | * | [14,72] | ||
3-isopropyl-2-methoxypyrazine | * | ||||
sec-butyl-2-methoxypyrazine | * | ||||
Other Volatile Compounds | volatile phenols | increase or decrease | [15,73] | ||
hexanoic | * | [12] | |||
decanoic | * | ||||
octanoic | * | ||||
Non-volatile | Tannins | (+)-catechin | * | [74] | |
(−)-epicatechin | * | ||||
Tartaric Acid | * | [15] | |||
Polysaccharides | Mannoproteins (MP) | * | [36,75] |
4. Non-Volatile Mouth-Feel Compounds Are Altered during Bottle Aging
4.1. Tannins
4.2. Tartaric Acid
4.3. Polysaccharides
5. Factors Impacting the Flavour of Wine
5.1. Types of Closures
Factors | Flavour Characteristics | Compounds Altered | Mechanism | References | ||
---|---|---|---|---|---|---|
Closures | Natural cork | floral, fruity, honey, herbaceous, woody, earthiness, musty/muddy, wet cardboard, dusty and vegetative aromas | increase | alcohols | oxidation; contamination | [87] [88] |
terpenes | ||||||
aldehydes | ||||||
ketones | ||||||
ethyl decanoate | [57] | |||||
2-phenylethano | ||||||
(S)-3-ethyl-4-methylpentanol | ||||||
ethyl hexanoate | ||||||
styrene | ||||||
isoamyl lactate | ||||||
TCA | [90] | |||||
decrease | volatile phenolic compounds | oxidation; contamination | [89] | |||
MPs | [72] | |||||
Synthetic corks | oxidised aroma (increase) | oxidation | [86] | |||
floral and fruity aromas (decrease) | decrease | volatile compounds (such as terpene rose oxides and MPs), organic acids, and chloroanisole | adsorption | [85] | ||
Time | <15 Months | fruit, floral, caramel, earthiness, faint floral odour | after 15 months in the bottle, the polyphenol content of the wine is stable | the reaction of SO2 with flavanols predominates (long storage) | [33,57,92,93] | |
15 Months | fragrance properties to achieve balance, sensory properties to good quality development | |||||
18 Months | tropical fruit, floral, berry and sweet (decrease) | |||||
Temperature | <20 °C | more citrus, floral and tropical fruit aromas | oxidation | [94] [95] | ||
>20 °C | honey properties | increase | TDN | oxidation hydrolysis; protein denatures; precipitates | [96] | |
decrease | esters aldehydes | [97] | ||||
acetate | [96] | |||||
tannins anthocyanin | [15] | |||||
Light | cooked vegetables and caramel odour (increase) | increase | furfural; 5-methyl-2-furaldehyde; unwanted aroma compounds | oxidation | [62] [16] [98] | |
fruity aroma (decrease) | decrease | free SO2; acetaldehyde; TP; TFO; TFA | photo-Fenton reactions; REDOX reactions | |||
Vibration | increase | methylpropanal | degradation | [99] | ||
2-methylbutyral | ||||||
furfural | ||||||
decrease | organic acids | [100] | ||||
tannins | ||||||
propyl alcohol | ||||||
isoamyl alcohol | ||||||
some volatile substances may have been produced or degraded | [101] | |||||
Position | horizontal | increase | tannin specific activity | isolation of oxygen | [17] | |
decrease | benzaldehyde | |||||
vertical | vinegar, sherry, bruised apple, nutty, and solvent-like off-aromas | increase | acetic acid | oxidation; absorption | [102] | |
decrease | TDN | [103] | ||||
Humidity | musty and oxidising odour | oxidation; microorganisms | [102] [103] |
5.2. Storage Time
5.3. Storage Temperature
5.4. Light
5.5. Vibration
5.6. Position
5.7. Storage Humidity
6. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wang, K.; Gu, X.; Sun, X.; Jin, G.; Zhang, J.; Ma, W. Flavor chemical profiles of Cabernet Sauvignon wines: Six vintages from 2013 to 2018 from the Eastern Foothills of the Ningxia Helan Mountains in China. Foods 2021, 11, 22. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, X.; Wang, K.; Lv, X.; Li, R.; Ma, W. GC–MS Untargeted Analysis of Volatile Compounds in Four Red Grape Varieties (Vitis vinifera L. cv) at Different Maturity Stages near Harvest. Foods 2022, 11, 2804. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Fernández-Zurbano, P.; Ferreira, V. Contribution of nonvolatile composition to wine flavor. Food Rev. Int. 2012, 28, 389–411. [Google Scholar] [CrossRef]
- Ramos-Pineda, A.M.; García-Estévez, I.; Dueñas, M.; Escribano-Bailón, M.T. Effect of the addition of mannoproteins on the interaction between wine flavonols and salivary proteins. Food Chem. 2018, 264, 226–232. [Google Scholar] [CrossRef]
- Abreu, T.; Perestrelo, R.; Bordiga, M.; Locatelli, M.; Daniel Coïsson, J.; Câmara, J.S. The Flavor Chemistry of Fortified Wines—A Comprehensive Approach. Foods 2021, 10, 1239. [Google Scholar] [CrossRef]
- Chira, K.; Anguellu, L.; Da Costa, G.; Richard, T.; Pedrot, E.; Jourdes, M.; Teissedre, P.-L. New C-glycosidic ellagitannins formed upon oak wood toasting: Identification and sensory evaluation. Foods 2020, 9, 1477. [Google Scholar] [CrossRef]
- Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Bottle aging and storage of wines: A review. Molecules 2021, 26, 713. [Google Scholar] [CrossRef]
- Ferreras, D.; Fernández, E.; Falqué, E. Note: Effects of oak wood on the aromatic composition of Vitis vinifera L. var. treixadura wines. Food Sci. Technol. Int. 2002, 8, 343–349. [Google Scholar] [CrossRef]
- Panero, L.; Motta, S.; Petrozziello, M.; Guaita, M.; Bosso, A. Effect of SO2, reduced glutathione and ellagitannins on the shelf life of bottled white wines. Eur. Food Res. Technol. 2015, 240, 345–356. [Google Scholar] [CrossRef]
- Caro, A.; Cacciotto, A.; Fenu, P.; Piga, A. Polyphenols, colour and antioxidant activity changes in four Italian red wines during storage. Acta Aliment. 2010, 39, 192–210. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Blackman, J.W.; Prenzler, P.D.; Clark, A.C. Suppression of reductive characters in white wine by Cu fractions: Efficiency and duration of protection during bottle aging. Food Chem. 2022, 393, 133305. [Google Scholar] [CrossRef]
- Vázquez-Pateiro, I.; Arias-González, U.; Mirás-Avalos, J.M.; Falqué, E. Evolution of the aroma of Treixadura wines during bottle aging. Foods 2020, 9, 1419. [Google Scholar] [CrossRef] [PubMed]
- Cassino, C.; Tsolakis, C.; Bonello, F.; Gianotti, V.; Osella, D. Wine evolution during bottle aging, studied by H-1 NMR spectroscopy and multivariate statistical analysis. Food Res. Int. 2019, 116, 566–577. [Google Scholar] [CrossRef]
- Furtado, I.; Lopes, P.; Oliveira, A.S.; Amaro, F.; Bastos, M.d.L.; Cabral, M.; Guedes de Pinho, P.; Pinto, J. The impact of different closures on the flavor composition of wines during bottle aging. Foods 2021, 10, 2070. [Google Scholar] [CrossRef] [PubMed]
- de Esteban, M.L.G.; Ubeda, C.; Heredia, F.J.; Catania, A.A.; Assof, M.V.; Fanzone, M.L.; Jofre, V.P. Impact of closure type and storage temperature on chemical and sensory composition of Malbec wines (Mendoza, Argentina) during aging in bottle. Food Res. Int. 2019, 125, 108553. [Google Scholar] [CrossRef]
- Lan, H.; Li, S.; Yang, J.; Li, J.; Yuan, C.; Guo, A. Effects of light exposure on chemical and sensory properties of storing Meili Rosé wine in colored bottles. Food Chem. 2021, 345, 128854. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.; Pinto, J.; Teixeira, N.; Oliveira, J.; Cabral, M.; Guedes de Pinho, P.; Lopes, P.; Mateus, N.; de Freitas, V. The impact of storage conditions and bottle orientation on the evolution of phenolic and volatile compounds of vintage port wine. Foods 2022, 11, 2770. [Google Scholar] [CrossRef]
- Arcena, M.R.; Leong, S.Y.; Hochberg, M.; Sack, M.; Mueller, G.; Sigler, J.; Silcock, P.; Kebede, B.; Oey, I. Evolution of volatile and phenolic compounds during bottle storage of merlot wines vinified using pulsed electric fields-treated grapes. Foods 2020, 9, 443. [Google Scholar] [CrossRef]
- Dein, M.; Kerley, T.; Munafo, J.P., Jr. Characterization of odorants in a 10-Year-Old riesling wine. J. Agric. Food Chem. 2021, 69, 11372–11381. [Google Scholar] [CrossRef]
- Alañón, M.E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. New strategies to improve sensorial quality of white wines by wood contact. Beverages 2018, 4, 91. [Google Scholar] [CrossRef]
- Carrascón, V.; Vallverdú-Queralt, A.; Meudec, E.; Sommerer, N.; Fernandez-Zurbano, P.; Ferreira, V. The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition? Food Chem. 2018, 241, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Bekker, M.Z.; Day, M.P.; Holt, H.; Wilkes, E.; Smith, P.A. Effect of oxygen exposure during fermentation on volatile sulfur compounds in Shiraz wine and a comparison of strategies for remediation of reductive character. Aust. J. Grape Wine Res. 2016, 22, 24–35. [Google Scholar] [CrossRef]
- Vela, E.; Hernandez-Orte, P.; Franco-Luesma, E.; Ferreira, V. Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms. Food Chem. 2018, 243, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef]
- Errichiello, F.; Picariello, L.; Guerriero, A.; Moio, L.; Forino, M.; Gambuti, A. The management of dissolved oxygen by a polypropylene hollow fiber membrane contactor affects wine aging. Molecules 2021, 26, 3593. [Google Scholar] [CrossRef]
- Arapitsas, P.; Ugliano, M.; Perenzoni, D.; Angeli, A.; Pangrazzi, P.; Mattivi, F. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. J. Chromatogr. A. 2016, 1429, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Gambuti, A.; Siani, T.; Picariello, L.; Rinaldi, A.; Lisanti, M.T.; Ugliano, M.; Moio, L. Oxygen exposure of tannins-rich red wines during bottle aging. Influence on phenolics and color, astringency markers and sensory attributes. Eur. Food Res. Technol. 2017, 243, 669–680. [Google Scholar] [CrossRef]
- Scrimgeour, N.; Nordestgaard, S.; Lloyd, N.D.R.; Wilkes, E.N. Exploring the effect of elevated storage temperature on wine composition. Aust. J. Grape Wine Res. 2015, 21, 713–722. [Google Scholar] [CrossRef]
- Robinson, A.L.; Mueller, M.; Heymann, H.; Ebeler, S.E.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Effect of simulated shipping conditions on sensory attributes and volatile composition of commercial white and red wines. Am. J. Enol. Vitic. 2010, 61, 337–347. [Google Scholar] [CrossRef]
- Monforte, A.R.; Martins, S.; Silva Ferreira, A.C. Impact of phenolic compounds in Strecker aldehyde formation in wine model systems: Target and untargeted analysis. J. Agric. Food Chem. 2019, 68, 10281–10286. [Google Scholar] [CrossRef]
- Monforte, A.R.; Martins, S.I.F.S.; Silva Ferreira, A.C. Strecker aldehyde formation in wine: New insights into the role of gallic acid, glucose, and metals in phenylacetaldehyde formation. J. Agric. Food Chem. 2018, 66, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Marrufo-Curtido, A.; Carrascón, V.; Fernández-Zurbano, P.; Escudero, A.; Ferreira, V. Formation and accumulation of acetaldehyde and strecker aldehydes during red wine oxidation. Front Chem. 2018, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.Q.; Xie, H.; Hua, Y.B.; Cai, J.; Li, S.Y.; Lan, Y.B.; Li, R.N.; Duan, C.Q.; Shi, Y. Flavor profile evolution of bottle aged rose and white wines sealed with different closures. Molecules 2019, 24, 836. [Google Scholar] [CrossRef]
- Ailer, Š.; Jakabová, S.; Benešová, L.; Ivanova-Petropulos, V. Wine faults: State of knowledge in reductive aromas, oxidation and atypical aging, prevention, and correction methods. Molecules 2022, 27, 3535. [Google Scholar] [CrossRef] [PubMed]
- Jones-Moore, H.R.; Jelley, R.E.; Marangon, M.; Fedrizzi, B. The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocoll. 2022, 123, 107150. [Google Scholar] [CrossRef]
- Wang, S.; Mantilla, S.M.O.; Smith, P.A.; Stokes, J.R.; Smyth, H.E. Tribology and QCM-D approaches provide mechanistic insights into red wine mouthfeel, astringency sub-qualities and the role of saliva. Food Hydrocoll. 2021, 120, 106918. [Google Scholar] [CrossRef]
- Escribano-Bailón, T.; Álvarez-García, M.; Rivas-Gonzalo, J.C.; Heredia, F.J.; Santos-Buelga, C. Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin. J. Agric. Food Chem. 2001, 49, 1213–1217. [Google Scholar] [CrossRef]
- Danilewicz, J.C.; Standine, M.J. Reaction mechanisms of oxygen and sulfite in red wine. Am. J. Enol. Vitic. 2018, 69, 189–195. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Haase, P.T.; Kanzler, C.; Hildebrandt, J.; Kroh, L.W. Browning potential of C6-α-dicarbonyl compounds under Maillard conditions. J. Agric. Food Chem. 2017, 65, 1924–1931. [Google Scholar] [CrossRef]
- Monforte, A.R.; Oliveira, C.; Martins, S.I.F.S.; Ferreira, A.C.S. Response surface methodology: A tool to minimize aldehydes formation and oxygen consumption in wine model system. Food Chem. 2019, 283, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Santos, S.A.O.; Silvestre, A.J.D.; Barros, A.S.; Ferreira, A.C.S.; Silva, A.M. Quinones as Strecker degradation reagents in wine oxidation processes. Food Chem. 2017, 228, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Paiano, V.; Bianchi, G.; Davoli, E.; Negri, E.; Fanelli, R.; Fattore, E. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages. Food Chem. 2014, 154, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.D.; Zhang, Q.A.; Zhang, Y.F.; Li, E.C.; Sun, X. Comparison of ultrasound irradiation on polymeric coloration of flavan-3-ols bridged by acetaldehyde and glyoxylic acid in model wine solution. Food Chem. 2023, 401, 134125. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Bekker, M.Z.; Smith, P.A.; Wilkes, E.N. Sources of volatile sulfur compounds in wine. Aust. J. Grape Wine Res. 2015, 21, 705–712. [Google Scholar] [CrossRef]
- De Guidi, I.; Farines, V.; Legras, J.-L.; Blondin, B. Development of a new assay for measuring H2S production during alcoholic fermentation: Application to the evaluation of the main factors impacting H2S production by three saccharomyces cerevisiae wine strains. Fermentation 2021, 7, 213. [Google Scholar] [CrossRef]
- Müller, N.; Rauhut, D.; Tarasov, A. Sulfane sulfur compounds as source of reappearance of reductive off-odors in wine. Fermentation 2022, 8, 53. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Puxeu, M.; Martín, L.; Nart, E.; Hidalgo, C.; Andorrà, I. Microbiological, physical, and chemical procedures to elaborate high-quality SO2-free wines. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; IntechOpen: London, UK, 2018; pp. 171–193. [Google Scholar]
- Vela, E.; Hernandez-Orte, P.; Franco-Luesma, E.; Ferreira, V. The effects of copper fining on the wine content in sulfur off-odors and on their evolution during accelerated anoxic storage. Food Chem. 2017, 231, 212–221. [Google Scholar] [CrossRef]
- Blanchard, L.; Tominaga, T.; Dubourdieu, D. Formation of furfurylthiol exhibiting a strong coffee aroma during oak barrel fermentation from furfural released by toasted staves. J. Agric. Food Chem. 2001, 49, 4833–4835. [Google Scholar] [CrossRef]
- Kinzurik, M.I.; Herbst-Johnstone, M.; Gardner, R.C.; Fedrizzi, B. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, s-ethyl thioacetate and diethyl disulfide. Food Chem. 2016, 209, 341–347. [Google Scholar] [CrossRef]
- Franco-Luesma, E.; Ferreira, V. Reductive off-odors in wines: Formation and release of H2S and methanethiol during the accelerated anoxic storage of wines. Food Chem. 2016, 199, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.; Julien, P.; Nikolantonaki, M.; Noret, L.; Magne, M.; Ballester, J.; Gougeon, R.D. Molecular and macromolecular changes in bottle-aged white wines reflect oxidative evolution–impact of must clarification and bottle closure. Front Chem. 2018, 6, 95. [Google Scholar] [CrossRef]
- Kreitman, G.Y.; Elias, R.J.; Jeffery, D.W.; Sacks, G.L. Loss and formation of malodorous volatile sulfhydryl compounds during wine storage. Crit. Rev. Food Sci. Nutr. 2019, 59, 1728–1752. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Porretti, M.; Albergamo, A.; Mucari, C.; Tropea, A.; Rando, R.; Nava, V.; Lo Turco, V.; Potortì, A.G. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods 2022, 11, 2152. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xing, R.R.; Li, Z.; Yang, D.M.; Pan, Q.H. Evolution of volatile compounds, aroma attributes, and sensory perception in bottle-aged red wines and their correlation. Eur. Food Res. Technol. 2016, 242, 1937–1948. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.; Avila, I.M.L.B.; Guedes De Pinho, P. Sensorial Impact of Sotolon as the “Perceived Age” of Aged Port Wine. In Natural Flavors and Fragrances. American Chemical Society; American Chemical Society: Washington, DC, USA, 2005; pp. 141–159. [Google Scholar]
- Kioroglou, D.; Mas, A.; Portillo, M.C. Qualitative factor-based comparison of NMR, targeted and untargeted GC-MS and LC-MS on the Metabolomic profiles of Rioja and Priorat red wines. Foods 2020, 9, 1381. [Google Scholar] [CrossRef]
- Sun, J.; Ge, Y.; Gu, X.; Li, R.; Ma, W.; Jin, G. Identification and Characterization of Malolactic Bacteria Isolated from the Eastern Foothills of Helan Mountain in China. Foods 2022, 11, 2455. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, M.; Tu, T.; Zhao, X.F.; Yue, X.F.; Zhang, J.X.; Meng, J.F. Effect of regulated deficit irrigation on fatty acids and their derived volatiles in ‘Cabernet Sauvignon’ grapes and wines of Ningxia, China. Food Chem. 2018, 245, 667–675. [Google Scholar] [CrossRef]
- Pati, S.; Crupi, P.; Savastano, M.L.; Benucci, I.; Esti, M. Evolution of phenolic and volatile compounds during bottle storage of a white wine without added sulfite. J. Sci. Food Agric. 2020, 100, 775–784. [Google Scholar] [CrossRef]
- Miller, G.C.; Pilkington, L.I.; Barker, D.; Deed, R.C. Saturated Linear Aliphatic γ-and δ-Lactones in Wine: A Review. J. Agric. Food Chem. 2022, 70, 15325–15346. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Lan, Y.; Han, S.; Liang, N.; Zhu, B.; Shi, Y.; Duan, C. Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Res. Int. 2020, 137, 109650. [Google Scholar] [CrossRef] [PubMed]
- Dubourdieu, D.; Pons, A.; Lavigne, V. Le vieillissement prématuré de l’arome des vins rouges. Revue Des. Oenologues 2013, 149, 52–54. [Google Scholar]
- Pons, A.; Lavigne, V.; Eric, F.; Darriet, P.; Dubourdieu, D. Identification of volatile compounds responsible for prune aroma in prematurely aged red wines. J. Agric. Food Chem. 2008, 56, 5285–5290. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Castro-Vázquez, L.I.; Pérez-Coello, M.S. Hyperoxygenation and bottle storage of Chardonnay white wines: Effects on color-related phenolics, volatile composition, and sensory characteristics. J. Agric. Food Chem. 2011, 59, 4171–4182. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Accelerated aging against conventional storage: Effects on the volatile composition of chardonnay white wines. J. Food Sci. 2013, 78, C507–C513. [Google Scholar] [CrossRef] [PubMed]
- Pons, A.; Allamy, L.; Lavigne, V.; Dubourdieu, D.; Darriet, P. Study of the contribution of massoia lactone to the aroma of Merlot and Cabernet Sauvignon musts and wines. Food Chem. 2017, 232, 229–236. [Google Scholar] [CrossRef] [PubMed]
- McKay, M.; Bauer, F.F.; Panzeri, V.; Buica, A. Perceptual interactions and characterisation of odour quality of binary mixtures of volatile phenols and 2-isobutyl-3-methoxypyrazine in a red wine matrix. J. Wine Res. 2020, 31, 49–66. [Google Scholar] [CrossRef]
- Liang, C.; Ristic, R.; Jiranek, V.; Jeffery, D.W. Chemical and sensory evaluation of magnetic polymers as a remedial treatment for elevated concentrations of 3-isobutyl-2-methoxypyrazine in Cabernet Sauvignon grape must and wine. J. Agric. Food Chem. 2018, 66, 7121–7130. [Google Scholar] [CrossRef]
- Tarasov, A.; Rauhut, D.; Jung, R. “Cork taint” responsible compounds. Determination of haloanisoles and halophenols in cork matrix: A review. Talanta 2017, 175, 82–92. [Google Scholar] [CrossRef]
- Ristic, R.; van der Hulst, L.; Capone, D.L.; Wilkinson, K.L. Impact of bottle aging on smoke-tainted wines from different grape cultivars. J. Agric. Food Chem. 2017, 65, 4146–4152. [Google Scholar] [CrossRef] [PubMed]
- Del Barrio-Galán, R.; Medel-Marabolí, M.; Peña-Neira, Á. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains. Food Chem. 2015, 179, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Manjón, E.; Recio-Torrado, A.; Ramos-Pineda, A.M.; García-Estévez, I.; Escribano-Bailón, M.T. Effect of different yeast mannoproteins on the interaction between wine flavanols and salivary proteins. Food Res. Int. 2021, 143, 110279. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Waffo-Téguo, P.; Jourdes, M.; Li, H.; Teissedre, P.L. First evidence of epicatechin vanillate in grape seed and red wine. Food Chem. 2018, 259, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Merrell, C.; Hansen, M. Improving red wine color and mouthfeel over time. Wines Vines Anal. WinesVines 2018. Available online: https://www.washingtonwine.org/ (accessed on 2 August 2023).
- Millet, M.; Poupard, P.; Guilois-Dubois, S.; Zanchi, D.; Guyot, S. Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine. Food Chem. 2019, 276, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Ugliano, M.; Moio, L. Impact of 5-year bottle aging under controlled oxygen exposure on sulfur dioxide and phenolic composition of tannin-rich red wines. Oeno One 2020, 54, 623–636. [Google Scholar] [CrossRef]
- Ramalho, S.A.; Gualberto, N.C.; Neta, M.T.S.L.; Batista, R.A.; Araújo, S.M.; da Silveira Moreira, J.D.J.; Narain, N. Catechin and epicatechin contents in wines obtained from Brazilian exotic tropical fruits. Food Nutr. Sci. 2014, 5, 449–457. [Google Scholar] [CrossRef]
- Sirén, H.; Siren, K.; Sirén, J. Evaluation of organic and inorganic compounds levels of red wines processed from Pinot Noir grapes. Anal. Chem. Res. 2015, 3, 26–36. [Google Scholar] [CrossRef]
- Coulter, A.D.; Holdstock, M.G.; Cowey, G.D.; Simos, C.A.; Smith, P.A.; Wilkes, E.N. Potassium bitartrate crystallisation in wine and its inhibition. Aust. J. Grape Wine Res. 2015, 21, 627–641. [Google Scholar] [CrossRef]
- Li, J.; Karboune, S. Characterization of the composition and the techno-functional properties of mannoproteins from Saccharomyces cerevisiae yeast cell walls. Food Chem. 2019, 297, 124867. [Google Scholar] [CrossRef]
- Ramos-Pineda, A.M.; Manjón, E.; Macías, R.I.R.; García-Estévez, I.; Escribano-Bailón, M.T. Role of Yeast Mannoproteins in the Interaction between Salivary Proteins and Flavan-3-ols in a Cell-Based Model of the Oral Epithelium. J. Agric. Food Chem. 2022, 70, 13027–13035. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Yan, Z.C.; Zhu, T.; Zhu, J.Y.; Wang, Y.H.; Li, B.; Meng, X.J. Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein. Food Chem. 2019, 279, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine protein haze: Mechanisms of formation and advances in prevention. J. Agric. Food Chem. 2015, 63, 4020–4030. [Google Scholar] [CrossRef]
- Li, S.; Zhai, H.; Ma, W.; Duan, C.; Yi, L. Yeast mannoproteins: Organoleptic modulating functions, mechanisms, and product development trends in winemaking. Food Front. 2023, 1–36. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Li, P.; Lv, Y.; Nan, H.; Wen, L.; Wang, Z. Research progress of wine aroma components: A critical review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Chacón, J.-J.; Karbowiak, T. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork. Food Chem. 2015, 181, 222–226. [Google Scholar] [CrossRef]
- Slabizki, P.; Legrum, C.; Wegmann-Herr, P.; Fischer, C.; Schmarr, H.G. Quantification of cork off-flavor compounds in natural cork stoppers and wine by multidimensional gas chromatography mass spectrometry. Eur. Food Res. Technol. 2016, 242, 977–986. [Google Scholar] [CrossRef]
- Vidal, J.C.; Caillé, S.; Samson, A.; Salmon, J.M. Comparison of the effect of 8 closures in controlled industrial conditions on the shelf life of a red wine. BIO Web Conf. 2017, 9, 02024. [Google Scholar] [CrossRef]
- Dimkou, E.; Ugliano, M.; Dieval, J.B.; Vidal, S.; Aagaard, O.; Rauhut, D.; Jung, R. Impact of Headspace Oxygen and Closure on Sulfur Dioxide, Color, and Hydrogen Sulfide Levels in a Riesling Wine. Am. J. Enol. Vitic. 2011, 62, 261–269. [Google Scholar] [CrossRef]
- Arapitsas, P.; Guella, G.; Mattivi, F. The impact of SO2 on wine flavanols and indoles in relation to wine style and age. Sci. Rep. 2018, 8, 858. [Google Scholar] [CrossRef]
- Stump, B. Impact of Shipping and Transporting Conditions on Swiss Wine. Master Thesis Reports. 2017. Available online: https://www.researchgate.net/profile/Bruno-Stump/project/IMPACT-OF-SHIPPING-AND-TRANSPORTING-CONDITIONS-ON-SWISS-WINE-2/attachment/5afe830b4cde260d15df68eb/AS:627542214057984@1526629131442/download/2017-MLS-STUMP_BRUNO.pdf (accessed on 2 August 2023).
- Walther, A.-K.; Durner, D.; Fischer, U. Impact of temperature during bulk shipping on the chemical composition and sensory profile of a Chardonnay wine. Am. J. Enol. Vitic. 2018, 69, 247–257. [Google Scholar] [CrossRef]
- Tchouakeu Betnga, P.F.; Longo, E.; Poggesi, S.; Boselli, E. Effects of transport conditions on the stability and sensory quality of wines. Oeno One 2021, 55, 197–208. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, H.; Li, H. Characterization of the effect of short-term high temperature and vibration on wine by quantitative descriptive analysis and solid phase microextractiongas chromatography-mass spectrometry. Acta Aliment. 2018, 47, 236–244. [Google Scholar] [CrossRef]
- Grant-Preece, P.; Barril, C.; Schmidtke, L.M.; Clark, A.C. Impact of fluorescent lighting on oxidation of model wine solutions containing organic acids and iron. J. Agric. Food Chem. 2017, 65, 2383–2393. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, A.; Jaskula-Goiris, B.; De Causmaecker, B.; Vanlanduit, S.; Springael, J.; Braet, J.; De Cooman, L. The interaction effect between vibrations and temperature simulating truck transport on the flavor stability of beer. J. Sci. Food Agr. 2019, 99, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Son, J.H.; Park, E.Y.; Kim, E.J.; Lim, S.T. Effect of vibration and storage on some physico-chemical properties of a commercial red wine. J. Food Compos. Anal. 2008, 21, 655–659. [Google Scholar] [CrossRef]
- Renner, H.; Richling, E.; Durner, D. Influence of vibration on volatile compounds, color, SO2, and CO2 of Riesling Sparkling wine and white wine. Am. J. Enol. Vitic. 2022, 73, 266–275. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. Acetic acid bacteria spoilage of bottled red wine—A review. Int. J. Food Microbiol. 2008, 125, 60–70. [Google Scholar] [CrossRef]
- Tarasov, A.; Giuliani, N.; Dobrydnev, A.; Müller, N.; Volovenko, Y.; Rauhut, D.; Jung, R. Absorption of 1, 1, 6-trimethyl-1, 2-dihydronaphthalene (TDN) from wine by bottle closures. Eur. Food Res. Technol. 2019, 245, 2343–2351. [Google Scholar] [CrossRef]
- Benucci, I. Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. LWT 2020, 118, 108732. [Google Scholar] [CrossRef]
- Renner, H.; Richling, E.; Durner, D. Influence of vibration on the consumption of oxygen and sulfur dioxide in wine bottles considering bottle position and headspace volume. Am. J. Enol. Vitic. 2022, 73, 48–55. [Google Scholar] [CrossRef]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Xiaoguo, Y.; Quartacci, M.F.; Sgherri, C.; Zinnai, A. A kinetic approach to describe the time evolution of red wine as a function of packaging conditions adopted: Influence of closure and storage position. Food Packag. Shelf Life 2017, 13, 44–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Wei, Z.; Han, Y.; Duan, Y.; Shi, B.; Ma, W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023, 28, 6522. https://doi.org/10.3390/molecules28186522
Zhang D, Wei Z, Han Y, Duan Y, Shi B, Ma W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules. 2023; 28(18):6522. https://doi.org/10.3390/molecules28186522
Chicago/Turabian StyleZhang, Di, Ziyu Wei, Yufeng Han, Yaru Duan, Baohui Shi, and Wen Ma. 2023. "A Review on Wine Flavour Profiles Altered by Bottle Aging" Molecules 28, no. 18: 6522. https://doi.org/10.3390/molecules28186522
APA StyleZhang, D., Wei, Z., Han, Y., Duan, Y., Shi, B., & Ma, W. (2023). A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules, 28(18), 6522. https://doi.org/10.3390/molecules28186522