In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts
Abstract
:1. Introduction
2. Results
2.1. HPLC and LC-MS/MS Analyses of TR and AtPAP1 L. sibiricus L. Root Extracts
2.2. Total Phenolic and Flavonoids Content of the TR and AtPAP1 L. sibiricus L. Root Extracts
2.3. Hydrogen Peroxide Scavenging Activity
2.4. Nitric Oxide Scavenging Activity
2.5. Computational Studies
2.5.1. Bond Dissociation Enthalpy Values of the -OH Bonds
2.5.2. HOMO LUMO
2.6. Anti-Inflammatory Activity
2.7. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Preparation of L. sibiricus L. Plant Extracts
4.2. Quantification of Total Phenolic Content of L. sibiricus L. Root Extracts
4.3. Quantification of Total Flavonoid Content of L. sibiricus L. Root Extracts
4.4. Estimation of Hydrogen Peroxide Scavenging Activity of L. sibiricus L. Root Extracts
4.5. Estimation of Nitric Oxide Scavenging Activity of L. sibiricus L. Root Extracts
4.6. Computational Details
4.7. COX-2 and 5-LOX Inhibition Assays
4.8. Molecular Docking Studies
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sayed, M.A.; Alam, M.A.; Islam, M.S.; Ali, M.T.; Ullah, M.E.; Shibly, A.Z.; Ali, M.A.; Hasan-Olive, M.M. Leonurus sibiricus L. (honeyweed): A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Biomed. 2016, 6, 1076–1080. [Google Scholar] [CrossRef]
- Shin, H.Y.; Kim, S.H.; Kang, S.M.; Chang, I.J.; Kim, S.Y.; Jeon, H.; Leem, K.H.; Park, W.H.; Lim, J.P.; Shin, T.Y. Anti-inflammatory activity of Motherwort (Leonurus sibiricus L.). Immunopharmacol. Immunotoxicol. 2009, 31, 209–213. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cercato, L.M.; de Santana Souza, M.T.; Melo, A.J.d.O.; Lima, B.d.S.; Duarte, M.C.; Araujo, A.A.d.S.; de Oliveira e Silva, A.M.; Camargo, E.A. The ethanol extract of Leonurus sibiricus L. induces antioxidant, antinociceptive and topical anti-inflammatory effects. J. Ethnopharmacol. 2017, 206, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Sitarek, P.; Kowalczyk, T.; Santangelo, S.; Białas, A.J.; Toma, M.; Wieczfinska, J.; Śliwiński, T.; Skała, E. The Extract of Leonurus sibiricus Transgenic Roots with AtPAP1 Transcriptional Factor Induces Apoptosis via DNA Damage and Down Regulation of Selected Epigenetic Factors in Human Cancer Cells. Neurochem. Res. 2018, 47, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Radical chemistry of flavonoid antioxidants. Adv. Exp. Med. Biol. 1990, 264, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How does the phenol structure influence the results of the folin-ciocalteu assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, A.; Molski, M.; Szeląg, M. Quantum-chemical Calculations of the Antioxidant Properties of trans-p-coumaric Acid and trans-sinapinic Acid. Comput. Methods Sci. Technol. 2012, 18, 117–128. [Google Scholar] [CrossRef]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Simon, L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med. 1999, 106, 37S–42S. [Google Scholar] [CrossRef] [PubMed]
- Suschek, C.; Schnorr, O.; Kolb-Bachofen, V. The Role of iNOS in Chronic Inflammatory Processes In Vivo: Is it Damage-Promoting, Protective, or Active at all? Curr. Mol. Med. 2005, 4, 763–775. [Google Scholar] [CrossRef]
- Rådmark, O.; Samuelsson, B. 5-Lipoxygenase: Mechanisms of regulation. J. Lipid Res. 2009, 50, S40–S45. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Sitarek, P.; Skała, E.; Wysokińska, H.; Wielanek, M.; Szemraj, J.; Toma, M.; Śliwiński, T. The effect of leonurus sibiricus plant extracts on stimulating repair and protective activity against oxidative DNA damage in CHO cells and content of phenolic compounds. Oxidative Med. Cell. Longev. 2016, 2016, 5738193. [Google Scholar] [CrossRef] [PubMed]
- Sitarek, P.; Skała, E.; Toma, M.; Wielanek, M.; Szemraj, J.; Nieborowska-Skorska, M.; Kolasa, M.; Skorski, T.; Wysokińska, H.; Śliwiński, T. A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L. Tumor Biol. 2016, 37, 8753–8764. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Rijo, P.; Białas, A.J.; Wielanek, M.; Wysokińska, H.; Garcia, C.; Toma, M.; Śliwiński, T.; Skała, E. Over-Expression of AtPAP1 Transcriptional Factor Enhances Phenolic Acid Production in Transgenic Roots of Leonurus sibiricus L. and Their Biological Activities. Mol. Biotechnol. 2018, 60, 74–82. [Google Scholar] [CrossRef]
- Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J.L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem. 2006, 97, 679–688. [Google Scholar] [CrossRef]
- Murata, R.; Wang, Z.; Abe, M. Singly Occupied Molecular Orbital-Highest Occupied Molecular Orbital (SOMO-HOMO) Conversion. Aust. J. Chem. 2021, 74, 827–837. [Google Scholar] [CrossRef]
- Kumar, A.; Sevilla, M.D. SOMO-HOMO Level Inversion in Biologically Important Radicals. J. Phys. Chem. B 2018, 122, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Kasemthaveechok, S.; Abella, L.; Crassous, J.; Autschbach, J.; Favereau, L. Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics. Chem. Sci. 2022, 13, 9833–9847. [Google Scholar] [CrossRef]
- Dehkordi, M.M.; Asgarshamsi, M.H.; Fassihi, A.; Zborowski, K.K. A Comparative DFT Study on the Antioxidant Activity of Some Novel 3-Hydroxypyridine-4-One Derivatives. Chem. Biodivers. 2022, 19, e202100703. [Google Scholar] [CrossRef]
- Amani, S.; Mohebodini, M.; Khademvatan, S.; Jafari, M. Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites. J. Sci. Food Agric. 2020, 100, 2185–2197. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Picot, L.; Michalska-Hejduk, D.; Bijak, M.; Białas, A.J.; Wielanek, M.; Śliwiński, T.; Skała, E. Growth of Leonurus sibiricus L. roots with over-expression of AtPAP1 transcriptional factor in closed bioreactor, production of bioactive phenolic compounds and evaluation of their biological activity. Ind. Crops Prod. 2018, 122, 732–739. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Pourreza, N. Phenolic compounds as potential antioxidant. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 149–150. [Google Scholar] [CrossRef]
- Park, M.-J.; Han, J.-S. Antioxidant Activity of Medicinal Plant Extracts Used as Folk Remedies by Diabetic Patients. Prev. Nutr. Food Sci. 2004, 9, 167–173. [Google Scholar] [CrossRef]
- Barman, A.K.; Murshid, G.M.M.; Saifuzzaman, M.; Mahaldar, K.; Bojić, M.; Biswas, N.N. Study of antioxidant potential, and quantification of major polyphenols in Leonurus sibiricus L. Leaves using HPLC. Pharmacologyonline 2017, 1, 55–67. [Google Scholar]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Geiszt, M.; Leto, T.L. The Nox family of NAD(P)H oxidases: Host defense and beyond. J. Biol. Chem. 2004, 279, 51715–51718. [Google Scholar] [CrossRef]
- Li, M.O.; Sanjabi, S.; Flavell, R.A.A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 2006, 24, 99–146. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. Superoxide dismutase in redox biology: The roles of superoxide and hydrogen peroxide. Anticancer. Agents Med. Chem. 2011, 11, 341–346. [Google Scholar] [CrossRef]
- Saed-Moucheshi, A.; Pakniyat, H.; Pirasteh-Anosheh, H.; Azooz, M.M. Role of ROS as Signaling Molecules in Plants. In Oxidative Damage to Plants: Antioxidant Networks and Signaling; Academic Press: Cambridge, MA, USA, 2014; pp. 585–620. ISBN 9780127999630. [Google Scholar]
- Tuteja, N.; Chandra, M.; Tuteja, R.; Misra, M.K. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004, 2004, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Ruslin; Yamin; Rahma, N.A.; Irnawati; Rohman, A. UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract. Separations 2022, 9, 75. [Google Scholar] [CrossRef]
- Ghiasi, M.; Azadnia, A.; Arabieh, M.; Zahedi, M. Protective effect of rutin (vitamin p) against heme oxidation: A quantum mechanical approach. Comput. Theor. Chem. 2012, 996, 28–36. [Google Scholar] [CrossRef]
- Guitard, R.; Nardello-Rataj, V.; Aubry, J.M. Theoretical and kinetic tools for selecting effective antioxidants: Application to the protection of omega-3 oils with natural and synthetic phenols. Int. J. Mol. Sci. 2016, 17, 1220. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.; Jeong, S.C.; Lee, S.; Khoo, C.; Koyyalamudi, S.R. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Chin. Med. 2012, 7, 26. [Google Scholar] [CrossRef]
- Rodríguez-Yoldi, M.J. Anti-inflammatory and antioxidant properties of plant extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef]
- Lucas, B.N.; Dalla Nora, F.M.; Boeira, C.P.; Verruck, S.; Da Rosa, C.S. Determination of total phenolic compounds in plant extracts via Folin-Ciocalteu’s method adapted to the usage of digital images. Food Sci. Technol. 2022, 42, e35122. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Goran, A.; Igic, R. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem. 2008, 111, 925–929. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Zhang, L.; An, L.; Chen, R.; Liu, Y.; Luo, Q.; Li, Y.; Wang, H.; Xue, Y. Computational study on the antioxidant property of coumarin-fused coumarins. Food Chem. 2020, 304, 125446. [Google Scholar] [CrossRef]
- Martínez, A.; Galano, A.; Vargas, R. Free radical scavenger properties of α-mangostin: Thermodynamics and kinetics of HAT and RAF mechanisms. J. Phys. Chem. B 2011, 115, 12591–12598. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanism of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, Q.D.; Sun, M.M.; Yin, G.; Liang, J. Benchmark calculations for bond dissociation energies and enthalpy of formation of chlorinated and brominated polycyclic aromatic hydrocarbons. RSC Adv. 2021, 11, 29690–29701. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.L.; Zhang, X.; Xu, X.; Truhlar, D.G. Predicting bond dissociation energy and bond length for bimetallic diatomic molecules: A challenge for electronic structure theory. Phys. Chem. Chem. Phys. 2017, 19, 5839–5854. [Google Scholar] [CrossRef]
- Trung, N.Q.; Mechler, A.; Hoa, N.T.; Vo, Q.V. Calculating bond dissociation energies of X-H (X = C, N, O, S) bonds of aromatic systems via density functional theory: A detailed comparison of methods. R. Soc. Open Sci. 2022, 9, 220177. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nakajima, M.; Nemoto, T. Determination of the best functional and basis sets for optimization of the structure of hypervalent iodines and calculation of their first and second bond dissociation enthalpies. J. Phys. Org. Chem. 2019, 32, e3961. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Xiong, Y.; Nie, F.; Zhang, C. Benchmark calculations and error cancelations for bond dissociation enthalpies of X–NO2. Def. Technol. 2023, 22, 144–155. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 1997, 107, 8554–8560. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Khoirunisa, V.; Rusydi, F.; Boli, L.S.P.; Puspitasari, I.; Rachmawati, H.; Dipojono, H.K. The significance of long-range correction to the hydroperoxyl radical-scavenging reaction of trans-resveratrol and gnetin C. R. Soc. Open Sci. 2021, 8, 201127. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09 Revision D.01; CT2009; Gaussian Inc.: Wallingford, UK, 2009. [Google Scholar]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables, 4th ed.; American Chemical Society: Washington, DC, USA, 1998; Volume Monograph. [Google Scholar]
- Jejurikar, B.L.; Rohane, S.H. Drug Designing in Discovery Studio. Asian J. Res. Chem. 2021, 14, 135–138. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [PubMed]
Compounds | TR Extract (µg/g DW) | AtPAP1 Extract (µg/g DW) |
---|---|---|
chlorogenic acid | 4104 ± 8.7 | 19,392 ± 110.1 |
caffeic acid | 4176 ± 9.0 | 11,380 ± 136.6 |
p-coumaric acid | 30 ± 0.1 | 52 ± 1.1 |
ferulic acid | 660 ± 27.1 | 1172 ± 36.3 |
4-hydroxybenzoic acid | 48 ± 1.2 | 53 ± 1.5 |
D-(+)-catechin | 120 ± 2.3 | 185 ± 1.8 |
rutin | 870 ± 13.2 | 890 ± 11.4 |
verbascoside | 1473 ± 17.7 | - |
Extract | TPC (mg GAE/g) | TFC (mg QUE/g) |
---|---|---|
TR root extract | 57.4 ± 0.15 | 18.2 ± 0.44 |
AtPAP1 root extract | 85.3 ± 0.35 | 25.6 ± 0.42 |
Radicals | BDE (kcal/mol) |
---|---|
catechin (3′-OH) | 30.53 |
catechin (4′-OH) | 22.93 |
catechin (5-OH) | 29.12 |
catechin (7-OH) | 30.65 |
chlorogenic acid (3′-OH) | 22.98 |
chlorogenic acid (4′-OH) | 29.28 |
ferulic acid (4-OH) | 22.85 |
4-hydrobenzoic acid | 33.43 |
caffeic acid (3-OH) | 28.26 |
caffeic acid (4-OH) | 25.66 |
p-coumaric acid (4-OH) | 29.50 |
rutin (3′-OH) | 27.42 |
rutin (4′-OH) | 22.62 |
rutin (5-OH) | 33.68 |
rutin (7-OH) | 34.35 |
verbascoside (3″-OH) | 25.93 |
verbascoside (4″-OH) | 25.03 |
verbascoside (3‴-OH) | 28.35 |
verbascoside (4‴-OH) | 25.00 |
Radicals | HOMO (Hartree) | LUMO (Hartree) | HOMO-LUMO Gap (eV) |
---|---|---|---|
catechin (3′-OH) | −0.23 | −0.03 | 5.34 |
catechin (4′-OH) | −0.22 | −0.03 | 5.21 |
catechin (5-OH) | −0.23 | −0.02 | 5.79 |
catechin (7-OH) | −0.23 | −0.02 | 5.65 |
chlorogenic acid (3′-OH) | −0.27 | −0.09 | 4.77 |
chlorogenic acid (4′-OH) | −0.27 | −0.08 | 5.03 |
ferulic acid (4-OH) | −0.27 | −0.08 | 5.12 |
4-hydrobenzoic acid | −0.28 | −0.06 | 6.03 |
caffeic acid (3-OH) | −0.27 | −0.09 | 4.85 |
caffeic acid (4-OH) | −0.27 | −0.08 | 5.16 |
p-coumaric acid (4-OH) | −0.27 | −0.09 | 5.09 |
rutin (3′-OH) | −0.24 | −0.07 | 4.38 |
rutin (4′-OH) | −0.24 | −0.08 | 4.58 |
rutin (5-OH) | −0.24 | −0.07 | 4.59 |
rutin (7-OH) | −0.24 | −0.08 | 4.47 |
verbascoside (3″-OH) | −0.23 | −0.08 | 4.01 |
verbascoside (4″-OH) | −0.23 | −0.09 | 4.01 |
verbascoside (3‴-OH) | −0.24 | −0.10 | 3.78 |
verbascoside (4‴-OH) | −0.23 | −0.09 | 3.79 |
Sample | COX-2 Inhibition (%) | 5-LOX Inhibition (%) |
---|---|---|
TR root extract | 61.7 ± 7.2 | 54.3 ± 3.1 |
AtPAP1 root extract | 65.4 ± 5.3 | 52.6 ± 4.2 |
Indomethacin | 81.3 ± 3.9 | - |
Nordihydroguaiaretic acid | - | 98.0 ± 3.6 |
Compound Name | Binding Free Energy (kcal/mol) | Hydrogen Bonding | Other Nonbonding Interaction |
---|---|---|---|
NOX p40phox | |||
4-hydroxybenzoic acid | −4.65 | VAL196, VAL21232 | ARG174 |
caffeic acid | −5.39 | ASP206, VAL224 | LEU221, SER222 |
catechin | −7.11 | MET173, LEU199 | ARG202, LEU208, ILE226, LYS228 |
chlorogenic acid | −7.87 | VAL224, ILE226 | MET173, LEU199, ARG202, LEU208, LYS225, LYS228 |
ferulic acid | −5.55 | LEU199 | MET173, ARG202, LEU208, ILE226, LYS228 |
p-coumaric acid | −5.10 | LEU199, ARG202 | LEU208 |
rutin | −6.59 | MET173, LEU200, ARG202 | LEU199, LEU208, ILE226 |
verbascoside | −5.77 | ILE226 | LEU221, VAL224, LYS225, LYS228 |
phenol | −4.04 | - | - |
NOX p47phox | |||
4-hydroxybenzoic acid | −4.84 | ARG368, PRO369, ALA371, LYS385 | LEU386 |
caffeic acid | −5.75 | ARG368, ASP372, VAL390, ALA389 | ALA371 |
catechin | −7.09 | ARG368, PRO369, LYS385, SER388 | ALA371, ILE374, LEU386 |
chlorogenic acid | −7.48 | PRO367, SER370, ASP372, SER388, ALA389, VAL390 | ARG368, ALA371 |
ferulic acid | −5.41 | ALA371, SER388, VAL390 | ARG368 |
p-coumaric acid | −4.95 | PRO367, SER388, VAL390 | SER370 |
rutin | −6.31 | - | ARG368, PRO369, ALA371, ILE374, LEU386, CYS378 |
verbascoside | −6.85 | LEU373, LYS385 | PRO366, PRO369, ARG377, ALA371, LEU386 |
phenol | −3.69 | - | - |
NOX p67phox | |||
4-hydroxybenzoic acid | −6.16 | PRO473, ASP475, SER499, GLY504 | LEU476, GLU477, GLU498, LYS502 |
caffeic acid | −7.04 | SER499, GLN472, PRO473, ASP475 | LEU476, LYS502 |
catechin | −9.13 | ALA 470, GLN472, PRO473, GLU477, SER499 | LEU476, LYS502 |
chlorogenic acid | −10.29 | PRO473, GLU477, GLN479, LYS502 | LEU476, PHE478, GLY504 |
ferulic acid | −6.95 | GLN472, PRO473, SER499 | LEU476, GLU477, LYS502 |
p-coumaric acid | −6.32 | GLN472, PRO473, SER499 | LEU476, LYS502 |
rutin | −10.74 | THR471, GLN472, PRO473, ASP475, GLU477, ASP482, SER499 | LEU476, LYS500, LYS502 |
verbascoside | −10.97 | GLN472, PRO473, GLU477 | LEU476, SER499, LYS502, VAL503 |
phenol | −4.70 | - | - |
COX-2 | |||
4-hydroxybenzoic acid | −7.29 | VAL228, ASN375, SER530, GLY533 | PHE209, GLY227, LEU534 |
caffeic acid | −9.08 | TYR385 | PHE209, GLY227, ASN375, LEU534 |
catechin | −12.23 | HIS39, ASN43, GLY45, CYS47, GLN461, GLU465, LYS468 | ARG44, LEU152 |
chlorogenic acid | −11.79 | CYS41, GLY45, LYS468 | ARG44, PRO153 |
ferulic acid | −9.07 | ASN375, TYR385 | GLY227, ILE377, PHE381, PHE529, LEU534 |
p-coumaric acid | −8.30 | ASN375, ARG376 | PHE209, ALA378, LEU534, GLY533 |
rutin | −13.83 | PRO84, GLU524 | PRO86, LEU123, LYS468, PHE470, MET471, LEU472, LYS473 |
verbascoside | −10.14 | THR60 | ARG44, ARG61, GLY63, MET471, LEU472 |
phenol | −5.35 | - | - |
5-LOX | |||
4-hydroxybenzoic acid | −7.73 | ASP166, ILE167, ILE404 | PHE402 |
caffeic acid | −9.37 | TRP102, ILE167, GLN168, VAL400, ILE404 | PHE402 |
catechin | −12.63 | TRP102, ILE167, ASP170, TYR383, ILE404 | GLN15, TYR81, ARG401, PHE402, GLU622 |
chlorogenic acid | −13.36 | ASP166, ASP170, VAL400, ARG401 | ILE167, PHE402, ILE404 |
ferulic acid | −9.25 | GLN15, ASP170, TTYR383 | ILE167, VAL400, ARG401, PHE402, ILE404 |
p-coumaric acid | −8.33 | TRP102, GLN168, VAL400 | ILE167, PHE402 |
rutin | −12.30 | SER14, ASP170, ASN613, GLU622 | GLY13, GLN15 |
verbascoside | −11.81 | GLN15, TYR81, TYR100, GLU614, MET619, GLU622 | SER14, LYS83, TRP102, ASN613, LEU615, PRO621 |
phenol | −5.46 | - | - |
iNOS | |||
4-hydroxybenzoic acid | −6.90 | LEU125 | ALA197, PRO198, ARG199, MET355, TYR491 |
caffeic acid | −7.87 | ASN370 | TRP194, LEU209, PHE369 |
catechin | −11.34 | TYR489 | TRP194, ALA197, CYS200, PHE488, MET355, PHE369 |
chlorogenic acid | −13.52 | PRO350, VAL352, TRP372 | TRP194, CYS200, LEU209, PHE369, TYR489 |
ferulic acid | −8.56 | TYR489, PRO350 | THR190, TRP194, ALA197, LEU209, SER242, ILE244, ALA351, VAL352, ASN370, GLY371, TYR489, |
p-coumaric acid | −7.50 | TYR489, PRO350, VAL352 | TRP194, LEU209 |
rutin | −17.91 | SER242, ASP370 | ALA197, CYS200, MET355, GLY371, TYR489 |
verbascoside | −15.06 | TRP463, ASN370, TRP372, GLU377 | TRP194, PHE369, MET374 |
phenol | −5.24 | - | - |
XO | |||
4-hydroxybenzoic acid | −7.40 | ILE264, SER347 | THR262, ALA346, GLY350, ASN351 |
caffeic acid | −8.53 | LEU257, SER347 | VAL258, VAL259, ILE264 |
catechin | −10.91 | LEU257, SER347, GLU263, ILE264, ASN351 | ALA346, GLY350, VAL258, THR262 |
chlorogenic acid | −12.05 | LEU257, VAL259, SER347, ASN351, THR354 | ALA346, GLY350 |
ferulic acid | −8.90 | LEY257, SER347 | VAL258, VAL259 |
p-coumaric acid | −7.52 | LEU257, SER347 | VAL258, VAL259 |
rutin | −12.32 | GLU45, SER347, ILE358, ARG394, ASP430 | PHE337, ALA346 |
verbascoside | −12.15 | GLU45, THR262, ALA338, ASN351 | GLY47, ILE266, VAL342, ALA346, SER347, GLY350, SER359 |
phenol | −4.83 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Palusiak, M.; Hoelm, M.; Zajdel, K.; Zajdel, R. In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts. Molecules 2023, 28, 6550. https://doi.org/10.3390/molecules28186550
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Palusiak M, Hoelm M, Zajdel K, Zajdel R. In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts. Molecules. 2023; 28(18):6550. https://doi.org/10.3390/molecules28186550
Chicago/Turabian StyleMerecz-Sadowska, Anna, Przemysław Sitarek, Tomasz Kowalczyk, Marcin Palusiak, Marta Hoelm, Karolina Zajdel, and Radosław Zajdel. 2023. "In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts" Molecules 28, no. 18: 6550. https://doi.org/10.3390/molecules28186550
APA StyleMerecz-Sadowska, A., Sitarek, P., Kowalczyk, T., Palusiak, M., Hoelm, M., Zajdel, K., & Zajdel, R. (2023). In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts. Molecules, 28(18), 6550. https://doi.org/10.3390/molecules28186550