Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance among P. aeruginosa Strains
2.2. P. aeruginosa NT06 Genes Involved in AMR and VF
2.3. The Effects of NaCl Alternatives on the P. aeruginosa NT06 Virulence Phenotype
2.4. The Effect of NaCl Alternatives on Genes Involved in AMR and VF
3. Discussion
4. Materials and Methods
4.1. Microorganisms and Culture Conditions
4.2. Determination of Antibiotic Resistance
4.3. Determination of the P. aeruginosa NT06 Genes Involved in AMR and VF
4.4. Determination of Changes in the P. aeruginosa NT06 Virulence Phenotype
4.4.1. Assessment of Pyocyanin Content
4.4.2. Determination of Elastase Activity
4.4.3. Determination of Protease Activity
4.5. Determination of Changes in the Levels of AMR and VF Gene Expression
4.5.1. RNA Extraction and cDNA Synthesis
4.5.2. RT–qPCR Analyses
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Medicine (U.S.); Henney, J.E.; Taylor, C.L.; Boon, C.S. (Eds.) Strategies to Reduce Sodium Intake in the United States; National Academies Press: Washington, DC, USA, 2010; ISBN 978-0-309-14805-4. [Google Scholar]
- Boziaris, I.S.; Stamatiou, A.P.; Nychas, G.-J.E. Microbiological Aspects and Shelf Life of Processed Seafood Products. J. Sci. Food Agric. 2013, 93, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, D.; Nguyen, T.T.; Sogari, G.; Taskov, D.; Lucas, S.; Castro-Rial, J.L.S.; Mora, C. Consumers’ Preferences and Willingness to Pay for Fish Products with Health and Environmental Labels: Evidence from Five European Countries. Nutrients 2020, 12, 2650. [Google Scholar] [CrossRef] [PubMed]
- da Silva Amorim Gomes, M.; Kato, L.S.; de Carvalho, A.P.A.; de Almeida, A.E.C.C.; Conte-Junior, C.A. Sodium Replacement on Fish Meat Products—A Systematic Review of Microbiological, Physicochemical and Sensory Effects. Trends Food Sci. Technol. 2021, 118, 639–657. [Google Scholar] [CrossRef]
- Rybicka, I.; Gonçalves, A.; Oliveira, H.; Marques, A.; Nunes, M.L. Salt Reduction in Seafood—A Review. Food Control 2022, 135, 108809. [Google Scholar] [CrossRef]
- Ibrahim Sallam, K. Antimicrobial and Antioxidant Effects of Sodium Acetate, Sodium Lactate, and Sodium Citrate in Refrigerated Sliced Salmon. Food Control 2007, 18, 566–575. [Google Scholar] [CrossRef]
- Ruan, J.; Xu, J.; Wu, Z.; Tang, Y.; Xiang, D.; Li, X.; Yu, Y.; Xie, X.; Tang, J.; Zhang, D.; et al. Effect of Partial Replacement of NaCl by KCl and Calcium Ascorbate on the Dynamics of Bacterial Community during Storage of Bacon Based on 16S rRNA Gene Amplicon Sequencing. LWT 2023, 184, 115013. [Google Scholar] [CrossRef]
- Muñoz, I.; Guàrdia, M.D.; Arnau, J.; Dalgaard, P.; Bover, S.; Fernandes, J.O.; Monteiro, C.; Cunha, S.C.; Gonçalves, A.; Nunes, M.L.; et al. Effect of the Sodium Reduction and Smoking System on Quality and Safety of Smoked Salmon (Salmo salar). Food Chem. Toxicol. 2020, 143, 111554. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of Salt on Lipid Oxidation in Meat and Seafood Products: A Review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Yuan, Y.; Yue, T. Diversity and Characterization of Spoilage-Associated Psychrotrophs in Food in Cold Chain. Int. J. Food Microbiol. 2019, 290, 86–95. [Google Scholar] [CrossRef]
- Zhuang, S.; Hong, H.; Zhang, L.; Luo, Y. Spoilage-related Microbiota in Fish and Crustaceans during Storage: Research Progress and Future Trends. Compr. Rev. Food Sci. Food Saf. 2021, 20, 252–288. [Google Scholar] [CrossRef]
- Shahrokhi, G.R.; Rahimi, E.; Shakerian, A. The Prevalence Rate, Pattern of Antibiotic Resistance, and Frequency of Virulence Factors of Pseudomonas aeruginosa Strains Isolated from Fish in Iran. J. Food Qual. 2022, 2022, e8990912. [Google Scholar] [CrossRef]
- Rampioni, G.; Pillai, C.R.; Longo, F.; Bondì, R.; Baldelli, V.; Messina, M.; Imperi, F.; Visca, P.; Leoni, L. Effect of Efflux Pump Inhibition on Pseudomonas aeruginosa Transcriptome and Virulence. Sci. Rep. 2017, 7, 11392. [Google Scholar] [CrossRef] [PubMed]
- Eladawy, M.; El-Mowafy, M.; El-Sokkary, M.M.A.; Barwa, R. Antimicrobial Resistance and Virulence Characteristics in ERIC-PCR Typed Biofilm Forming Isolates of P. Aeruginosa. Microb. Pathog. 2021, 158, 105042. [Google Scholar] [CrossRef]
- Tielen, P.; Narten, M.; Rosin, N.; Biegler, I.; Haddad, I.; Hogardt, M.; Neubauer, R.; Schobert, M.; Wiehlmann, L.; Jahn, D. Genotypic and Phenotypic Characterization of Pseudomonas aeruginosa Isolates from Urinary Tract Infections. Int. J. Med. Microbiol. 2011, 301, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.; Yoon, S.S. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, A.; Schniederjans, M.; Pohl, S.; Rainer, R.; Bodenhofer, U.; Xia, B.; Klawonn, F.; Bruchmann, S.; Preusse, M.; Eckweiler, D.; et al. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 4722–4733. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.M.; Mabrok, M.; Sivaramasamy, E.; Youssef, F.M.; Atwa, M.H.; El-kholy, A.W.; Hetta, H.F.; Hozzein, W.N. Emerging MDR-Pseudomonas aeruginosa in Fish Commonly Harbor oprL and toxA Virulence Genes and blaTEM, blaCTX-M, and tetA Antibiotic-Resistance Genes. Sci. Rep. 2020, 10, 15961. [Google Scholar] [CrossRef]
- Benie, C.K.D.; Dadié, A.; Guessennd, N.; N’gbesso-Kouadio, N.A.; Kouame, N.D.; N’golo, D.C.; Aka, S.; Dako, E.; Dje, K.M.; Dosso, M. Characterization of Virulence Potential of Pseudomonas aeruginosa Isolated from Bovine Meat, Fresh Fish, and Smoked Fish. Eur. J. Microbiol. Immunol. 2017, 7, 55–64. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Zühlke, D.; Caputo, L.; Logrieco, A.F.; Albrecht, D.; Riedel, K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. Fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front. Microbiol. 2020, 11, 991. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef]
- Gonçalves, T.; Vasconcelos, U. Colour Me Blue: The History and the Biotechnological Potential of Pyocyanin. Molecules 2021, 26, 927. [Google Scholar] [CrossRef]
- Casilag, F.; Lorenz, A.; Krueger, J.; Klawonn, F.; Weiss, S.; Häussler, S. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition. Infect. Immun. 2015, 84, 162–171. [Google Scholar] [CrossRef]
- Poursina, S.; Ahmadi, M.; Fazeli, F.; Ariaii, P. Assessment of Virulence Factors and Antimicrobial Resistance among the Pseudomonas aeruginosa Strains Isolated from Animal Meat and Carcass Samples. Vet. Med. Sci. 2023, 9, 315–325. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, L. The Microbial Safety of Fish and Fish Products: Recent Advances in Understanding Its Significance, Contamination Sources, and Control Strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef]
- Tate, H.; Ayers, S.; Nyirabahizi, E.; Li, C.; Borenstein, S.; Young, S.; Rice-Trujillo, C.; Saint Fleurant, S.; Bodeis-Jones, S.; Li, X.; et al. Prevalence of Antimicrobial Resistance in Select Bacteria From Retail Seafood—United States, 2019. Front. Microbiol. 2022, 13, 928509. [Google Scholar] [CrossRef]
- Delannoy, S.; Hoffer, C.; Youf, R.; Dauvergne, E.; Webb, H.E.; Brauge, T.; Tran, M.-L.; Midelet, G.; Granier, S.A.; Haenni, M.; et al. High Throughput Screening of Antimicrobial Resistance Genes in Gram-Negative Seafood Bacteria. Microorganisms 2022, 10, 1225. [Google Scholar] [CrossRef]
- Kontominas, M.G.; Badeka, A.V.; Kosma, I.S.; Nathanailides, C.I. Innovative Seafood Preservation Technologies: Recent Developments. Animals 2021, 11, 92. [Google Scholar] [CrossRef]
- Thomassen, G.M.B.; Reiche, T.; Tennfjord, C.E.; Mehli, L. Antibiotic Resistance Properties among Pseudomonas Spp. Associated with Salmon Processing Environments. Microorganisms 2022, 10, 1420. [Google Scholar] [CrossRef]
- Boss, R.; Overesch, G.; Baumgartner, A. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. J. Food Prot. 2016, 79, 1240–1246. [Google Scholar] [CrossRef]
- Jeukens, J.; Freschi, L.; Kukavica-Ibrulj, I.; Emond-Rheault, J.-G.; Tucker, N.P.; Levesque, R.C. Genomics of Antibiotic-Resistance Prediction in Pseudomonas aeruginosa. Ann. N. Y. Acad. Sci. 2019, 1435, 5–17. [Google Scholar] [CrossRef]
- Hölzel, C.S.; Tetens, J.L.; Schwaiger, K. Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathog. Dis. 2018, 15, 671–688. [Google Scholar] [CrossRef]
- Ben Mhenni, N.; Alberghini, G.; Giaccone, V.; Truant, A.; Catellani, P. Prevalence and Antibiotic Resistance Phenotypes of Pseudomonas Spp. in Fresh Fish Fillets. Foods 2023, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Hou, A.; Yang, D.; Miao, J.; Shi, D.; Yin, J.; Yang, Z.; Shen, Z.; Wang, H.; Qiu, Z.; Liu, W.; et al. Chlorine Injury Enhances Antibiotic Resistance in Pseudomonas aeruginosa through over Expression of Drug Efflux Pumps. Water Res. 2019, 156, 366–371. [Google Scholar] [CrossRef]
- Vaillancourt, M.; Limsuwannarot, S.P.; Bresee, C.; Poopalarajah, R.; Jorth, P. Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics 2021, 10, 1164. [Google Scholar] [CrossRef]
- Liao, X.; Ma, Y.; Daliri, E.B.-M.; Koseki, S.; Wei, S.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Interplay of Antibiotic Resistance and Food-Associated Stress Tolerance in Foodborne Pathogens. Trends Food Sci. Technol. 2020, 95, 97–106. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Beshiru, A.; Igbinosa, E.O. Antibiotic Resistance Profile of Pseudomonas aeruginosa Isolated from Aquaculture and Abattoir Environments in Urban Communities. Asian Pac. J. Trop. Dis. 2017, 7, 47–52. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Liu, H.; Zhao, S.; Wang, J.; Zheng, N. Characterization of Pseudomonas Spp. and Associated Proteolytic Properties in Raw Milk Stored at Low Temperatures. Front. Microbiol. 2017, 8, 2158. [Google Scholar] [CrossRef]
- Moreno, R.; Rojo, F. Features of Pseudomonads Growing at Low Temperatures: Another Facet of Their Versatility. Environ. Microbiol. Rep. 2014, 6, 417–426. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Bhuiya, M.; Sarkar, M.K.I.; Sohag, M.H.; Ali, H.; Roy, C.K.; Akther, L.; Sarker, A.F. Enumerating Antibiotic Susceptibility Patterns of Pseudomonas aeruginosa Isolated from Different Sources in Dhaka City. Open Microbiol. J. 2018, 12, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Rezaloo, M.; Motalebi, A.; Mashak, Z.; Anvar, A. Prevalence, Antimicrobial Resistance, and Molecular Description of Pseudomonas aeruginosa Isolated from Meat and Meat Products. J. Food Qual. 2022, 2022, e9899338. [Google Scholar] [CrossRef]
- Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas aeruginosa to Antimicrobials. Front. Microbiol. 2014, 4, 422. [Google Scholar] [CrossRef]
- Tomaś, N.; Myszka, K.; Wolko, Ł.; Nuc, K.; Szwengiel, A.; Grygier, A.; Majcher, M. Effect of Black Pepper Essential Oil on Quorum Sensing and Efflux Pump Systems in the Fish-Borne Spoiler Pseudomonas psychrophila KM02 Identified by RNA-Seq, RT-qPCR and Molecular Docking Analyses. Food Control 2021, 130, 108284. [Google Scholar] [CrossRef]
- Raghavan, V.; Kraft, L.; Mesny, F.; Rigerte, L. A Simple Guide to de Novo Transcriptome Assembly and Annotation. Brief. Bioinform. 2022, 23, bbab563. [Google Scholar] [CrossRef]
- Sultan, M.; Arya, R.; Kim, K.K. Roles of Two-Component Systems in Pseudomonas aeruginosa Virulence. Int. J. Mol. Sci. 2021, 22, 12152. [Google Scholar] [CrossRef]
- Mulcahy, H.; O’Callaghan, J.; O’Grady, E.P.; Maciá, M.D.; Borrell, N.; Gómez, C.; Casey, P.G.; Hill, C.; Adams, C.; Gahan, C.G.M.; et al. Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation. Infect. Immun. 2008, 76, 632–638. [Google Scholar] [CrossRef]
- Dietrich, L.E.P.; Price-Whelan, A.; Petersen, A.; Whiteley, M.; Newman, D.K. The Phenazine Pyocyanin Is a Terminal Signalling Factor in the Quorum Sensing Network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61, 1308–1321. [Google Scholar] [CrossRef]
- Gatzeva-Topalova, P.Z.; May, A.P.; Sousa, M.C. Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance. Structure 2005, 13, 929–942. [Google Scholar] [CrossRef]
- Meliani, A.; Bensoltane, A. Review of Pseudomonas Attachment and Biofilm Formation in Food Industry. Poult. Fish Wildl. Sci. 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Capozzi, V.; Fiocco, D.; Amodio, M.L.; Gallone, A.; Spano, G. Bacterial Stressors in Minimally Processed Food. Int. J. Mol. Sci. 2009, 10, 3076–3105. [Google Scholar] [CrossRef] [PubMed]
- Khayat, M.T.; Ibrahim, T.S.; Khayyat, A.N.; Alharbi, M.; Shaldam, M.A.; Mohammad, K.A.; Khafagy, E.-S.; El-damasy, D.A.; Hegazy, W.A.H.; Abbas, H.A. Sodium Citrate Alleviates Virulence in Pseudomonas aeruginosa. Microorganisms 2022, 10, 1046. [Google Scholar] [CrossRef]
- Khayat, M.T.; Elbaramawi, S.S.; Nazeih, S.I.; Safo, M.K.; Khafagy, E.-S.; Ali, M.A.M.; Abbas, H.A.; Hegazy, W.A.H.; Seleem, N.M. Diminishing the Pathogenesis of the Food-Borne Pathogen Serratia Marcescens by Low Doses of Sodium Citrate. Biology 2023, 12, 504. [Google Scholar] [CrossRef]
- Lin, L.; Hu, J.Y.; Wu, Y.; Chen, M.; Ou, J.; Yan, W.L. Assessment of the Inhibitory Effects of Sodium Nitrite, Nisin, Potassium Sorbate, and Sodium Lactate on Staphylococcus aureus Growth and Staphylococcal Enterotoxin A Production in Cooked Pork Sausage Using a Predictive Growth Model. Food Sci. Hum. Wellness 2018, 7, 83–90. [Google Scholar] [CrossRef]
- Liu, X.; Basu, U.; Miller, P.; McMullen, L.M. Differential Gene Expression and Filamentation of Listeria Monocytogenes 08-5923 Exposed to Sodium Lactate and Sodium Diacetate. Food Microbiol. 2017, 63, 153–158. [Google Scholar] [CrossRef]
- Suo, Y.; Gao, S.; Baranzoni, G.M.; Xie, Y.; Liu, Y. Comparative Transcriptome RNA-Seq Analysis of Listeria Monocytogenes with Sodium Lactate Adaptation. Food Control 2018, 91, 193–201. [Google Scholar] [CrossRef]
- Sobieszczańska, N.; Myszka, K.; Szwengiel, A.; Majcher, M.; Grygier, A.; Wolko, Ł. Tarragon Essential Oil as a Source of Bioactive Compounds with Anti-Quorum Sensing and Anti-Proteolytic Activity against Pseudomonas Spp. Isolated from Fish—In Vitro, in Silico and in Situ Approaches. Int. J. Food Microbiol. 2020, 331, 108732. [Google Scholar] [CrossRef]
- Dalgaard, P. Qualitative and Quantitative Characterization of Spoilage Bacteria from Packed Fish. Int. J. Food Microbiol. 1995, 26, 319–333. [Google Scholar] [CrossRef]
- M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically—Approved Standard—Ninth Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, Number 2. ISBN 1-56238-784-7.
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2019, 48, D1, D517–D525. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef]
- Huerta, V.; Mihalik, K.; Crixell, S.; Vattem, D. Herbs, Spices and Medicinal Plants Used In Hispanic Traditional Medicine Can Decrease Quorum Sensing Dependent Virulence in Pseudomonas aeruginosa. Int. J. Appl. Res. Nat. Prod. 2008, 1, 9–15. [Google Scholar]
- Galdino, A.C.M.; Viganor, L.; Ziccardi, M.; Nunes, A.P.F.; Dos Santos, K.R.N.; Branquinha, M.H.; Santos, A.L.S. Heterogeneous Production of Proteases from Brazilian Clinical Isolates of Pseudomonas aeruginosa. Enfermedades Infecc. Microbiol. Clínica 2017, 35, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S.; Heylen, K.; Messens, W.; Coudijzer, K.; De Vos, P.; Dewettinck, K.; Herman, L.; De Block, J.; Heyndrickx, M. Seasonal Influence on Heat-Resistant Proteolytic Capacity of Pseudomonas lundensis and Pseudomonas fragi, Predominant Milk Spoilers Isolated from Belgian Raw Milk Samples. Environ. Microbiol. 2009, 11, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 26 July 2023).
Feature | Pseudomonas aeruginosa Strain | ||||||
---|---|---|---|---|---|---|---|
NT01 | NT02 | NT03 | NT04 | NT05 | NT06 | ||
Growth at 4 °C | 48 h | 72 h | 72 h | 72 h | 72 h | 24 h | |
Antibiotic resistance (zones of inhibition in mm) | TE (30 μg; F = 1.822, p = 0.223) | 12 a | 12 a | 12 a | 10 a | 12 a | 12 a |
GEN (10 μg, F = 19.16, p = 0.000024) | 21 b | 26 a | 22 b | 18 c | 20 bc | 20 bc | |
MEM (10 μg; F = 9.908, p = 0.000613) | 20 bc | 23 a | 20 bc | 20 bc | 19 bc | 22 ab | |
AMP (10 μg) | 0 | 0 | 0 | 0 | 0 | 0 | |
CRO (30 μg) | 0 | 0 | 0 | 0 | 0 | 0 | |
NA (30 μg) | 0 | 0 | 0 | 0 | 0 | 0 | |
CIP (5 μg; F = 80.6, p = 8.25 × 10−9) | 25 bc | 26 b | 20 e | 30 a | 23 de | 24 cd | |
NOR (10 μg; F = 80.55, p = 8.28 × 10−9) | 26 a | 20 b | 22 b | 25 a | 26 a | 15 c |
Antimicrobial Resistance Gene | Predicted Phenotype | Contig | Position in Contig | % Identity | Gene ARO | TPM Value |
---|---|---|---|---|---|---|
OXA-850 | Antibiotic inactivation enzyme | 1_S1_L001_(paired)_contig_1174 | 3524..4312 | 99.61 | 3005138 | - |
OXA-486 | 1_S1_L001_(paired)_contig_1174 | 3524..4312 | 99.61 | 3003643 | - | |
fosA | 1_S1_L001_(paired)_contig_1794 | 1354..1761 | 99.75 | 3000149 | - | |
APH(3’)-IIb | 1_S1_L001_(paired)_contig_84 | 3972..4778 | 98.63 | 3002645 | - | |
soxR | Antibiotic-resistant gene variant/mutant | 1_S1_L001_(paired)_contig_347 | 45..515 | 99.15 | 3004107 | 8.410823439 |
mexP | Efflux pump complex or subunit conferring antibiotic resistance | 1_S1_L001_(paired)_contig_1116 | 439..1595 | 99.91 | 3003698 | - |
opmH | 1_S1_L001_(paired)_contig_1295 | 1..1202 | 100 | 3003682 | - | |
oprN | 1_S1_L001_(paired)_contig_1828 | 213..1124 | 99.78 | 3000805 | 9.234260698 | |
opmE | 1_S1_L001_(paired)_contig_1932 | 391..1287 | 99.44 | 3003700 | - | |
mexJ | 1_S1_L001_(paired)_contig_2174 | 1..689 | 98.40 | 3003692 | - | |
pmpM | 1_S1_L001_(paired)_contig_2344 | 634..2067 | 99.86 | 3004077 | - | |
triA | 1_S1_L001_(paired)_contig_2475 | 148..1299 | 99.82 | 3003679 | - | |
emrE | 1_S1_L001_(paired)_contig_396 | 2109..2389 | 98.93 | 3004038 | - | |
mexX | 1_S1_L001_(paired)_contig_564 | 1059..1880 | 98.05 | 3003034 | - | |
yajC | 1_S1_L001_(paired)_contig_580 | 337..675 | 99.70 | 3005040 | - | |
mexA | 1_S1_L001_(paired)_contig_91 | 206..1357 | 99.82 | 3000377 | 50.25938765 | |
mexB | 1_S1_L001_(paired)_contig_91 | 1373..4513 | 99.39 | 3000378 | 77.32260128 | |
oprM | 1_S1_L001_(paired)_contig_91 | 4515..5972 | 99.58 | 3000379 | 106.8020152 | |
arnA | Gene-altering cell wall charge | 1_S1_L001_(paired)_contig_1042 | 2317..4314 | 98.99 | 3002985 | 15.62721041 |
rsmA | Protein(s) and two-component regulatory system modulating antibiotic efflux | 1_S1_L001_(paired)_contig_33 | 1050..1235 | 99.46 | 3005069 | 90.10851165 |
armR | 1_S1_L001_(paired)_contig_34 | 1046..1207 | 100 | 3004056 | 110.9821332 | |
parS | 1_S1_L001_(paired)_contig_361 | 3186..4443 | 98.96 | 3005067 | 9.234260698 | |
basS | 1_S1_L001_(paired)_contig_403 | 3425..4858 | 100 | 3003583 | - | |
mexL | 1_S1_L001_(paired)_contig_693 | 1087..1725 | 99.84 | 3003710 | - |
Virulence Gene | Virulence Factor (ID) | Contig | Position in Contig | % Identity | TPM Value |
---|---|---|---|---|---|
algU | Alginate (VF0091) | 1_S1_L001_(paired)_contig_290 | 1332..1913 | 100 | 419.3972733 |
mucA | 1_S1_L001_(paired)_contig_290 | 1945..2529 | 99.82 | 308.3769521 | |
mucB | 1_S1_L001_(paired)_contig_290 | 2538..3488 | 99.89 | 101.2564359 | |
mucC | 1_S1_L001_(paired)_contig_290 | 3485..3940 | 99.78 | 52.12497157 | |
algR | 1_S1_L001_(paired)_contig_300 | 4786..5532 | 99.73 | 115.0388622 | |
algZ | 1_S1_L001_(paired)_contig_300 | 5537..6554 | 99.80 | 35.65093406 | |
algD | 1_S1_L001_(paired)_contig_3027 | 1..880 | 99.88 | 3.486620172 | |
algL | 1_S1_L001_(paired)_contig_3318 | 1..676 | 99.70 | 5.520481939 | |
algQ | 1_S1_L001_(paired)_contig_687 | 214..696 | 99.58 | 72.55490549 | |
algB | 1_S1_L001_(paired)_contig_871 | 292..1641 | 99.92 | 26.63571197 | |
algC | Alginate biosynthesis (CVF522) | 1_S1_L001_(paired)_contig_634 | 1481..2872 | 99.85 | 32.61213588 |
algW | Alginate regulation (CVF523) | 1_S1_L001_(paired)_contig_107 | 2934..4103 | 99.91 | 19.27355951 |
mucP | 1_S1_L001_(paired)_contig_132 | 9573..10925 | 99.70 | - | |
mucD | 1_S1_L001_(paired)_contig_290 | 3980..5404 | 99.78 | 88.53225941 | |
mucE | 1_S1_L001_(paired)_contig_3047 | 1..252 | 99.60 | - | |
aprA | Alkaline protease (VF0090) | 1_S1_L001_(paired)_contig_1207 | 1..1216 | 99.58 | 10.15768677 |
motB | Deoxyhexose linking sugar, 209 Da capping structure (AI138) | 1_S1_L001_(paired)_contig_203 | 4505..5548 | 98.94 | 28.89686753 |
motA | 1_S1_L001_(paired)_contig_203 | 5568..6419 | 98.12 | 15.73726119 | |
motC | 1_S1_L001_(paired)_contig_216 | 4870..5610 | 99.86 | 21.7958461 | |
motD | 1_S1_L001_(paired)_contig_216 | 5623..6513 | 100 | 17.44249243 | |
flgN | 1_S1_L001_(paired)_contig_325 | 4531..5001 | 99.57 | - | |
flgM | 1_S1_L001_(paired)_contig_325 | 5056..5379 | 100 | 67.71791179 | |
fliK | 1_S1_L001_(paired)_contig_336 | 149..954 | 100 | - | |
fliL | 1_S1_L001_(paired)_contig_336 | 1198..1719 | 99.80 | - | |
fliA | 1_S1_L001_(paired)_contig_632 | 2977..3720 | 99.86 | - | |
motY | 1_S1_L001_(paired)_contig_67 | 198..1163 | 99.89 | - | |
fleS | 1_S1_L001_(paired)_contig_88 | 1782..2990 | 99.00 | 17.39157288 | |
flgF | Flagella (VF0273) | 1_S1_L001_(paired)_contig_1247 | 41..790 | 100 | 8.532456885 |
flgG | 1_S1_L001_(paired)_contig_1247 | 837..1620 | 99.61 | 9.304751238 | |
flgH | 1_S1_L001_(paired)_contig_1247 | 1669..2364 | 99.71 | 7.443132546 | |
flgI | 1_S1_L001_(paired)_contig_1247 | 2376..3485 | 99.45 | 23.88429051 | |
flgJ | 1_S1_L001_(paired)_contig_1247 | 3496..4698 | 99.58 | 9.119120291 | |
flhA | 1_S1_L001_(paired)_contig_1444 | 121..1682 | 99.87 | 12.33843308 | |
fliM | 1_S1_L001_(paired)_contig_336 | 1727..2698 | 99.79 | 22.88614611 | |
fliN | 1_S1_L001_(paired)_contig_336 | 2726..3199 | 100 | 21.21542173 | |
fliO | 1_S1_L001_(paired)_contig_336 | 3201..3653 | 98.67 | 18.16275117 | |
fliP | 1_S1_L001_(paired)_contig_336 | 3650..4417 | 99.47 | 8.332477427 | |
fliQ | 1_S1_L001_(paired)_contig_336 | 4462..4731 | 100 | 7.900423042 | |
fliR | 1_S1_L001_(paired)_contig_336 | 4731..5507 | 99.22 | 5.882830175 | |
flhB | 1_S1_L001_(paired)_contig_336 | 5510..6646 | 99.64 | 7.772372461 | |
flgE | 1_S1_L001_(paired)_contig_462 | 1..971 | 98.97 | 6.801042976 | |
flgD | 1_S1_L001_(paired)_contig_462 | 999..1712 | 99.71 | 14.08418754 | |
fliE | 1_S1_L001_(paired)_contig_618 | 211..540 | 99.69 | 11.08111284 | |
fliF | 1_S1_L001_(paired)_contig_618 | 563..2359 | 99.55 | 12.039996 | |
fliG | 1_S1_L001_(paired)_contig_618 | 2365..3381 | 99.80 | 23.37166867 | |
fliH | 1_S1_L001_(paired)_contig_618 | 3383..4189 | 99.13 | - | |
fliI | 1_S1_L001_(paired)_contig_618 | 4179..5534 | 99.04 | 14.60729292 | |
fliJ | 1_S1_L001_(paired)_contig_618 | 5548..5991 | 99.32 | 18.53091505 | |
flhF | 1_S1_L001_(paired)_contig_632 | 710..1999 | 99.68 | 26.69345593 | |
fleN | 1_S1_L001_(paired)_contig_632 | 2138..2980 | 99.88 | 21.32752738 | |
fleQ | 1_S1_L001_(paired)_contig_88 | 197..1669 | 99.11 | 38.27234322 | |
fleR | 1_S1_L001_(paired)_contig_88 | 2995..3864 | 99.19 | 13.50072292 | |
tse1 | HSI-1 (SS178) | 1_S1_L001_(paired)_contig_1406 | 164..628 | 99.35 | - |
tse3 | 1_S1_L001_(paired)_contig_1773 | 1196..2241 | 99.80 | - | |
tse2 | 1_S1_L001_(paired)_contig_2757 | 1..460 | 98.91 | - | |
tagQ | 1_S1_L001_(paired)_contig_397 | 766..1680 | 99.67 | - | |
hsiA1 | HSI-I (VF0334) | 1_S1_L001_(paired)_contig_1341 | 329..1340 | 99.01 | - |
tagT | 1_S1_L001_(paired)_contig_1644 | 142..861 | 98.47 | - | |
tagS | 1_S1_L001_(paired)_contig_1644 | 861..2060 | 98.83 | - | |
tagF/pppB | 1_S1_L001_(paired)_contig_1824 | 155..640 | 98.55 | - | |
pppA | 1_S1_L001_(paired)_contig_2001 | 1206..1712 | 99.80 | 5.434153415 | |
hsiH1 | 1_S1_L001_(paired)_contig_354 | 932..1978 | 99.90 | - | |
clpV1 | 1_S1_L001_(paired)_contig_354 | 1971..3922 | 99.53 | 7.649199338 | |
hsiE1 | 1_S1_L001_(paired)_contig_652 | 292..1137 | 99.76 | - | |
hcp1 | 1_S1_L001_(paired)_contig_652 | 1305..1793 | 100 | 58.57807093 | |
hsiC1/vipB | 1_S1_L001_(paired)_contig_652 | 1869..3365 | 99.79 | - | |
hsiB1/vipA | 1_S1_L001_(paired)_contig_652 | 3378..3706 | 100 | - | |
waaF | LPS (VF0085) | 1_S1_L001_(paired)_contig_106 | 1..970 | 99.17 | 16.44018668 |
waaC | 1_S1_L001_(paired)_contig_106 | 967..2034 | 99.53 | 22.25560584 | |
waaG | 1_S1_L001_(paired)_contig_106 | 2031..3152 | 99.55 | 11.95021973 | |
waaP | 1_S1_L001_(paired)_contig_106 | 3149..3955 | 99.38 | 10.57305686 | |
waaA | 1_S1_L001_(paired)_contig_3715 | 1..1172 | 100 | 8.583960649 | |
lasA | LasA (VF0088) | 1_S1_L001_(paired)_contig_648 | 1331..2587 | 99.28 | 4.363684053 |
lasB | LasB (VF0087) | 1_S1_L001_(paired)_contig_29 | 124..1620 | 99.73 | 82.23858626 |
phzC1 | Phenazines biosynthesis (CVF536) | 1_S1_L001_(paired)_contig_3114 | 24..930 | 99.44 | 0.250189329 |
pchC | Pyochelin (VF0095) | 1_S1_L001_(paired)_contig_1475 | 1..676 | 99.85 | 6.85240774 |
pchD | 1_S1_L001_(paired)_contig_1475 | 673..2000 | 99.62 | 7.229010656 | |
pchA | 1_S1_L001_(paired)_contig_1810 | 134..1564 | 99.51 | 12.56401508 | |
pchB | 1_S1_L001_(paired)_contig_1810 | 1561..1866 | 99.67 | 1.991703288 | |
pchG | 1_S1_L001_(paired)_contig_2287 | 1012..2061 | 99.33 | 9.577247524 | |
fptA | 1_S1_L001_(paired)_contig_2959 | 367..1908 | 99.54 | 5.353565842 | |
phzS | Pyocyanin (VF0100) | 1_S1_L001_(paired)_contig_4777 | 1..874 | 98.97 | 3.276673151 |
pvdH | Pyoverdine (IA001) | 1_S1_L001_(paired)_contig_1063 | 148..1557 | 99.57 | 13.83174368 |
mbtH-like | 1_S1_L001_(paired)_contig_1063 | 1635..1853 | 100 | - | |
pvcD | 1_S1_L001_(paired)_contig_4738 | 1..435 | 98.16 | 4.232369487 | |
pvcA | 1_S1_L001_(paired)_contig_4942 | 1..654 | 99.38 | 3.087442787 | |
lasI | Quorum sensing (VF0093) | 1_S1_L001_(paired)_contig_420 | 22..627 | 100 | 93.02831941 |
rhlI | 1_S1_L001_(paired)_contig_950 | 202..807 | 98.67 | 13.0742503 | |
rhlA | Rhamnolipid (VF0089) | 1_S1_L001_(paired)_contig_106 | 4860..5747 | 99.43 | 6.176971683 |
rhlB | 1_S1_L001_(paired)_contig_106 | 5813..7093 | 98.98 | 6.898663145 | |
rhlC | Rhamnolipid biosynthesis CVF524) | 1_S1_L001_(paired)_contig_1794 | 380..1357 | 99.69 | 6.543295157 |
pscB | TTSS (VF0083) | 1_S1_L001_(paired)_contig_1578 | 342..764 | 98.58 | 2.881613268 |
exsD | 1_S1_L001_(paired)_contig_1578 | 798..1628 | 99.75 | 7.334069869 | |
pcrG | 1_S1_L001_(paired)_contig_2551 | 216..512 | 99.66 | 2.052057933 | |
pscG | 1_S1_L001_(paired)_contig_3200 | 376..723 | 100 | 2.626987957 | |
pscF | 1_S1_L001_(paired)_contig_3200 | 726..983 | 100 | 4.724505474 | |
pscE | 1_S1_L001_(paired)_contig_3200 | 986..1189 | 99.01 | 1.493777466 | |
pscK | 1_S1_L001_(paired)_contig_3270 | 1..429 | 99.53 | 4.374123489 | |
popB | 1_S1_L001_(paired)_contig_491 | 164..1336 | 99.57 | 8.313196332 | |
popD | 1_S1_L001_(paired)_contig_491 | 1348..2235 | 99.54 | 5.490641496 | |
exsC | 1_S1_L001_(paired)_contig_743 | 101..538 | 100 | 11.13171153 | |
exsE | 1_S1_L001_(paired)_contig_743 | 547..792 | 99.59 | - | |
exsB | 1_S1_L001_(paired)_contig_743 | 801..1214 | 99.75 | 11.77702814 | |
pcr2 | 1_S1_L001_(paired)_contig_793 | 170..541 | 98.92 | - | |
pilU | Type IV pili (VF0082) | 1_S1_L001_(paired)_contig_1243 | 1002..2150 | 100 | 15.64761147 |
pilT | 1_S1_L001_(paired)_contig_1243 | 2328..3362 | 99.90 | 22.96520487 | |
fimT | 1_S1_L001_(paired)_contig_1412 | 1..435 | 99.31 | 1.792532959 | |
pilF | 1_S1_L001_(paired)_contig_230 | 6676..7434 | 99.73 | 28.10427169 | |
pilY2 | 1_S1_L001_(paired)_contig_2608 | 185..532 | 100 | 3.50265061 | |
pilE | 1_S1_L001_(paired)_contig_2608 | 529..846 | 100 | 12.87594097 | |
fimV | 1_S1_L001_(paired)_contig_264 | 363..3107 | 98.15 | 32.68125308 | |
pilM | 1_S1_L001_(paired)_contig_359 | 910..1974 | 99.62 | 48.64244368 | |
pilN | 1_S1_L001_(paired)_contig_359 | 1974..2570 | 100 | 18.37571476 | |
pilO | 1_S1_L001_(paired)_contig_359 | 2567..3190 | 99.83 | 20.99906399 | |
pilP | 1_S1_L001_(paired)_contig_359 | 3187..3711 | 100 | 19.15449505 | |
fimU | 1_S1_L001_(paired)_contig_4477 | 1..442 | 100 | 4.808372435 | |
pilG | 1_S1_L001_(paired)_contig_49 | 1880..2287 | 100 | 87.38598175 | |
pilH | 1_S1_L001_(paired)_contig_49 | 2334..2699 | 100 | 50.78843384 | |
pilI | 1_S1_L001_(paired)_contig_49 | 2750..3286 | 99.81 | 41.99267156 | |
pilJ | 1_S1_L001_(paired)_contig_49 | 3371..5419 | 99.95 | 38.66762166 | |
pilK | 1_S1_L001_(paired)_contig_49 | 5480..6355 | 99.77 | 19.13262919 | |
xcpA/pilD | 1_S1_L001_(paired)_contig_524 | 1509..2381 | 99.31 | 12.21714903 | |
pilX | 1_S1_L001_(paired)_contig_539 | 2482..3069 | 99.82 | 6.218991899 | |
pilW | 1_S1_L001_(paired)_contig_539 | 3066..3565 | 99.4 | 6.648667703 | |
chpA | 1_S1_L001_(paired)_contig_613 | 28..5322 | 99.79 | 16.14221957 | |
chpB | 1_S1_L001_(paired)_contig_613 | 5315..6346 | 99.22 | 14.17351642 | |
chpC | 1_S1_L001_(paired)_contig_613 | 6343..6849 | 98.81 | 10.21779142 | |
xcpT | xcp secretion system (VF0084) | 1_S1_L001_(paired)_contig_4 | 714..1160 | 99.55 | 14.31620283 |
xcpU | 1_S1_L001_(paired)_contig_4 | 1167..1685 | 99.80 | 20.55023335 | |
xcpV | 1_S1_L001_(paired)_contig_4 | 1682..2071 | 99.48 | 10.15768677 | |
xcpW | 1_S1_L001_(paired)_contig_4 | 2068..2781 | 99.57 | 7.255490549 | |
xcpX | 1_S1_L001_(paired)_contig_4 | 2778..3779 | 99.60 | 13.68550612 | |
xcpY | 1_S1_L001_(paired)_contig_4 | 3776..4752 | 99.89 | 20.42145904 | |
xcpP | 1_S1_L001_(paired)_contig_437 | 9180..9887 | 99.57 | 25.39421692 |
Designation | Medium Composition |
---|---|
I (reference mTSB) | mTSB + 5.0 g/L NaCl |
II | mTSB + 5.0 g/L KCl |
III | mTSB + 6.0 g/L KCl |
IV | mTSB + KCl 6.0 g/L + NaL 6.0 g/L |
V | mTSB + KCl 6.0 g/L + NaL 6.0 g/L + NaC 2.5 g/L |
VI (reference FJ) | FJ + 5.0 g/L NaCl |
VII | FJ + 5.0 g/L KCl |
VIII | FJ + 6.0 g/L KCl |
IX | FJ + KCl 6.0 g/L + NaL 6.0 g/L |
X | FJ + KCl 6.0 g/L + NaL 6.0 g/L + NaC 2.5 g/L |
Gene Name | Gene Definition, Coding Product and Role | Sequence (5′-3′) Fwd Rev | Tm (°C) | Size (bp) |
---|---|---|---|---|
16S rRNA | The small subunit ribosomal RNA, internal reference gene | GGAGACTGCCGGTGACAAACT TGTAGCCCAGGCCGTAAGG | 56 | 75 |
mexA | RND multidrug efflux membrane fusion protein MexA precursor | AGCCATGCGTGTACTGGTTC CTCGGTATTCAGGGTCACCG | 60 | 145 |
mexB | RND multidrug efflux transporter MexB | TGATAGGCCCATTTTCGCGT ATCCCGTTCATCTGCTGCTC | 60 | 198 |
oprM | Major intrinsic multiple antibiotic resistance efflux outer membrane protein OprM precursor | GGTTCGGGTTCCTGGTTGTT GCAACTGCTCGGTGAAGGTA | 60 | 193 |
lasB | Metalloproteinase (elastase), pseudolysin precursor | TGAACGACGCGCATTTCTTC CCCGTAGTGCACCTTCATGT | 59 | 104 |
aprA | Alkaline metalloproteinase precursor | ATTGGTCAATGGCCATCCGT TGAACTTGCCCAGCGAGTAG | 60 | 191 |
phzS | Probable FAD-dependent monooxygenase, involved in pyocyanin biosynthesis | CTGCAGTACCCGATGGTAGAC TTCTTCGTATTCGCGCAGGG | 60 | 198 |
algU | Sigma factor AlgU, positive regulation of alginate biosynthesis | CGCGAGTTCGAAGGTTTGAG GCTTCTCGCAACAAAGGCTG | 60 | 131 |
mucA | Anti-sigma factor MucA, involved in alginate regulation | GTGAAGCCCTGCAGGAAACT GCAGCGATATCCAGCTTCGG | 60 | 181 |
fliM | Flagellar motor switch protein FliM | CGAGTACGTCAACTCGGAGG TAGGGCATGGTGATGTGCAG | 60 | 129 |
flgG | Flagellar basal-body rod protein FlgG | CAACCTGGCCAACGTATCCA ACACCGGTACCCAATTGCAG | 60 | 144 |
fliG | Flagellar motor switch protein FliG | CGAAGGCCAGCTGATGGATT GTACGTCCGAGGAGACTTCC | 60 | 146 |
pilJ | Twitching motility protein PilJ | ACACCCAGTCGAACCATGAC ACCAGGATGTTCCAGCGTTT | 60 | 169 |
pilM | Type 4 fimbrial biogenesis protein PilM | TCCTTGAACGGACGCAGAAC CGGACGCACCATCTATACCC | 60 | 162 |
pilD | Prepilin leader peptidase/N-methyltransferase, role in type IV pili and type II pseudopili formation | CTGATCGCCAACCATTTCGG ACCAGCTTGAACAGCCAGAA | 59 | 107 |
pscF | Type III export protein PscF, | GCGCAGATATTCAACCCCAAC TGATCTTGTGTTGCAGCTCG | 60 | 169 |
xcpP | Secretion protein XcpP | CCCTCGGCGATCTTCAGACA GGCGATGATCAGGGCAACAG | 61 | 124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaś, N.; Myszka, K.; Wolko, Ł. Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish. Molecules 2023, 28, 6654. https://doi.org/10.3390/molecules28186654
Tomaś N, Myszka K, Wolko Ł. Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish. Molecules. 2023; 28(18):6654. https://doi.org/10.3390/molecules28186654
Chicago/Turabian StyleTomaś, Natalia, Kamila Myszka, and Łukasz Wolko. 2023. "Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish" Molecules 28, no. 18: 6654. https://doi.org/10.3390/molecules28186654
APA StyleTomaś, N., Myszka, K., & Wolko, Ł. (2023). Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish. Molecules, 28(18), 6654. https://doi.org/10.3390/molecules28186654