Poly Caprolactam Supported Hexaethylene Glycolic Imidazolium Ionic Liquid as a Heterogeneous Promoter for Nucleophilic Fluorination
Abstract
:1. Introduction
2. Result and Discussion
3. Materials and Methods
3.1. Procedure of Nucleophilic Fluorinations in Table 1
3.2. Procedure of Fluorination of Various Substrates and Analytical Data of Fluorination Products in Table 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- O’Hagan, D.; Deng, H. Enzymatic Fluorination and Biotechnological Developments of the Fluorinase. Chem. Rev. 2015, 115, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Champagne, P.A.; Desroches, J.; Hamel, J.D.; Vandamme, M.; Paquin, J.F. Monofluorination of Organic Compounds: 10 Years of Innovation. Chem. Rev. 2015, 115, 9073–9174. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Oliveira, M.T.; Jang, H.B.; Lee, S.; Chi, D.Y.; Kim, D.W.; Song, C.E. Hydrogen-Bond Promoted Nucleophilic Fluorination: Concept, Mechanism and Applications in Positron Emission Tomography. Chem. Soc. Rev. 2016, 45, 4638–4650. [Google Scholar] [CrossRef] [PubMed]
- Muller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking beyond Intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef]
- Furuya, T.; Kamlet, A.S.; Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 2011, 473, 470–477. [Google Scholar] [CrossRef]
- Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular Imaging with PET. Chem. Rev. 2008, 108, 1501–1516. [Google Scholar] [CrossRef]
- Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. [Google Scholar] [CrossRef]
- Mascaretti, O.A. Modern methods for the monofluorination of aliphatic organic compounds. Aldrichimica Acta. 1993, 26, 47–58. [Google Scholar]
- Gokel, G.W. Crown Ethers and Cryptands; Royal Society of Chemistry: London, UK, 1991; ISBN 0851869963. [Google Scholar]
- Dehmlow, E.V.; Dehmlow, S.S. Phase Transfer Catalysis, 3rd ed.; VCH: New York, NY, USA, 1993. [Google Scholar]
- Yu, L.H. (Ed.) Ionic Liquids in Green Organic Synthesis and Catalysis; CRC Press: New York, NY, USA, 2021. [Google Scholar]
- Wasserscheid, P.; Keim, W. Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef]
- Kim, D.W.; Song, C.E.; Chi, D.Y. New method of fluorination using potassium fluoride in ionic liquid: Significantly enhanced reactivity of fluoride and improved selectivity. J. Am. Chem. Soc. 2002, 124, 10278–10279. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, D.W. Organocatalysis of SN2 Reactions by Multifunctional Promotors: Ionic Liquids and Derivatives. In Sustainable Catalysis in Ionic Liquids, 1st ed.; Lozano, P., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 95–110. [Google Scholar]
- Oh, Y.-H.; Kim, D.W.; Lee, S. Ionic Liquids as Organocatalysts for Nucleophilic Fluorination: Concepts and Perspectives. Molecules 2022, 27, 5702. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Anastas, P.T.; Kirchhoff, M.M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef]
- Vekariya, R.H.; Patel, H.D. Sulfonated polyethylene glycol (PEG-OSO3H) as a polymer supported biodegradable and recyclable catalyst in green organic synthesis: Recent advances. RSC Adv. 2015, 5, 49006. [Google Scholar] [CrossRef]
- Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-Supported Organic Catalysts. Chem. Rev. 2003, 103, 3401–3430. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124–1159. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han, B.; Wu, T.; Ding, K. CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross-Linked Polymer Matrix. Angew. Chem. Int. Ed. 2007, 119, 7255–7258. [Google Scholar] [CrossRef]
- Jadhav, V.H.; Jang, S.H.; Jeong, H.-J.; Lim, S.T.; Sohn, M.-H.; Chi, D.Y.; Kim, D.W. Polymer-Supported Pentaethylene Glycol as a Facile Heterogeneous Catalyst for Nucleophilic Fluorination. Org. Lett. 2010, 12, 3740–3743. [Google Scholar] [CrossRef]
- Kim, D.W.; Hong, D.J.; Jang, K.S.; Chi, D.Y. Structural Modification of Polymer-Supported Ionic Liquids as Catalysts for Nucleophilic Substitution Reactions Including Fluorination. Adv. Synth. Catal. 2006, 348, 1719–1727. [Google Scholar] [CrossRef]
- Shinde, S.S.; Lee, B.S.; Chi, D.Y. Synergistic Effect of Two Solvents, tert-Alcohol and Ionic Liquid, in One Molecule in Nucleophilic Fluorination. Org. Lett. 2008, 10, 733–735. [Google Scholar] [CrossRef]
- Jadhav, V.H.; Jeong, H.-J.; Lim, S.T.; Sohn, M.-H.; Kim, D.W. Polymer-supported hexaethylene glycolic ionic liquid: Efficient heterogeneous catalyst for nucleophilic substitutions including fluorinations. RSC Adv. 2012, 2, 7120–7126. [Google Scholar] [CrossRef]
- Kim, D.W.; Chi, D.Y. Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angew. Chem. Int. Ed. 2004, 43, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Byeon, K.R.; Park, S.H.; Kim, D.W. Polyethylene glycol methacrylate-grafted dicationic imidazolium-based ionic liquid: Heterogeneous catalyst for the synthesis of aryl-benzo[4,5]imidazo[1,2-a]pyrimidine amines under solvent-free conditions. Tetrahedron 2017, 73, 5289–5296. [Google Scholar] [CrossRef]
- Kim, D.W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H.S.; Oh, S.J.; Lee, S.J.; Kim, J.S.; Ryu, J.-S.; Moon, D.H.; et al. A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules. J. Am. Chem. Soc. 2006, 128, 16394–16397. [Google Scholar] [CrossRef]
- Kim, D.W.; Jeong, H.J.; Lim, S.T.; Sohn, M.-H.; Katzenellenbogen, J.A.; Chi, D.Y. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: Significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J. Org. Chem. 2008, 73, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.H.; Jeong, H.-J.; Lim, S.T.; Sohn, M.-H.; Kim, D.W. Tailor-Made Hexaethylene Glycolic Ionic Liquids as Organic Catalysts for Specific Chemical Reactions. Org. Lett. 2011, 13, 2502–2505. [Google Scholar] [CrossRef]
Entry | Promoter (Equiv) | Solvent | MF | Time (h) | Yield b | |||
---|---|---|---|---|---|---|---|---|
3 | 4a | 4b | 4c | |||||
1 | PCLS-hexaEGIM (0.3) | CH3CN | CsF | 2 | - | 97 (94) c | - | - |
2 | - | CH3CN | CsF | 10 | 90 | 10 | - | - |
3 | PCLS-hexaEGIM (0.3) | CH3CN | NaF | 24 | 75 | 20 | 5 | - |
4 | PCLS-hexaEGIM (0.3) | CH3CN | KF | 10 | - | 94 | 5 | - |
5 | PCLS-hexaEGIM (0.3) | CH3CN | RbF | 9 | 3 | 92 | 5 | - |
6 | PCLS-hexaEGIM (0.3) | Benzene | CsF | 12 | - | 85 | 15 | - |
7 | PCLS-hexaEGIM (0.3) | 1,4-dioxane | CsF | 12 | - | 88 | 12 | - |
8 | PCLS-hexaEGIM (0.3) | DMF | CsF | 3 | - | 90 | 10 | - |
9 | PCLS-hexaEGIM (0.3) | t-amyl alcohol | CsF | 45 min | - | 98 | - | - |
10 d | - | t-amyl alcohol | CsF | 2.5 | - | 94 | - | - |
11 | 18-crown-6 (0.5) | CH3CN | CsF | 8 | 10 | 65 | 5 | 25 |
12 | PS[hmim][BF4] (0.5) | CH3CN | CsF | 5 | 94 | - | 6 | |
13 | hexaEGVIM 2 (0.5) | CH3CN | CsF | 5 | - | 92 | - | 8 |
Entry | Structure of Product | X | Solvent | Time (h) | Yield (%) b | Comments |
---|---|---|---|---|---|---|
1 | Br | CH3CN | 4 | 75 c | 15% alkenes 10% alcohol | |
2 d | Br | t-amyl alcohol | 2 | 94 c | 3% alkenes trace alcohol | |
3 | OMs | CH3CN | 3 | 80 c | 20% alkenes | |
4 | OMs | t-amyl alcohol | 1.5 | 95 c | 5% alkenes | |
5 | OMs | CH3CN | 2 | 80 c | 15% alkenes 5% alcohol | |
6 | OMs | t-amyl alcohol | 0.5 | 95 c | 5% alkenes | |
7 | OMs | CH3CN | 2 | 93 | 4% alcohol | |
8 | Br | CH3CN | 3 | 90 | 6% alkenes | |
9 | I | CH3CN | 3 | 91 | 4% alkenes | |
10 | Br | CH3CN | 1 | 94 | - | |
11 | OMs | CH3CN | 0.75 | 96 | - | |
12 | Br | CH3CN | 0.5 | 90 | 4% alcohol | |
13 e | OMs | CH3CN | 1 | 96 | - | |
14 e | Cl | CH3CN | 1 | 92 | trace alcohol | |
15 | Br | CH3CN | 1 | 92 | 4% alcohol | |
16 | OMs | CH3CN | 3 | 95 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, M.V.; Park, K.H.; Kim, D.W. Poly Caprolactam Supported Hexaethylene Glycolic Imidazolium Ionic Liquid as a Heterogeneous Promoter for Nucleophilic Fluorination. Molecules 2023, 28, 6747. https://doi.org/10.3390/molecules28186747
Reddy MV, Park KH, Kim DW. Poly Caprolactam Supported Hexaethylene Glycolic Imidazolium Ionic Liquid as a Heterogeneous Promoter for Nucleophilic Fluorination. Molecules. 2023; 28(18):6747. https://doi.org/10.3390/molecules28186747
Chicago/Turabian StyleReddy, Mudumala Veeranarayana, Keun Heok Park, and Dong Wook Kim. 2023. "Poly Caprolactam Supported Hexaethylene Glycolic Imidazolium Ionic Liquid as a Heterogeneous Promoter for Nucleophilic Fluorination" Molecules 28, no. 18: 6747. https://doi.org/10.3390/molecules28186747
APA StyleReddy, M. V., Park, K. H., & Kim, D. W. (2023). Poly Caprolactam Supported Hexaethylene Glycolic Imidazolium Ionic Liquid as a Heterogeneous Promoter for Nucleophilic Fluorination. Molecules, 28(18), 6747. https://doi.org/10.3390/molecules28186747