Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases—A Computational Study
Abstract
:1. Introduction
2. Results
2.1. Physicochemical and Structural Properties of the Metabolites of Di-Isononyl Phthalate and of the Ligands That Are Present in the Crystallographic Structures of SULT1 Enzymes
2.2. Toxicological Effects of the Di-Isononyl Phthalate and of Its Metabolites
2.3. Evaluation of the Interactions of DiNP Metabolites with the Family 1 of Human Sulfotransferases
3. Discussion
3.1. Toxicological Effects of the Di-Isononyl Phthalate and of Its Metabolites
3.2. Evaluation of the Interactions of DiNP Metabolites with the Family 1 of Human Sulfotransferases
4. Materials and Method
4.1. Materials
4.2. Extraction of the Physicochemical and Computation of the Structural Properties of the Metabolites of Di-Isononyl Phthalate and of the Ligands That Are Present in the Crystallographic Structures of SULT1 Enzymes
4.3. Prediction of the Toxicological Effects of Di-Isononyl Phthalate and of Its Metabolites
4.4. Evaluation of the Interactions of DiNP Metabolites with the Family 1 of Human Sulfotransferases
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci. 2012, 112, 31–88. [Google Scholar] [PubMed]
- Negishi, M.; Pedersen, L.G.; Petrotchenko, E.; Shevtsov, S.; Gorokhov, A.; Kakuta, Y.; Pedersen, L.C. Structure and function of sulfotransferases. Arch. Biochem. Biophys. 2001, 390, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Gamage, N.; Barnett, A.; Hempel, N.; Duggleby, R.G.; Windmill, K.F.; Martin, J.L.; McManus, M.E. Human Sulfotransferases and Their Role in Chemical Metabolism. Toxicol. Sci. 2006, 90, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Kurogi, K.; Rasool, M.I.; Alherz, F.A.; El Daibani, A.A.; Bairam, A.F.; Abunnaja, M.S.; Yasuda, S.; Wilson, L.J.; Hui, Y.; Liu, M.C. SULT genetic polymorphisms: Physiological, pharmacological and clinical implications. Expert Opin. Drug Metab. Toxicol. 2021, 17, 767–784. [Google Scholar] [CrossRef] [PubMed]
- Isvoran, A.; Peng, Y.; Ceauranu, S.; Schmidt, L.; Nicot, A.B.; Miteva, M.A. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discov. Today 2022, 27, 103349. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Brüning, T. Assessing exposure to phthalates—The human biomonitoring approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef]
- Gennings, C.; Hausser, R.; Koch, H.M.; Kortenkamp, A.; Lioy, P.J.; Mirkes, P.E.; Schwetz, B.A. Report to the U.S. Consumer Product Safety Commission by the Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives. 2014. Available online: https://www.cpsc.gov/chap (accessed on 18 May 2023).
- Hines, E.P.; Calafat, A.M.; Silva, M.J.; Mendola, P.; Fenton, S.E. Concentrations of phthalate metabolites in milk, urine, saliva, and Serum of lactating North Carolina women. Environ. Health Perspect. 2009, 117, 86–92. [Google Scholar] [CrossRef]
- Onipede, O.J.; Adewuyi, G.O.; Ayede, I.A.; Olayemi, O.; Bello, F.A.; Osamor, O. Phthalate Esters in Blood, Urine and Breast-milk Samples of Transfused Mothers in Some Hospitals in Ibadan Metropolis Southwestern Nigeria. Chem. Sci. J. 2018, 9, 1000188. [Google Scholar]
- Yalçin, S.S.; Erdal, İ.; Oğuz, B.; Duzova, A. Association of urine phthalate metabolites, bisphenol A levels and serum electrolytes with 24-h blood pressure profile in adolescents. BMC Nephrol. 2022, 23, 141. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, H. Phthalates and Their Impacts on Human Health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Craciun, D.; Dascalu, D.; Isvoran, A. Computational assessment of the ADME-Tox profiles and harmful effects of the most common used phthalates on the human health. Stud. Univ. Babes-Bolyai Chem. 2019, 64, 71–92. [Google Scholar] [CrossRef]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.M. Metabolism of phthalates in humans. Mol. Nutr. Food. Res. 2007, 51, 899–911. [Google Scholar] [CrossRef]
- Heindel, J.J.; Powell, C.J. Phthalate ester effects on rat Sertoli cell function in vitro: Effects of phthalate side chain and age of animal. Toxicol. Appl. Pharmacol. 1992, 115, 116–123. [Google Scholar] [CrossRef]
- Harris, R.M.; Waring, R.H. Sulfotransferase inhibition: Potential impact of diet and environmental chemicals on steroid metabolism and drug detoxification. Curr. Drug Metab. 2008, 9, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lan, B.D.; Zhang, Y.J.; Fan, X.J.; Hu, M.C.; Qin, G.Q.; Wang, F.G.; Wu, Y.; Zheng, T.; Liu, J.H. Inhibition of Human Sulfotransferases by Phthalate Monoesters. Front. Endocrinol. 2022, 13, 868105. [Google Scholar] [CrossRef]
- Saeidnia, S. Phthalates. In Encyclopedia of Toxicology; Academic Press: Cambridge, MA, USA, 2014; pp. 928–933. [Google Scholar]
- Silva, M.J.; Kato, K.; Wolf, C.; Samandar, E.; Silva, S.S.; Gray, E.L.; Needham, L.L.; Calafat, A.M. Urinary biomarkers of di-isononyl phthalate in rats. Toxicology 2006, 223, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Reidy, J.A.; Preau, J.L., Jr.; Needham, L.L.; Calafat, A.M. Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment. Environ. Health Perspect. 2006, 114, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Muller, J.; Angerer, J. Determination of secondary, oxidised di-iso-nonylphthalate (DINP) metabolites in human urine representative for the exposure to commercial DINP plasticizers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 847, 114–125. [Google Scholar] [CrossRef]
- Joint Research Centre; Institute for Health and Consumer Protection; Worth, A.; Lo Piparo, E. Review of QSAR Models and Software Tools for Predicting Developmental and Reproductive Toxicity, Publications Office. 2010. Available online: https://data.europa.eu/doi/10.2788/9628 (accessed on 19 September 2023).
- Kleandrova, V.V.; Speck-Planche, A. Regulatory issues in management of chemicals in OECD member countries. Front. Biosci. 2013, 1, 375–398. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, Y.C.M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Yu, L.; Yang, M.; Cheng, M.; Fan, L.; Wang, X.; Xu, T.; Wang, B.; Chen, W. Associations between urinary phthalate metabolite concentrations and markers of liver injury in the US adult population. Environ. Int. 2021, 155, 106608. [Google Scholar] [CrossRef] [PubMed]
- Meling, D.D.; De La Torre, K.M.; Arango, A.S.; Gonsioroski, A.; Deviney, A.R.K.; Neff, A.M.; Laws, M.J.; Warner, G.R.; Tajkhorshid, E.; Flaws, J.A. Phthalate monoesters act through peroxisome proliferator-activated receptors in the mouse ovary. Reprod. Toxicol. 2022, 110, 113–123. [Google Scholar] [CrossRef]
- Liu, G.; Cai, W.; Liu, H.; Jiang, H.; Bi, Y.; Wang, H. The Association of Bisphenol A and Phthalates with Risk of Breast Cancer: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 2375. [Google Scholar] [CrossRef] [PubMed]
- Dirven, H.A.; Theuws, J.L.; Jongeneelen, F.J.; Bos, R.P. Non-mutagenicity of 4 metabolites of di(2-ethylhexyl) phthalate (DEHP) and 3 structurally related derivatives of di(2-ethylhexyl) adipate (DEHA) in the Salmonella mutagenicity assay. Mutat. Res. 1991, 260, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, C.G.; Kim, S.H.; Kim, Y.J. The Effects of Mono-(2-Ethylhexyl) Phthalate (MEHP) on Human Estrogen Receptor (hER) and Androgen Receptor (hAR) by YES/YAS in Vitro Assay. Molecules 2019, 24, 1558. [Google Scholar] [CrossRef]
- Roman, D.L.; Isvoran, A.; Filip, M.; Ostafe, V.; Zinn, M. In silico assessment of pharmacological profile of low molecular weight oligo-hydroxyalkanoates. Front. Bioeng. Biotechnol. 2020, 8, 584010. [Google Scholar]
- Roman, D.L.; Roman, M.; Som, C.; Schmutz, M.; Hernandez, E.; Wick, P.; Casalini, T.; Perale, G.; Ostafe, V.; Isvoran, A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Front. Bioeng. Biotechnol. 2019, 7, 214. [Google Scholar] [CrossRef]
- Gridan, I.M.; Ciorsac, A.A.; Isvoran, A. Prediction of ADME-Tox properties and toxicological endpoints of triazole fungicides used for cereals protection. ADMET DMPK 2019, 7, 161–173. [Google Scholar] [CrossRef]
- Alves, V.M.; Muratov, E.N.; Zakharov, A.; Muratov, N.N.; Andrade, C.H.; Tropsha, A. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem. Toxicol. 2018, 112, 526–534. [Google Scholar] [CrossRef]
- Ceauranu, S.; Ostafe, V.; Isvoran, A. Impaired local hydrophobicity, structural stability and conformational flexibility due to point mutations in sult1 family of enzymes. J. Serb. Chem. Soc. 2023, 88, 841–857. [Google Scholar] [CrossRef]
- Dash, R.; Ali, M.C.; Dash, N.; Azad, M.A.K.; Hosen, S.M.Z.; Hannan, M.A.; Moon, I.S. Structural and dynamic characterizations highlight the deleterious role of SULT1A1 R213H polymorphism in substrate binding. Int. J. Mol. Sci. 2019, 20, 6256. [Google Scholar] [CrossRef] [PubMed]
- Reiter, C.; Mwaluko, G.; Dunnette, J.; Van Loon, J.; Weinshilboum, R. Thermolabile and thermostable human platelet phenol sulfotransferase. Substrate specificity and physical separation. Naunyn-Schmiedeberg’s. Archiv. Pharmacol. 1983, 324, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Allali-Hassani, A.; Pan, P.W.; Dombrovski, L.; Najmanovich, R.; Tempel, W.; Dong, A.; Arrowsmith, C.H. Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol. 2007, 5, e97. [Google Scholar]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Cook, I.; Wang, T.; Almo, S.C.; Kim, J.; Falany, C.N.; Leyh, T.S. The Gate That Governs Sulfotransferase Selectivity. Biochemistry 2012, 52, 415–424. [Google Scholar] [CrossRef]
- Gamage, N.U.; Duggleby, R.G.; Barnett, A.C.; Tresillian, M.; Latham, C.F.; Liyou, N.E.; Martin, J.L. Structure of a Human Carcinogen-converting Enzyme, SULT1A1. J. Biol. Chem. 2002, 278, 7655–7662. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Zhang, J.; Li, M.; Liu, M.Y.; An, X.; Chang, W. Crystal structures of SULT1A2 and SULT1A1∗3: Insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem. Biophys. Res. Commun. 2010, 396, 429–434. [Google Scholar] [CrossRef]
- Lu, J.H.; Li, H.T.; Liu, M.C.; Zhang, J.P.; Li, M.; An, X.-M.; Chang, W.-R. Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3′-phosphoadenosine 5′-phosphate. Biochem. Biophys. Res. Commun. 2005, 335, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.W.; Tempel, W.; Dong, A.; Loppnau, P.; Kozieradzki, I.; Edwards, A.M.; Arrowsmith, C.H.; Weigelt, J.; Bountra, C.; Bochkarev, A.; et al. Crystal structure of human cytosolic sulfotransferase SULT1B1 in complex with PAP and resveratrol. 2008; to be published. [Google Scholar]
- Dombrovski, L.; Dong, A.; Bochkarev, A.; Plotnikov, A.N. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3′-5′-diphosphate (PAP). Proteins Struct. Funct. Bioinform. 2006, 64, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, S.; Petrotchenko, E.V.; Pedersen, L.C.; Negishi, M. Crystallographic analysis of a hydroxylated polychlorinated biphenyl (OH-PCB) bound to the catalytic estrogen binding site of human estrogen sulfotransferase. Environ. Health Perspect. 2003, 111, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins 2007, 67, 1010–1025. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
Compound | MW (g/mol) | LogP | HBD | HBA | RB | tPSA (Å2) | Area (Å2) | Volume (Å3) |
---|---|---|---|---|---|---|---|---|
mono-carboxy-isooctyl phthalate | 322.40 | 3.4 | 2 | 6 | 10 | 101.0 | 285.1 | 287.3 |
mono-hydroxy-isononyl phthalate | 308.40 | 3.9 | 2 | 5 | 10 | 83.8 | 293.5 | 284.6 |
mono-isononyl phthalate | 292.40 | 5.6 | 1 | 4 | 10 | 63.6 | 288.8 | 268.6 |
mono-oxo-isononyl phthalate | 306.40 | 2.8 | 1 | 5 | 10 | 80.7 | 278.8 | 288.0 |
3,3′,5,5′-tetrachloro-4,4′-biphenyldiol | 324.00 | 5.4 | 2 | 2 | 1 | 40.5 | 265.5 | 252.3 |
p-nitrophenol | 139.11 | 1.9 | 1 | 3 | 0 | 66.0 | 128.6 | 106.1 |
dopamine | 153.18 | −1.0 | 3 | 3 | 2 | 66.5 | 156.8 | 132.4 |
resveratrol | 228.24 | 3.1 | 3 | 3 | 2 | 60.7 | 217.7 | 191.0 |
Compound/Toxicity | Di- Isononyl Phthalate | Mono-Carboxy- Isooctyl Phthalate | Mono-Hydroxy- Isononyl Phthalate | Mono- Isononyl Phthalate | Mono-Oxo -Isononyl phthalate |
---|---|---|---|---|---|
CL (mL/min) | 8.329 | 1.369 | 7.210 | 3.032 | 5.149 |
BBB | 0.011 | 0.109 | 0.379 | 0.106 | 0.336 |
PPB (%) | 97.84 | 95.97 | 90.69 | 97.34 | 92.87 |
PgpI | 0.974 | 0.004 | 0.003 | 0.006 | 0.026 |
PgpS | 0.000 | 0.001 | 0.026 | 0.000 | 0.004 |
hERG | 0.190 | 0.053 | 0.209 | 0.260 | 0.198 |
DILI | 0.358 | 0.795 | 0.743 | 0.852 | 0.770 |
Ames mutagenicity | 0.002 | 0.007 | 0.004 | 0.004 | 0.005 |
Carcinogenicity | 0.302 | 0.019 | 0.019 | 0.300 | 0.017 |
NR-AR-LBD | 0.002 | 0.060 | 0.007 | 0.003 | 0.007 |
NR-AhR | 0.071 | 0.012 | 0.015 | 0.057 | 0.042 |
NR-aromatase | 0.086 | 0.005 | 0.009 | 0.011 | 0.008 |
NR-ER-LBD | 0.230 | 0.064 | 0.036 | 0.010 | 0.012 |
NR-PPAR-gamma | 0.060 | 0.744 | 0.890 | 0.872 | 0.785 |
Enzyme | ΔG (kcal/mol) | |||
---|---|---|---|---|
Mono-Carboxy-Isooctyl Phthalate | Mono-Hydroxy-Isononyl Phthalate | Mono-Isononyl Phthalate | Mono-Oxo-Isononyl Phthalate | |
SULT1A1*1 | −8.06 | - | −6.79 | - |
SULT1A1*2 | - | - | −7.51 | −8.30 |
SULT1A1*3 | −8.36 | −11.36 | −8.46 | −8.29 |
SULT1A2 | −7.3 | - | −7.75 | −6.98 |
SULT1C1 | −8.04 | −9.99 | −7.60 | −7.76 |
SULT1E1 | −7.95 | −10.91 | −7.54 | −7.83 |
Complex | Hydrophobic Contacts | Hydrogen Bonds | π Staking | π Cations | Salt Bridges |
---|---|---|---|---|---|
SULT1A1*1—MCiOP | PHE76, PHE81, PHE84, ILE89, PHE142 | TYR139, TYR140 | PHE84 | - | LYS106, HIS149 |
SULT1A1*1—MiNP | ILE21, PRO47, PHE76, PHE84, PHE142, TYR169, TYR240, VAL243, PHE214, PHE255 | - | - | - | LYS106 |
SULT1A1*2—PNP in the crystallographic structure | PHE76, PHE84, ILE89, VAL243, PHE247 | - | PHE76 | - | - |
SULT1A1*2—PNP as a result of docking | PHE76, PHE84, ILE89, VAL243, PHE247 | - | PHE76 | - | - |
SULT1A1*2—MiNP | PRO47, PHE76, PHE81, PHE84, ILE89, PHE142, TYR240, | LYS48 | PHE142 | - | LYS48, LYS106 |
SULT1A1*2—MOiNP | ILE21, PHE24, PRO47, PHE76, PHE81, PHE84, ILE89, TYR139, ALA146, VAL148, TYR169 | TYR240 | PHE84 | - | LYS106 |
SULT1A1*3—MCiOP | ILE21, PHE24, PRO47, PHE76, PHE84, ILE89, PHE142, TYR169, TYR240, VAL243 | - | - | - | LYS106 |
SULT1A1*3—MHiNP | PRO47, PHE76, PHE84, ILE89, PHE142, VAL243, PHE247 | TYR240 | - | - | LYS48, LYS106 (3) |
SULT1A1*3—MiNP | ILE21, PHE76, PHE81, PHE84, ILE89, PHE142, TYR169, TYR240, VAL243 | - | - | - | LYS106 |
SULT1A1*3—MOiNP | ILE21, PHE24, PHE76, PHE81, PHE84, ILE89, VAL148, TYR149 | - | PHE84 | - | LYS106 |
SULT1A2—MCiOP | PHE76, PHE81, PHE84, ILE89, THR95 | TYR240 (2) | - | - | LYS106 |
SULT1A2—MiNP | LYS48, PHE76, PHE81, ILE89, PHE142, PHE255 | - | PHE84 | - | LYS106 |
SULT1A2—MOiNP | ILE21, PHE24, PHE76, PHE81, PHE84, ILE89, VAL148, TYR149 | - | PHE84 | - | LYS106 |
SULT1C1—iodothyronine | PHE82, MET149, TRP 170 | GLN22 | - | - | LYS96 |
SULT1C1—MCiOP | TRP145, PHE143, LEU150 | LYS49, ASN147 | - | - | LYS49 |
SULT1C1—MHiNP | PHE143, MET149 | PHE256 | - | - | LYS49 (3) |
SULT1C1—MiNP | GLN22, ALA24, ARG87, PHE143, TRP170 | THR25, TRP85, ALA86 | - | - | - |
SULT1C1-MOiNP | GLN22, PHE82, PHE143, TRP170 | GLN22, TRP85 | - | - | - |
SULT1E1—TBD in crystallographic structure | TYR20, PHE23, VAL145 | LYS105, HIS107 | PHE141 | HIS148 | - |
SULT1E1—TBD as a result of docking | TYR20, ASP22, PHE23, PHE141, VAL145, ALA146, TYR239, ILE246 | ASP22, LYS105, HIS107 | PHE80, PHE141 | HIS148 | |
SULT1E1—MCiOP | PHE23, PRO46, LYS47, LYS85PHE141, ILE246 | TYR239 | - | - | LYS105 |
SULT1E1—MHiNP | TYR20, PRO46, LYS47, PHE80, PHE141, VAL145 | LYS47, TYR239 | - | - | LYS47, LYS105 (3) |
SULT1E1—MiNP | PHE23, PRO46, LYS47, PHE141, VAL175, PHE254 | - | - | - | LYS105 |
SULT1E1—MOiNP | TYR20, PRO46, LYS47, PHE80, PHE141, VAL145, ILE246 | LYS47, THR50 | - | - | LYS47, LYS105 (2) |
PDB ID of the Structural File | Description | References |
---|---|---|
4GRA | Crystal structure of SULT1A1*1 (wild type) complexed with PAP | [41] |
1LS6 | Crystal structure of SULT1A1*2 complexed with PAP and the substrate p-pitrophenol | [42] |
1Z28 | Crystal structure of SULT1A1*3 complexed with PAP | [43] |
1Z29 | Crystal structure of SULT1A2 complexed with PAP, acetic acid and Ca2+ | |
2A3R | Crystal structure of SULT1A3 in complex with PAP and the substrate dopamine | [44] |
3CKL | Crystal structure SULT1B1 in complex with PAP and the substrate resveratrol | [45] |
3BFX | Crystal structure SULT1C1 in complex with PAP | [46] |
1G3M | Crystal structure SULT1E1 in complex with PAP and the inhibitor 3,5,3′,5′-tetrachloro-biphenyl-4,4′-diol | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceauranu, S.; Ciorsac, A.; Ostafe, V.; Isvoran, A. Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases—A Computational Study. Molecules 2023, 28, 6748. https://doi.org/10.3390/molecules28186748
Ceauranu S, Ciorsac A, Ostafe V, Isvoran A. Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases—A Computational Study. Molecules. 2023; 28(18):6748. https://doi.org/10.3390/molecules28186748
Chicago/Turabian StyleCeauranu, Silvana, Alecu Ciorsac, Vasile Ostafe, and Adriana Isvoran. 2023. "Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases—A Computational Study" Molecules 28, no. 18: 6748. https://doi.org/10.3390/molecules28186748
APA StyleCeauranu, S., Ciorsac, A., Ostafe, V., & Isvoran, A. (2023). Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases—A Computational Study. Molecules, 28(18), 6748. https://doi.org/10.3390/molecules28186748