Development and Evaluation of Topical Zinc Oxide Nanogels Formulation Using Dendrobium anosmum and Its Effect on Acne Vulgaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Plant Extract
2.2. Phytochemical Screening
2.2.1. Determination of the Total Phenolic Content
2.2.2. Determination of the Total Flavonoid Content
2.3. Synthesis of the Zinc Oxide Nanoparticles
2.3.1. Chemogenic Synthesis of Zinc Oxide Nanoparticles
2.3.2. Biogenic Synthesis of Zinc Oxide Nanoparticles
2.4. Characterization of the ZnO NPs
2.5. Formulation of the Nano-sized Topical Gel
2.6. Physiochemical Evaluation
2.7. Bacterial Strains and Growth Conditions
2.8. Anti-Acne Efficacy Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Screening
3.2. Total Phenolic Content and Total Flavonoid Content
3.3. Characterization of ZnO Nanoparticles
3.3.1. Yield of ZnO Nanoparticles
3.3.2. UV-Vis Spectroscopy Analysis
3.3.3. Morphological Analysis
3.3.4. Crystalline and Structural Analysis
3.3.5. Fourier-Transform Infrared Functional Group Determination
3.4. Physiochemical Evaluation of the Topical Nanogel
3.5. Anti-Acne Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Agidew, M.G. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull. Natl. Res. Cent. 2022, 46, 87. [Google Scholar] [CrossRef]
- Hussein, R.A.; El-Anssary, A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In Herbal Medicine; IntechOpen: London, UK, 2019; Volume 1, pp. 11–30. [Google Scholar]
- Mandal, A.K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Bhandari, D.P.; Shah, A.K.; Bhattarai, N.; Parajuli, N. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials 2022, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
- Chilicka, K.; Dzieńdziora-Urbińska, I.; Szyguła, R.; Asanova, B.; Nowicka, D. Microbiome and probiotics in acne vulgaris—A narrative review. Life 2022, 12, 422. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, T.C.; Yin, X.L.; Man, J.Y.; Yang, X.R.; Lu, M. Magnitude and temporal trend of acne vulgaris burden in 204 countries and territories from 1990 to 2019: An analysis from the Global Burden of Disease Study 2019. Br. J. Dermatol. 2022, 186, 673–683. [Google Scholar] [CrossRef]
- Huei, L.T.; Badaruddin, N.S.F.B.; Phd, P.M. Prevalence and psychosocial impact of acne vulgaris among high school and university students in Sarawak, Malaysia. Med. J. Malays. 2022, 77, 446. [Google Scholar]
- Kumar, S.; Sawale, J.; Jain, G.; Singh, V.; Malviya, J.; Yadav, R. A Review on Acne Vulgaris is an usual Dermatological Disorders which bothers People in their Adolescence. J. Pharm. Negat. Results 2023, 13, 4204–4212. [Google Scholar]
- Khorvash, F.; Abdi, F.; Kashani, H.H.; Naeini, F.F.; Narimani, T. Staphylococcus aureus in acne pathogenesis: A case-control study. N. Am. J. Med. Sci. 2012, 4, 573. [Google Scholar]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Mehnath, S.; Das, A.K.; Verma, S.K.; Jeyaraj, M. Biosynthesized/green-synthesized nanomaterials as potential vehicles for delivery of antibiotics/drugs. Compr. Anal. Chem. 2021, 94, 363–432. [Google Scholar]
- Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.; Roberts, M.S. Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [Google Scholar] [CrossRef]
- Zvyagin, A.V.; Zhao, X.; Gierden, A.; Sanchez, W.; Ross, J.A.; Roberts, M.S. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J. Biomed. Opt. 2008, 13, 64031. [Google Scholar] [CrossRef] [PubMed]
- Saddik, M.S.; Elsayed, M.; El-Mokhtar, M.A.; Sedky, H.; Abdel-Aleem, J.A.; Abu-Dief, A.M.; Al-Hakkani, M.F.; Hussein, H.L.; Al-Shelkamy, S.A.; Meligy, F.Y.; et al. Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing. Pharmaceutics 2022, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.H.; Hamdy, A.; Ismail, T.A.; Mahboub, H.H.; Mahmoud, W.H.; Daoush, W.M. Synthesis and characterization of antibacterial carbopol/ZnO hybrid nanoparticles gel. Crystals 2021, 11, 1092. [Google Scholar] [CrossRef]
- Shin, D.Y.; Cheon, K.H.; Song, E.H.; Seong, Y.J.; Park, J.U.; Kim, H.E.; Jeong, S.H. Fluorine-ion-releasing injectable alginate nanocomposite hydrogel for enhanced bioactivity and antibacterial property. Int. J. Biol. Macromol. 2019, 123, 866–877. [Google Scholar] [CrossRef]
- Aminuzzaman, M.; Kei, L.M.; Liang, W.H. Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. AIP Conf. Proc. 2017, 1828, 020016. [Google Scholar]
- Iqbal, E.; Salim, K.A.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ. Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Ajayi, I.A.; Ajibade, O.; Oderinde, R.A. Preliminary phytochemical analysis of some plant seeds. Res. J. Chem. Sci. 2011, 1, 58–62. [Google Scholar]
- Le Thi, V.A.; Nguyen, N.L.; Nguyen, Q.H.; Van Dong, Q.; Do, T.Y.; Nguyen, K.O.T. Phytochemical Screening and Potential Anti-bacterial Activity of Defatted and Nondefatted Methanolic Extracts of Xao Tam Phan (Paramignya Trimera (Oliv.) Guillaum) Peels against Multidrug-Resistant Bacteria. Scientifica 2021, 2021, 4233615. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, S.K.; Bhat, V.S.; Sharmila, K.P.; Bekal, M.P. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J. Health Allied Sci. NU 2012, 2, 34–38. [Google Scholar] [CrossRef]
- Nayaka, H.; Londonkar, R.L.; Umesh, M.K. Evaluation of Potential Antifertility activity of Total Flavonoids, Isolated from Portulaca oleracea L on female albino rats. Int. J. PhamTech Res. 2014, 6, 783–793. [Google Scholar]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Chatterji, S.; Gupta, S.K.; Watal, G. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int. J. Pharm. Pharm. Sci. 2014, 6, 539–542. [Google Scholar]
- Gonfa, T.; Teketle, S.; Kiros, T. Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of Cadaba rotundifolia Forssk leaf extracts. Cogent Food Agric. 2020, 6, 1853867. [Google Scholar] [CrossRef]
- Muhamad, M.; Ai Sze, W.; Zulkifli, N.S.; Ab-Rahim, S. Qualitative Analysis on the Phytochemical Compounds and Total Phenolic Content of Cissus hastata (Semperai) Leaf Extract. Int. J. Plant Biol. 2022, 14, 53–62. [Google Scholar] [CrossRef]
- Yadav, P.; Kumar, A.; Mahour, K.; Vihan, V.S. Phytochemical analysis of some indigenous plants potent against endoparasite. J. Adv. Lab. Res. Biol. 2010, 1, 56–59. [Google Scholar]
- Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L.; Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 2017, 6, 195–206. [Google Scholar]
- Dhanapal, A.C.T.A.; Ming, T.W.; Aung, H.P.; Hao, S.J. Preliminary screening of Artemisia argyi for antioxidant potentials. Int. J. Pharmacog. Phytochem. Res. 2016, 8, 347–355. [Google Scholar]
- Azlim Almey, A.A.; Ahmed Jalal Khan, C.; Syed Zahir, I.; Mustapha Suleiman, K.; Aisyah, M.R.; Kamarul Rahim, K. Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants’ leaves. Int. Food Res. J. 2010, 17, 1077–1084. [Google Scholar]
- Samanta, R.; Ghosh, M. Optimization of Microwave-assisted Extraction Technique for Flavonoids and Phenolics from the Leaves of Oroxylum Indicum (L.) Kurtz Using Taguchi L9 Orthogonal Design. Pharmacogn. Mag. 2023, 19, 09731296221137407. [Google Scholar] [CrossRef]
- Chikere, C.; Faisal, N.H.; Lin, P.K.T.; Fernandez, C. Zinc oxide nanoparticles modified-carbon paste electrode used for the electrochemical determination of Gallic acid. J. Phys. Conf. Ser. 2019, 1310, 012008. [Google Scholar] [CrossRef]
- Basnet, N.S.; Chanu, T.I.; Samanta, D.; Chatterjee, S. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B Biol. 2018, 183, 201–221. [Google Scholar] [CrossRef]
- Chan, Y.B.; Selvanathan, V.; Tey, L.H.; Akhtaruzzaman, M.; Anur, F.H.; Djearamane, S.; Watanabe, A.; Aminuzzaman, M. Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract. Nanomaterials 2022, 12, 3589. [Google Scholar] [CrossRef] [PubMed]
- Farzana, R.; Rajarao, R.; Behera, P.R.; Hassan, K.; Sahajwalla, V. Zinc oxide nanoparticles from waste Zn-C battery via thermal route: Characterization and properties. Nanomaterials 2018, 8, 717. [Google Scholar] [CrossRef] [PubMed]
- Prabu, S.L.; Umamaheswari, A.; Rajakumar, S.; Bhuvaneswari, P.; Muthupetchi, S. Development and evaluation of gel incorporated with synthesized silver nanoparticle from Ocimum gratissimum for the treatment of acne vulgaris. Am. J. Adv. Drug Deliv. 2017, 5, 107–117. [Google Scholar] [CrossRef]
- Ahle, C.M.; Stødkilde, K.; Poehlein, A.; Bömeke, M.; Streit, W.R.; Wenck, H.; Reuter, J.H.; Hüpeden, J.; Brüggemann, H. Interference and co-existence of staphylococci and cutibacterium acnes within the healthy human skin microbiome. Commun. Biol. 2022, 5, 923. [Google Scholar] [CrossRef] [PubMed]
- Yagoub, A.E.A.; Al-Shammari, G.M.; Al-Harbi, L.N.; Subash-Babu, P.; Elsayim, R.; Mohammed, M.A.; Yahya, M.A.; Fattiny, S.Z. Antimicrobial properties of zinc oxide nanoparticles synthesized from lavandula pubescens shoot methanol extract. Appl. Sci. 2022, 12, 11613. [Google Scholar] [CrossRef]
- Bhalla, N.; Ingle, N.; Jayaprakash, A.; Patel, H.; Patri, S.V.; Haranath, D. Green approach to synthesize nano zinc oxide via moringa oleifera leaves for enhanced anti-oxidant, anti-acne and anti-bacterial properties for health & wellness applications. Arab. J. Chem. 2023, 16, 104506. [Google Scholar]
- Siddiqi, K.S.; Husen, A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomater. Res. 2020, 24, 11. [Google Scholar] [CrossRef]
- Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 2018, 11, 940. [Google Scholar] [CrossRef]
- Kandar, C.C. Secondary metabolites from plant sources. Bioact. Nat. Prod. Pharm. Appl. 2021, 140, 329–377. [Google Scholar]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar]
- Wang, P.; Tian, B.; Ge, Z.; Feng, J.; Wang, J.; Yang, K.; Sun, P.; Cai, M. Ultrasound and deep eutectic solvent as green extraction technology for recovery of phenolic compounds from Dendrobium officinale leaves. Process Biochem. 2023, 128, 1–11. [Google Scholar] [CrossRef]
- Nag, S.; Kumaria, S. In vitro propagation of medicinally threatened orchid Vanda coerulea: An improved method for the production of phytochemicals, antioxidants and phenylalanine ammonia lyase activity. J. Pharmacogn. Phytochem. 2018, 7, 2973–2982. [Google Scholar]
- Bhattacharyya, P.; Kumaria, S.; Job, N.; Tandon, P. Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: A threatened, medicinal orchid. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 122, 535–550. [Google Scholar] [CrossRef]
- Me, R.; Istamam, M.H.; Amir, N.A.S.; Iberahim, R.; Shanthi, A.; Pungot, N.H.; Ibrahim, N. Role of plant’s metabolites in the biomimetic synthesis of plant-mediated silver nanoparticles: A review. Asian J. Fundam. Appl. Sci. 2020, 1, 1–9. [Google Scholar]
- Jagessar, R.C. Plant extracts based nanoparticles, a good perspective in the development of drugs in nanomedicine. Mod. Approaches Drug Des. 2020, 3, 000556. [Google Scholar]
- Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015, 5, 4993–5003. [Google Scholar] [CrossRef]
- Getie, S.; Belay, A.; Chandra Reddy, A.R.; Belay, Z. Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J. Nanomed. Nanotechno. 2017, 8, 1–8. [Google Scholar]
- Chitra, M.; Mangamma, G.; Uthayarani, K.; Neelakandeswari, N.; Girija, E.K. Band gap engineering in ZnO based nanocomposites. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 119, 113969. [Google Scholar] [CrossRef]
- Mutukwa, D.; Taziwa, R.; Khotseng, L.E. A Review of the Green Synthesis of ZnO Nanoparticles Utilising Southern African Indigenous Medicinal Plants. Nanomaterials 2022, 12, 3456. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, P.; Preuß, A.; Bankwitz, J.; Georgi, C.; Ganss, F.; Mertens, L.; Schulz, S.E.; Hellwig, O.; Mehring, M.; Lang, H. Synthesis of Mg and Zn diolates and their use in metal oxide deposition. RSC Adv. 2019, 9, 10657–10669. [Google Scholar] [CrossRef] [PubMed]
- Cursaru, L.M.; Valsan, S.N.; Puscasu, M.E.; Tudor, I.A.; Zarnescu-Ivan, N.; Vasile, B.S.; Piticescu, R.M. Study of ZnO-CNT Nanocomposites in High-Pressure Conditions. Materials 2021, 14, 5330. [Google Scholar] [CrossRef]
- Jayakar, V.; Lokapur, V.; Nityasree, B.R.; Chalannavar, R.K.; Lasrado, L.D.; Shantaram, M. Optimization and green synthesis of zinc oxide nanoparticle using Garcinia cambogia leaf and evaluation of their antioxidant and anticancer property in kidney cancer (A498) cell lines. Biomedicine 2021, 41, 206–222. [Google Scholar] [CrossRef]
- Rabell, G.O.; Cruz, M.A.; Juárez-Ramírez, I. Photoelectrochemical (PEC) analysis of ZnO/Al photoelectrodes and its photocatalytic activity for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 7770–7782. [Google Scholar] [CrossRef]
- Bhakta, N.; Chakrabarti, P.K. Defect induced room temperature ferromagnetism and optical properties of (Co, Y) co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 2019, 485, 419–426. [Google Scholar] [CrossRef]
- Munir, T.; Kashif, M.; Mahmood, K.; Imran, M.; Ali, A.; Sabir, N.; Amin, N.; Mahmood, A.; Ali, H.; Ahmed, N. Impact of silver dopant on structural, optical and electrical properties of ZnO nanoparticles. J. Ovonic Res. 2019, 15, 173–179. [Google Scholar]
- Zhao, L.; Zhang, Y.; Bi, S.; Liu, Q. Metal–organic framework-derived CeO 2–ZnO catalysts for C 3 H 6-SCR of NO: An in situ DRIFTS study. R. Soc. Chem. Adv. 2019, 9, 19236–19242. [Google Scholar]
- Puvvada, N.; Rajput, S.; Kumar, B.N.; Sarkar, S.; Konar, S.; Brunt, K.R.; Rao, R.R.; Mazumdar, A.; Das, S.K.; Basu, R.; et al. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Sci. Rep. 2015, 5, 11760. [Google Scholar] [CrossRef]
- Ahmad, W.; Kalra, D. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J. King Saud Univ. Sci. 2020, 32, 2358–2364. [Google Scholar] [CrossRef]
- Ansari, S.P.; Mohammad, F. Studies on nanocomposites of polyaniline and zinc oxide nanoparticles with supporting matrix of polycarbonate. Int. Sch. Res. Not. 2012, 2012, 129859. [Google Scholar] [CrossRef]
- Ciğeroğlu, Z. Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: Face-centred central composite design. Turk. J. Chem. 2021, 45, 1224–1236. [Google Scholar] [CrossRef]
- Jayarambabu, N.; Kumari, B.S.; Rao, K.V.; Prabhu, Y.T. Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int. J. Curr. Eng. Technol. 2014, 4, 3411–3416. [Google Scholar]
- Naseer, M.; Aslam, U.; Khalid, B.; Chen, B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 2020, 10, 9055. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Wong, A.B. Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci. Rep. 2020, 10, 12288. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef] [PubMed]
- de Souza Pereira, R. Treatment of Resistant Acne Vulgaris in Adolescents Using Dietary Supplementation with Magnesium, Phosphate and Fatty Acids (Omega 6 and 7): Comparison with 13-Cis-Retinoic Acid. J. Diet. Suppl. 2022, 20, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.S.; Hazzah, W.A.; Bakr, W.M. Evaluation of antibiotic susceptibility test results: How guilty a laboratory could be? J. Egypt. Public Health Assoc. 2019, 94, 4. [Google Scholar] [CrossRef]
- Dalsgaard, I. Selection of media for antimicrobial susceptibility testing of fish pathogenic bacteria. Aquaculture 2001, 196, 267–275. [Google Scholar] [CrossRef]
- Lan, W.; Wang, X.; Tu, X.; Hu, X.; Lu, H. Different phylotypes of Cutibacterium acnes cause different modic changes in intervertebral disc degeneration. PLoS ONE 2022, 17, e0270982. [Google Scholar] [CrossRef] [PubMed]
Phytochemical/Secondary Metabolites | Observation | Dendrobium anosmum Leaf Aqueous Extract |
---|---|---|
Alkaloid | No orange-red precipitate formation | − |
Carotenoid | Dark blue colour at interface | + |
Coumarin | Yellow colour solution | + |
Flavonoids | Yellow precipitate formation | + |
Phenols | Formation of bluish black colour solution | + |
Phlobatannin | No red precipitate formation | − |
Saponin | Formation of a persistent foam | + |
Steroids | Reddish brown interface with fluorescent green with yellow | + |
Tannins | White precipitate formation | + |
Terpenoids | Reddish brown colour formation | + |
Nanoparticles Synthesized Technique | Weight (g) | Weight of Salt Precursor Used (g) | Yield (%) |
---|---|---|---|
Chemogenic | 1.92 ± 0.03 | 12.00 | 15.99 ± 0.25 |
Biogenic | 1.40 ± 0.01 | 2.00 | 69.75 ± 0.50 |
Samples | Unit Cells | Average Crystalline Size (nm) | |
---|---|---|---|
A (Å) | c (Å) | ||
Chemogenic | 3.2489 | 5.2049 | 30.40 |
Biogenic | 3.2494 | 5.2058 | 29.15 |
Commercial Peaks (c) | Chemical Peak (cm−1) | Green Peaks (cm−1) | Functional Groups |
---|---|---|---|
3854 | - | - | O-H stretching |
3435 | 3435 | 3412 | O-H stretching |
2360 | - | - | O=C=O stretching |
2343 | - | - | O=C=O stretching |
- | 2095 | 2066 | N=N=N stretching |
1636 | 1636 | 1637 | C=O stretching |
1383 | 1384 | 1384 | N=O bending |
- | - | 1082 | C-C stretching |
- | 830 | 871 | C-H stretching |
534,502 | 499 | 532,489 | Zn-O stretching |
Characteristic | Carbopol 940 | HPMC |
---|---|---|
Color | Transparent | Semi-transparent |
Appearance | Transparent | Cream color |
Consistency | Thick and smooth | Smooth |
pH | 5.27 ± 0.01 | 5.38 ± 0.04 |
Viscosity (centipoises) | 45,386 ± 8.29 | 20,000 ± 2.16 |
Spreadability (g·cm/s) | 6.56 ± 0.24 | 85.23 ± 0.19 |
Control | Tetracycline Concentration (µg/mL) | Zone of Inhibition (mm) | |
---|---|---|---|
C. acne | S. aureus | ||
Positive | 30 | 26 ± 1 | 33 ± 1 |
Negative | 0 | - | - |
Sample | Concentration of ZnO NPs (mg/mL) | Zone of inhibition (mm) | |
C. acne | S. aureus | ||
C-ZnO NPs | 2 | 11 ± 1 | - |
4 | 12 ± 1 | - | |
8 | 11 ± 1 | - | |
16 | - | 13 ± 1 | |
G-ZnO NPs | 2 | 12 ± 1 | - |
4 | 12 ± 1 | - | |
8 | 10 ± 1 | - | |
16 | 10 ± 1 | 19 ± 1 | |
C-Carbopol | 16 | 14 ± 1 | 12 ± 1 |
G-Carbopol | 16 | 15 ± 1 | 15 ± 1 |
C-HPMC | 16 | 12 ± 1 | 14 ± 1 |
G-HPMC | 16 | 12 ± 1 | 15 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.Y.; Wong, L.S.; Nyam, K.L.; Wittayanarakul, K.; Zawawi, N.A.; Rajendran, K.; Djearamane, S.; Dhanapal, A.C.T.A. Development and Evaluation of Topical Zinc Oxide Nanogels Formulation Using Dendrobium anosmum and Its Effect on Acne Vulgaris. Molecules 2023, 28, 6749. https://doi.org/10.3390/molecules28196749
Tan YY, Wong LS, Nyam KL, Wittayanarakul K, Zawawi NA, Rajendran K, Djearamane S, Dhanapal ACTA. Development and Evaluation of Topical Zinc Oxide Nanogels Formulation Using Dendrobium anosmum and Its Effect on Acne Vulgaris. Molecules. 2023; 28(19):6749. https://doi.org/10.3390/molecules28196749
Chicago/Turabian StyleTan, Yu Yang, Ling Shing Wong, Kar Lin Nyam, Kitiyaporn Wittayanarakul, Nurliyana Ahmad Zawawi, Kavitha Rajendran, Sinovassane Djearamane, and Anto Cordelia Tanislaus Antony Dhanapal. 2023. "Development and Evaluation of Topical Zinc Oxide Nanogels Formulation Using Dendrobium anosmum and Its Effect on Acne Vulgaris" Molecules 28, no. 19: 6749. https://doi.org/10.3390/molecules28196749
APA StyleTan, Y. Y., Wong, L. S., Nyam, K. L., Wittayanarakul, K., Zawawi, N. A., Rajendran, K., Djearamane, S., & Dhanapal, A. C. T. A. (2023). Development and Evaluation of Topical Zinc Oxide Nanogels Formulation Using Dendrobium anosmum and Its Effect on Acne Vulgaris. Molecules, 28(19), 6749. https://doi.org/10.3390/molecules28196749